
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 817

Sampling Algorithms to Update Truncated SVD

Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra
University of Tennessee, Knoxville, Tennessee, U.S.A.

Abstract—
A truncated singular value decomposition (SVD) is a powerful

tool for analyzing modern datasets. However, the massive volume
and rapidly changing nature of the datasets often make it too
expensive to compute the SVD of the whole dataset at once. It
is more attractive to use only a part of the dataset at a time
and incrementally update the SVD. A randomized algorithm has
been shown to be a great alternative to a traditional updating
algorithm due to its ability to efficiently filter out the noises
and extract the relevant features of the dataset. Though it is
often faster than the traditional algorithm, in order to extract
the relevant features, the randomized algorithm may need to
accesses the data multiple times, and this data access creates a
significant performance bottleneck. To improve the performance
of the randomized algorithm for updating SVD, we study, in this
paper, two sampling algorithms that access the data only two or
three times, respectively. We present several case studies to show
that only a small fraction of the data may be needed to maintain
the quality of the updated SVD, while our performance results
on a hybrid CPU/GPU computer demonstrate the potential of
the sampling algorithms to improve the performance of the
randomized algorithm.

Index Terms—sample; randomize; update SVD; out-of-core;

I. INTRODUCTION

To analyze the modern datasets with a wide variety and

veracity, a truncated singular value decomposition (SVD) [1]

of the matrix representing the data is a powerful tool. The

ability of the SVD to filter out noises and extract the underly-

ing features of the data has been demonstrated in many data

analysis tools, including Latent Semantic Indexing (LSI) [2],

recommendation systems [3], population clustering [4], and

subspace tracking [5]. Also, as the modern datasets are

constantly being updated and analyzed, we develop a good

understanding of the data (e.g., the singular value distribution),

which can be used to tune the performance or the robustness

of computing the SVD for that particular application (e.g.,

the required numerical rank for the accurate data analysis,

or the number of data passes needed to compute the SVD).

Furthermore, these tuning parameters stay roughly the same

for different datasets from the same applications.

With the increase in the external storage capacity, the

amount of data generated from the observations, experiments,

and simulations has been growing at an unprecedented rate.

These phenomena have led to the emergence of numerous

massive datasets in many areas of studies including science,

engineering, medicine, finance, social media, and e-commerce.

The specific applications that generate the rapidly-changing

massive datasets include the communication and electric grids,

transportation and financial systems, personalized services on

the internet, particle or astro physics, and genome sequencing.

Hence, beside the variety and veracity of the dataset, the data

analysis tool must address the challenges associated with the

volume and velocity of the changes made to the dataset. For

instance, the computers may not have enough compute power

to accommodate such a rapidly growing or changing data if

the computational complexity of the data analysis tool grows

superlinearly with the data size. In addition, accessing the

data through the local memory hierarchy is expensive, and

accessing these data in the external storage is even more costly.

Therefore, the data analysis tool needs to be data-pass efficient.

In particular, it may become too costly to compute the SVD

of the whole dataset at once, or to recompute the SVD every

time the changes are made to the dataset. In some applications,

recomputing the SVD may not even be possible because the

original data, for which the SVD has been already computed, is

no longer available. To address these challenges, an attractive

approach is to update (rather than recompute) the SVD. For

example, we can incrementally update the SVD using only a

part of the matrix that fit in the core memory at a time. Hence,

the whole matrix is moved to the core memory only once.

A randomized algorithm has been shown to be an efficient

method to update SVD [6]. To reduce both the computational

and data access costs, it projects the data onto a smaller

subspace before computing the updated SVD. Compared with

the state-of-the-art updating algorithm [7], the randomized

algorithm often compresses the data into a smaller projection

subspace with a lower communication latency cost. As a

result, the randomized algorithm could obtain much higher

performance on a modern computer, where the communica-

tion has become significantly more expensive compared with

the arithmetic operations, both in terms of time and energy

consumption. In addition, the randomized algorithm accesses

the data only through the dense or sparse matrix-matrix

multiplication (GEMM or SpMM) whose highly-optimized

implementations are provided by many vendors. In other

applications, the external storage (e.g., database) may provide

a functionality to compute the matrix multiplication and only

transfer the resulting vectors to the memory, thus avoiding the

explicit generation and transfer of the matrix into the memory.

To filter out the noises and extract the relevant features,

however, the randomized algorithm may require multiple data

passes that become the performance bottleneck. In this paper,

we use two methods to reduce this bottleneck. 1) We integrate

data sampling into the randomized algorithm. Namely, we first

sample the new data using the information gathered while

compressing the previous data. Then, the randomized algo-

rithm only uses the sampled data (which fits in the memory)

to update the SVD. We present two sampling algorithms,

818

requiring only two or three data-passes, respectively (one

pass to sample the data, and one or two additional passes to

generate the projection subspace). 2) We study a randomized

algorithm to incrementally update the SVD using a subset of

the sampled rows. The algorithm does not access the rows that

have been already compressed and uses only the sampled rows

that can fit in the memory at a time. This becomes attractive

when we fail to sample enough rows or all the sampled rows

do not fit in the memory at once.

We present several case studies, in which we needed to

sample only a fraction of the data to maintain the quality of

the updated SVD. We also show the potential of the sampling

algorithm to improve the performance of the randomized

algorithm on multicore CPUs with an NVIDIA GPU using

different implementations and data configurations. As the cost

of data access grows due to the properties of both data and

hardware, such sampling algorithms would likely play more

critical roles in analyzing the modern datasets. Throughout

this paper, we use ai,j and vi to denote the (i, j)-th entry of

a matrix A and the i-th entry of a vector v, respectively.

II. PROBLEM STATEMENT

We assume that a rank-k approximation Ak = UkΣkV
T
k

of an m-by-n matrix A has been computed where Σk is a

k-by-k diagonal matrix whose diagonal entries approximate

the k dominant singular values of A, and the columns of Uk

and Vk approximate the corresponding left and right singular

vectors, respectively. We then consider computing a rank-k
approximation of a matrix Â,

Â ≈ ÛkΣ̂kV̂
T
k , (1)

where Â = [A D] and an m-by-d matrix D represents the

new set of the columns being added to A. This problem is

of particular interest for the term-document matrices from the

latent semantic indexing (LSI) [8], and it is commonly referred

to as the updating-documents problem. Two other updating

problems exist, updating-terms and updating-weights. They

add a new set of matrix rows and update a set of the

matrix entries, respectively. Though we focus only on updating

documents, all these three problems can be expressed as low-

rank corrections to the original matrix. In many cases, Â is tall

and skinny, having more rows than columns (i.e., m� n, d).

All the algorithms studied in this paper belong to a class of

subspace projection methods:

Alg. 1. Subspace Projection Method:

1) Generate a pair of k + � orthonormal basis vectors P̂ and Q̂
that approximately span the range and domain of the matrix Â,
respectively,

Â ≈ P̂ Q̂T , (2)

where � is an oversampling parameter [9] selected to enhance
the performance or robustness of the algorithm.

2) Use a standard deterministic algorithm to compute the SVD of

the projected matrix B := P̂T ÂQ̂,

XΣ̂Y T := SVD(B).

3) Compute the low-rank approximation (1) such that the diagonal

entries of Σ̂k are the k dominant singular values of B, and

Ûk := P̂Xk and V̂k := Q̂Yk, where Xk and Yk are the
corresponding left and right singular vectors of B, respectively.

The first step of generating the projection subspace typically

dominates the performance, and is the focus of this paper.

III. PREVIOUS ALGORITHMS

Two algorithms have been previously used to generate the

basis vectors P̂ and Q̂ of (2).

A. Updating Algorithm

The updating algorithm [7] computes the basis vectors P̂
and Q̂ by first orthogonalizing D against the current approx-

imate left singular vectors Uk,

D̂ := (I − UkU
T
k)D, (3)

and then computing its QR factorization to orthonormalize the

resulting D̂,

PR := QR(D̂)

such that P is an m-by-d orthonormal matrix and R is a d-

by-d upper-triangular matrix. The basis vectors are then given

by

P̂ =
[
Uk P

]
and Q̂ =

[
Vk 0
0 Id

]
, (4)

where Id is a d-by-d identity matrix. The resulting (k + d)-
by-(k + d) projected matrix B ≡ P̂T ÂQ̂ is given by

B =

[
Σk UT

k D
R

]
.

The algorithm is shown to compute a good approximation

to the truncated SVD of the matrix Â, especially when its

singular values have so-called “low-rank-plus-shift” distri-

bution [10]. Since the “low-rank” and “shift” respectively

correspond to the relevant features and the noises of the

underlying data, the matrices from many applications of our

interests have this type of singular value distributions.

In (3), the algorithm first accesses the matrix D through

SpMM (or GEMM) to compute UT
k D, and then accesses it

again to accumulate the results of SpMM and compute D̂. In

practice, to reduce the large amount of memory needed to store

the m-by-d dense vectors P , we incrementally update the SVD

by adding a subset of the new columns D at a time. However,

all the columns of D are still orthogonalized against Uk. In

addition, the accumulated cost of computing the SVD of the

matrices B and updating Uk and Vk could still be significant.

B. Randomized Algorithm

To reduce the cost of the updating algorithm, a randomized
algorithm [6] applies the normalized power iterations to the

matrix D̂ of (3) without explicitly forming D̂:

Alg. 2. Randomized Algorithm for Adding Columns
1. Generate � Gaussian random vectors Q
2. Compute QR factorization of Q, QR := QR(Q)

for j = 1, 2, . . . , s do
3. Approximate the matrix range, P := (I − UkU

T
k)DQ

4. Compute QR factorization of P , PR := QR(P)
if j < s then

5. Approximate the matrix domain, Q := DTP

819

6. Compute QR factorization of Q, QR := QR(Q)
end if

end for

After the power iteration, the basis vectors P̂ and Q̂ are

computed as in (4), but using P generated by the iteration.

To further reduce the cost of solving the projected system, a

smaller right projection subspace was also proposed where the

basis vectors Q generated by the power iteration was used,

Q̂ =

[
Vk 0
0 Q

]
.

We refer to these two projection schemes as the randomized

algorithms with one-sided and two-sided approximation, or as

Rnd1 and Rnd2 in short, respectively. The respective (k+ �)-
by-(k + d) and (k + �)-by-(k + �) projected matrices B ≡
P̂T ÂQ̂ are given by

B =

[
Σk UT

k D
0 PTD

]
and

[
Σk UT

k DQ
0 R

]
. (5)

The smaller B of Rnd2 leads to a lower computational cost.

More importantly, however, if the result of DQ is saved at

Step 3 of the above algorithm, the projected matrix B of Rnd2

can be computed without an additional SpMM. On the other

hand, to compute B, Rnd1 requires the additional SpMM to

multiply D with the vectors Uk and P .

When the updating algorithm of Section III-A incrementally

adds � columns at a time, it performs d
� orthogonalization and

projection. Hence, if the randomized algorithm converges in

less than d
� iterations, it has a lower cost of orthogonalization

than the updating algorithm. Since the randomized algorithm

typically requires only a couple of iterations, it could obtain

significant speedups over the updating algorithm (see Sec-

tion VII). However, while the updating algorithm only accesses

the matrix D twice, the randomized algorithm accesses D
(2s − 1) times over the s iterations. Though D is accessed

only through SpMM, this data access often dominates the

performance of the randomized algorithm.

IV. SAMPLING ALGORITHM

To lower the data access cost of the randomized algorithm,

in this section, we integrate sampling. For instance, instead of

iterating with the new data D, we may iterate with the row-

sampled matrix D̃r that contains only a subset of its rows,

D̃r = SrCrD, (6)

where the c-by-m matrix Cr samples the rows of the matrix D,

and the c-by-c matrix Sr scales the sampled rows (i.e., SrCr

has a single nonzero entry on each row, (SrCr)i,ci = si,i,
where ci is the index of the i-th sampled row). The following

algorithm generates our sampling matrix C:

Alg. 3. Algorithm to Sample rows:
1. Generate m-length probabilistic distribution p such that

pi is the probability that i-th row is sampled, and
∑m

i=1
pi = 1

2. Compute probabilistic interval t such that ti =
∑i

j=1
pj

3. Sample c rows of D following the distribution p
for i = 1, 2, . . . , c do
3.1. Draw a uniformly distributed random number γ

in the interval (0,1)
3.2. Select the sampled row ci such that

ci = argmaxi(γ < ti | i = 1, 2, . . . ,m)
if sampling without replacement

and ci has been previously selected then
3.3. Draw a new γ and go to Step 3.2

end if
end for

In this paper, we use the following two types of distributions p.

The first is the uniform distribution (i.e., pi =
1
m) while the

second uses the leverage scores such that pi =
1
k

∑k
j=1 u

2
i,j ,

where ui,j is the (i, j)-th entry of the current approximate left

singular vectors Uk. Then, when sampled with replacements,

we use the scaling matrix Sr =
√

m
c Ic, while without

replacement, we let Sr = diag(1√
cpc1

, . . . , 1√
cpcc

).

Though we could have used any sampling algorithm, we

focused on these two distributions that are readily available

without an additional data pass over D. Theoretical studies

have been conducted on these two distributions including an

upper bound on the approximation error of the sampled Gram

matrix [11]. Since we iterate on the Gram matrix, this provides

a good theoretical motivation for using these distributions. Fi-

nally, these two distributions have been used in many studies,

and provide a baseline performance of our frameworks. If a

more effective sampling, or sketching [12], scheme exists for

a particular application, then it can be easily integrated in our

framework. Our focus is to use these two basic distributions

to sample our specific matrix D̂ = (I − UkU
T
k)D and study

their effectiveness for updating the SVD.

A. Row Sampling

We now describe our first randomized sampling framework

to update the SVD. Given the row-sampling and scaling

matrices Cr and Sr, we approximate the Gram matrix of

(I − UkU
T
k)D using two row-sampled matrices D̃r of (6)

and Ũk, which is generated through the QR factorization of

the row-sampled matrix SrCrUk, i.e., ŨkR̃ := QR(SrCrUk).
Then, we generate the right-projection subspace Q through

power iterations on the approximate normal equation without

explicitly forming the Gram matrix:

Alg. 4. Row-sampling for Adding Columns (Smp1):
1. Sample and scale rows of the matrices D and Uk ,

D̃r := SrCrD and ŨkR̃ := QR(SrCrUk)
2. Generate right projection subspace Q

by power iterating with Gram matrix of (I − ŨkŨ
T
k)D̃r

2.1. Generate � Gaussian random vectors Q
2.2. Compute QR factorization QR := QR(Q)

for j = 1, 2, . . . , s− 1 do

2.3. Approximate the matrix range, Q := D̃T
r (I − ŨkŨ

T
k)D̃rQ

2.4. Compute QR factorization, QR := QR(Q)
end if

3. Generate left projection subspace,

P := (I − UkU
T
k)DQ

PR := QR(P)
4. Generate projected matrix B of (5).

After the power iteration, the left-projection subspace P is

computed through SpMM with the original matrix D (Step 3

of Alg. 4). To generate B of Rnd1, we need one more SpMM to

compute DT [Uk P]. On the other hand, if we store the result

820

Dr
T

Dr Q Q

(a) Smp1.

Dr

T P Q

Dc Q P

(b) Smp2.

Fig. 1. Illustration of two sampling approachs, where the regions colored in
blue represent the sampled rows or columns.

of DQ at Step 3, then we can generate B of Rnd2 without

any additional SpMM. We refer to Alg. 4 as Smp1, and use

Smp1,1 and Smp1,2 to distinguish Smp1 with the projection

schemes of Rnd1 and Rnd2, respectively.

B. Row-column Sampling

Our second sampling framework approximates the results

of SpMM with D and DT using D̃c and D̃r that sample the

columns and rows of D, respectively. Though we do not have

the leverage scores for the columns of D, we can still, for

example, sample the columns based on their norms (requiring

a data pass over D) or using the uniform distribution p.

Alg. 5. Row-column sampling for Adding Columns (Smp2):
1. Sample and scale the rows of the matrices D and Uk

D̃r := SrCrD and ŨkR̃ := QR(SrCrUk)
2. Sample and scale the columns of the matrix D

D̃c := DCcSc

3. Generate projection subspaces P and Q

using the randomized algorithm on (I − ŨkŨ
T
k)D̃

3.1. Generate � Gaussian random vectors Q
3.2. Compute QR factorization QR := QR(Q)
for j = 1, 2, . . . , s− 1 do

3.3. Approximate the matrix range, P := (I − UkU
T
k)D̃c(ScCcQ)

3.4. Compute QR factorization of P , PR := QR(P)
if j < s then

3.5. Approximate the matrix domain, Q := D̃T
r (I − ŨkŨ

T
k)(SrCrP)

3.6. Compute QR factorization of Q, QR := QR(Q)
end if

end for
4. Generate projected matrix B of (5).

Since this approach uses power iteration to generate both the

right- and left-projection subspaces P and Q, it does not

require the extra SpMM that is needed by Smp1 to generate P .

However, we still need to perform SpMM with D to generate

the projected matrix B. It also has the additional cost to

orthogonalize P during the power iteration. We refer to this

as Smp2, and use Smp2,1 and Smp2,2 to refer to Smp2 with

the projection schemes of Rnd1 and Rnd2, respectively.

Fig. 1 illustrates these two sampling schemes, and Fig. 2

lists their computational and data access costs.

V. RANDOMIZATION TO ADD ROWS

In many applications, we have a good understanding of the

data including how much data should be sampled. However,

in some cases, we may fail to sample enough rows for the

updated SVD to satisfy the desired accuracy. In such cases,

we could discard the updated SVD, increase the sampling size,

Rnd1 Rnd2 Smp1 Smp2
Matrix operation with D
of Sp/GEMM s s (s− 1)τ + 1 (s− 1)τ
of Sp/GEMMt s s-1 (s− 1)τ (s− 1)τ + 1

Dense computation (flop count)

Orth �2ms �2ms �2((s− 1)τ + 1)m �2((s− 1)τ + 1)m

SVD(B) (k + d)(k + �)2 (k + �)3 (k + �)3 (k + �)3

Fig. 2. Complexities of algorithms to update SVD, s is the number of power
iterations, m and d are the respective numbers of rows and columns in D, k
is the rank of approximation, � is the oversampling parameter, and τ is the
sampling rate, e.g., τ = c

m
and c is the number of sampled rows. We assume

that the matrices are tall and skinny (i.e., m � n, d). When the updating
algorithm incrementally adds � columns at a time, it performs �2m d

�
flops

for the orthogonalization.

and recompute the updated SVD using the new set of the

sampled rows. Instead, in this section, we look at updating

the already-updated SVD using the additional sampled rows.

Such a scheme is also attractive when all the sampled rows do

not fit in the memory at once because it allows an incremental

update of the SVD using only a subset of the sampled rows

at a time, which fit in the memory.

Assuming that we have updated the SVD using Smp1, we

use the randomized algorithm to update the projection basis

vectors P and Q by adding more sampled rows to Ũk and D̃r.

The algorithm is based on the power iteration on the Gram

matrix, as shown below where Dr and Uk represent the new

set of sampled rows, while P and Q are the new set of basis

vectors to be generated.

Alg. 6. Randomized Algorithm for Adding Sampled Rows:

1. Sample more rows and generate Dr and Uk

2. Generate � Gaussian random vectors P

3. Compute QR factorization of P , PR := QR(P)
for j = 1, 2, . . . , s do

4. Approximate the matrix range,

Q := D
T
r (I − UkU

T
k)P

Q := (I −QQT)Q

5. Compute QR factorization, QR := QR(Q), if requested
if j < s then

6. Approximate the matrix domain, P := (I − UkU
T
k)DrQ

7. Compute QR factorization, PR := QR(P)
end if

end for

Then, Q is updated by compressing the new projection sub-

space [Q Q], where the projected matrix B is given by

B =

(
I 0

P
T
D̃rQ RT

)

since P and Q are orthogonal to Uk and Q, respectively.

The main motivation of the above algorithm is to avoid

accessing the previously sampled rows D̃r that have been

already compressed into a low-rank representation P and Q.

VI. CASE STUDIES

A different application uses a different error measurement

and requires a different approximation accuracy. In this sec-

tion, we examine a few test cases to study the effectiveness of

the sampling and randomized algorithms to update the trun-

cated SVD. To this end, we focus on a powerful data analysis

tool, the principal component analysis (PCA) [13]. In PCA,

821

0 50 100 150 200 250 300 350 400 450 500
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Number of documents added (d)

A
ve

ra
ge

 p
re

ci
si

on

Smp
1,1

Smp
1,1

(u, 0.4)

Smp
1,1

(u, 0.3)

Smp
1,1

(u, 0.2)

Smp
1,1

(u, 0.1)

Smp
1,1

(l, 0.4)

Smp
1,1

(l, 0.3)

Smp
1,1

(l, 0.2)

Smp
1,1

(l, 0.1)

0 50 100 150 200 250 300 350 400 450 500
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Smp
1,2

A
ve

ra
ge

 p
re

ci
si

on

Number of documents added (d)

Smp
1,2

(u, 0.5)

Smp
1,2

(u, 0.4)

Smp
1,2

(u, 0.3)

Smp
1,2

(u, 0.2)

Smp
1,2

(l, 0.5)

Smp
1,2

(l, 0.4)

Smp
1,2

(l, 0.3)

Smp
1,2

(l, 0.2)

(a) Smp1.

0 50 100 150 200 250 300 350 400 450 500
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Number of documents added (d)

A
ve

ra
ge

 p
re

ci
si

on

Smp
2,1

Smp
2,1

(u, 0.6)

Smp
2,1

(u, 0.5)

Smp
2,1

(u, 0.4)

Smp
2,1

(u, 0.3)

Smp
2,1

(l, 0.6)

Smp
2,1

(l, 0.5)

Smp
2,1

(l, 0.4)

Smp
2,1

(l, 0.3)

0 50 100 150 200 250 300 350 400 450 500
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Smp
2,2

A
ve

ra
ge

 p
re

ci
si

on

Number of documents added (d)

Smp
2,2

(u, 0.6)

Smp
2,2

(u, 0.5)

Smp
2,2

(u, 0.4)

Smp
2,2

(u, 0.3)

Smp
2,2

(l, 0.6)

Smp
2,2

(l, 0.5)

Smp
2,2

(l, 0.4)

Smp
2,2

(l, 0.3)

(b) Smp2.

Fig. 3. Average 11-point interpolated precision with different sampling rate for medline, where the first argument of (u, τ) or (�, τ) in the legend indicates
that the uniform probabilistic distribution or the leverage score is used, respectively, and τ is the sample rate, c

m
, while we fixed n = 533 and s = 3

(m = 5735). The line shows the mean precisions of ten runs, while the markers above and below the line show the highest and lowest precisions, respectively.

0 50 100 150 200 250 300 350 400 450 500
Number of documents added (d)

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

A
ve

ra
ge

 p
re

ci
si

on

Smp1

ReCompute
IncUpdate
Rnd

1
(1)

Rnd
1
(3)

Smp
1,1

(u, 0.2, 3)

Smp
1,1

(l, 0.2, 3)

0 50 100 150 200 250 300 350 400 450 500
Number of documents added (d)

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

A
ve

ra
ge

 p
re

ci
si

on

Smp2

ReCompute
IncUpdate
Rnd

2
(1)

Rnd
2
(3)

Smp
1,2

(u, 0.5, 3)

Smp
1,2

(l, 0.5, 3)

Fig. 4. Average 11-point interpolated precision for medline with Rnd(s)
and Smp(� or u, τ, s) where the first argument � or u specifies either the
leverage score or uniform distribution is used to sample the rows.

multidimensional data is projected onto a low-dimensional

subspace given by the truncated SVD such that related items

are close to each other in the low-dimensional subspace.

Here, we examine three particular applications of PCA: LSI,

data clustering or classification, and image processing. The

matrices used for LSI and classification are sparse, while

the matrices used for the clustering and image processing

are dense. The results with the randomized and sampling

algorithms are the mean of ten runs.

A. Sampling to Add Columns

We first investigate the required sampling rate (i.e., how

much data needs to be sampled) to maintain the quality of the

updated SVD. We also compare the effectiveness of different

sampling schemes.

1) Latent Semantic Indexing: For text mining [14], La-

tent Semantic Indexing (LSI) [2] is an effective information

retrieval tool since it can resolve the ambiguity due to the

synonymy or polysemy, which are difficult to address using

a traditional lexical-matching [15]. To study the effectiveness

of the proposed sampling algorithms for LSI, we generated

the term-document matrices using the Text to Matrix Gener-

ator (TMG) with the TREC dataset1. We then preprocessed

the matrices using the lxn.bpx weighing scheme [16]. To

compare the different combinations of sampling and projec-

tion schemes, Fig. 3 shows the average 11-point interpolated

precisions [16] of the updated SVD for the medline dataset.

Specifically, the figure shows the average precision when the

randomized sampling was used for adding d new documents

to the rank-30 approximation of the first 533 documents. The

first sampling scheme Smp1 obtained higher precisions than

the second scheme Smp2, while the first projection scheme

was slightly more effective obtaining the higher precisions

than the second scheme (e.g., Smp1,1 was more effective than

Smp1,2). Then, Fig. 4 compares the results with the three

previous algorithms: 1) recomputing SVD, 2) the updating

algorithm (adding incremental of 500 documents at a time),

and 3) the randomized algorithm without sampling. Overall,

only about 20 ∼ 50% of the new data was needed to obtain

the precisions that were equivalent to those obtained using the

previous algorithms. We have observed similar results for the

other datasets like cranfield.

2) Data Clustering and Classification: PCA has been suc-

cessfully used to extract the underlying genetic structure of

human populations [17], [18], [19]. To study the potential

of the sampling algorithm, we used it to update the SVD,

when a new population is incrementally added to the dataset

from the HapMap project2. We randomly filled in the missing

data with either −1, 0, or 1 with the probabilities based

on the available information for the SNP. Fig. 5(a) shows

the correlation coefficient of the resulting population cluster,

which is computed using the MATLAB’s k-mean algorithm

1http://scgroup20.ceid.upatras.gr:8000/tmg, http://ir.dcs.gla.ac.uk/resources
2http://hapmap.ncbi.nlm.nih.gov

822

JPT+MEX +ASW +GIH +CEU +LWK +CHB

Recompute 1.00 1.00 1.00 0.99 0.76 0.72
No update 1.00 0.81 0.59 0.67 0.56 0.47
Inc-Update 1.00 1.00 1.00 0.98 0.76 0.75
Rnd2 1.00 1.00 1.00 0.99 0.76 0.73
Smp1,2(u) 1.00 1.00 1.00 0.99 0.76 0.60
Smp1,2(�) 1.00 1.00 1.00 0.99 0.76 0.71

(a) Population clustering where 83 African ancestry in south west USA
(ASW), 88 Gujarati Indian in Houston (GIH), 165 European ancestry in
Utah (CEU), 90 Luhya in Webuye, Kenya (LWK), and 84 Han Chinese
in Beijing (CHB) were incrementally added to the 116, 565 SNP matrix
of 86 Japanese in Tokyo and 77 Mexican ancestry in Los Angeles, USA
(JPT and MEX). We used the fixed parameters (s = 3, τ = 0.9%).

crude+interest +money-fx +trade +ship +grain

Recompute 1.00 0.74 0.74 0.61 0.59
No update 1.00 0.62 0.42 0.44 0.39
Inc-Update 1.00 0.75 0.74 0.60 0.58
Rnd2 1.00 0.75 0.75 0.62 0.60
Smp1,2(u) 1.00 0.76 0.76 0.63 0.60
Smp1,2(�) 1.00 0.75 0.75 0.62 0.60

(b) Document classification where there are 253, 190, 206, 251,
108, and 41 documents of crude, interest, money-fx, trade,
ship, and grain categories, with 19, 368 terms. We used the fixed
parameters (s = 3, τ = 25%).

Fig. 5. Average correlation coefficients of clustering based on the five
dominant singular vectors.

d Recomp Update Rnd1 Rnd2 Smp1,1 Smp1,2
0 0.013 0.013 0.013 0.013 0.013 0.013

500 0.013 0.013 0.013 0.043 0.013 0.014
1000 0.013 0.013 0.014 0.085 0.013 0.019
1500 0.014 0.014 0.014 0.121 0.014 0.020
1700 0.014 0.014 0.014 0.140 0.015 0.024

(a) Approximation error norm ‖Â− ÛkŜkV̂k‖2/‖A‖2.

Fig. 6. Results with a 2250-by-2250 aerial image from the USC-SIPI Image
Database with n = 500, k = 100, and (s, τ) = (3, 10%).

in the low-dimensional subspace given by the dominant left

singular vectors. The correlation coefficient of 1.00 indicates

the perfect clustering result, while a lower coefficient indicates

a lower quality of the cluster. Similarly, Fig. 5(b) shows the

correlation coefficients for the document classification as a

new set of documents belonging to a different category is

added to the dataset3. Especially for the population clustering,

only a small fraction of the data is needed to obtain the coef-

ficients that are equivalent to those obtained by recomputing

the SVD or by the randomized algorithm without sampling.

3) Image Processing: The truncated SVD has been a valu-

able component in image processing because many digital

images can be represented as low-rank matrices where the

components associated with small singular values correspond

to noises [20]. When these images are too large to fit in the

memory at once, it becomes attractive to bring a part of the

image into the memory and incrementally update the SVD.

Updating SVD is also of interest in the applications where the

images are continually updated [21], [22]. Fig. 6(a) shows the

relative error norm, where only a couple of digits of accuracies

are often needed for the image processing. Compared to

Rnd2, Rnd1 was more effective maintaining the accuracy. The

sampling techniques obtained equivalent accuracies using only

10% of the data. We have observed similar results using other

3http://www.cs.umb.edu/∼smimarog/textmining/datasets

0 200 400 600 800
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Number of documents added

A
ve

ra
ge

 p
re

ci
si

on

Smp(10%)
Smp(20%)
Smp(30%)
Smp(10%)
Rnd1(20%)
Rnd1(30%)

0 200 400 600 800
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

A
ve

ra
ge

 p
re

ci
si

on

Total number of documents

Smp(10%)
Smp(20%)
Smp(30%)
Smp(10%)
Rnd2(20%)
Rnd2(30%)

Fig. 7. Average 11-point interpolated precision for medline when adding
sampled rows with (n, k) = (233, 50).

images from different applications. For this particular image,

in some cases, the sampling techniques could even improve

the accuracy of the approximation.

B. Randomization to Add Rows

We now study the randomized algorithm to add more

sampled rows. For the experiments in Fig. 7, we first updated

the SVD of the first 233 documents of medline by sampling

10% of the rows (i.e, d = 200 ∼ 800). Then we used the

randomized algorithm to update the SVD by adding more

sampled rows. The figure illustrates that without accessing

the previously compressed sampled rows, both the randomized

algorithms Rnd1 and Rnd2 could obtain the precisions close

to the sampling scheme that computes the updated SVD using

all of the sampled rows at once.

VII. PERFORMANCE RESULTS

A. Experimental Setups

For our performance studies in this section, we focus on

Smp1 combined with Rnd2 (i.e., Smp1,2) because compared

with Smp2, Smp1 was more effective maintaining the quality

of the SVD in Section VI. Smp1 also accesses only the row-

sampled matrix D̃r, while Smp2 requires both the row and

column sampled matrices. Our sampling algorithm greatly

reduces both the storage and time complexities of updating

the SVD. Hence, to study the effects of the sampling on the

performance of updating SVD, in this paper, we use a single

compute node as our testbed. The performance of the ran-

domized algorithm without sampling on a hybrid cluster was

studied in [6]. On a distributed-memory computer, sampling

the matrix could lead to a greater performance improvement

since it allows us to use a fewer compute nodes, reducing the

inter-node communication cost.

We assumed that the compressed basis vectors P and Q fit

in the GPU memory, where these vectors were orthonormal-

ized using the vender-optimized BLAS-3 kernels: specifically,

to orthogonalize the basis vectors, we used the Cholesky QR

(CholQR) [23], which is communication optimal [24] and was

823

GPU-resident CPU-resident

(‘N’, DT) (‘T’, D) (‘N’, DT) (‘T’, D) in-place

multiply with D 0.34 0.33 0.70 0.70 0.72

multiply with DT 0.52 2.40 2.10 0.34 0.52
Total 0.95 2.82 2.96 1.15 1.35

Fig. 8. Performance of Smp1,2(τ = .5, s = 3) using different SpMM
implementations with DT : (‘N’, DT) explicitly stores the matrix DT , (‘T’,
D) transposes D stored in the CSR format, and in-place performs SpMM with

D̃r using D stored in the CSR format, (n = 5, 000, d = 5, 000).

numerically stable in our experiments (the test matrices had

the low-rank-plus-shift singular value distributions but they

were not ill-conditioned). For our test matrices, we considered

both dense and sparse matrix D. To store these matrices

in the core memory, we used the standard LAPACK dense

format in the column major order, or the Compressed Sparse

Row (CSR) format. We then investigated two approaches to

apply the matrix multiplication: either 1) using CUBLAS or

CuSPARSE on the GPU, or 2) using dense or sparse BLAS

of threaded MKL on the CPUs. To perform SpMM on a GPU,

we designed two implementations: GPU-resident or non-GPU-

resident, where the whole matrix fits in the GPU memory at

once, or only a part of the matrix is copied from the CPU

into the GPU memory at a time, respectively. Similarly, to

perform SpMM on the CPUs, we used two implementations:

CPU-resident or non-CPU-resident, where the whole matrix is

resident in the CPU memory or only a part of the matrix is

read from an external disk at a time, respectively.

All of our experiments were conducted using ten-core Intel

Xeon E5-2650 (Haswell) CPUs and one NVIDIA K80 GPU.

The CPU and GPU memories have achievable bandwidths of

40 GB/s and 205 GB/s, respectively, and the CPUs and the

GPU are connected through the PCI-E x16 Gen3 PCI interface

with 10 GB/s. Two external storages were available on this

compute node: a HP Hard Drive (HD) with 200MB/s peak

bandwidth, and a OCZ Solid State Drive (SSD) with 160MB/s.

We compiled the code using g++ (GCC) version 4.4.7 and

nvcc of CUDA version 8.0 with the optimization flags -O3,

and linked it with the threaded MKL version 2016.0.109. For

our performance studies, we focus on two matrices: 1) the

sparse movie-by-user netflix matrix with 480, 189 movies,

17, 770 users, and about 209 nonzero entries per row, and

2) dense random matrices of different dimensions. Unless

otherwise stated, we performed three power iterations that

were shown to be enough in Section VI.

B. In-core Sampling to Add Columns

In this section, we study the performance of the sampling

algorithm using the GPU-resident or CPU-resident SpMM. The

performance of the randomized algorithm is often dominated

by SpMM. Though we rely on the vendor-optimized SpMM,

the kernel may not be fully optimized for the particular shapes

of our matrices. For instance, in Fig. 8, we compare the

performance of SpMM with DT of netflix matrix by using

D stored in the CSR format or by explicitly storing DT in a

separate CSR format. In many cases, explicitly storing DT

benefited the performance on the GPU, but not on the CPU.

Rnd1 Rnd2 Smp(.5) Smp(.2) Smp(.1)
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
GPU resident

T
im

e
(s

)

CholQR
SpMM
SpMMt
GEMM
SVD

Rnd1 Rnd2 Smp(.5) Smp(.2) Smp(.1)
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
CPU resident

T
im

e
(s

)

CholQR
SpMM
SpMMt
GEMM
SVD

1.00x

1.66x

2.89x
4.15x

1.00x

1.46x

2.59x 2.96x

(a) Smp1,2 using CuSPARSE or threaded MKL.

Number of iterations
3 4 5 6 7 8

Rnd2 1.6 (1.00) 2.2 (1.00) 2.8 (1.00) 3.5 (1.00) 4.1 (1.00) 4.8 (1.00)

Smp(0.5)
in-place 1.3 (1.27) 1.6 (1.37) 2.0 (1.40) 2.4 (1.42) 2.8 (1.44) 3.2 (1.47)
explicit 1.1 (1.49) 1.4 (1.58) 1.7 (1.66) 2.0 (1.75) 2.3 (1.79) 2.6 (1.80)

Smp(0.2)
in-place 0.8 (2.05) 1.0 (2.26) 1.2 (2.43) 1.4 (2.54) 1.5 (2.63) 1.8 (2.72)
explicit 0.6 (2.53) 0.8 (2.91) 0.9 (3.13) 1.0 (3.50) 1.1 (3.64) 1.3 (3.72)

(b) Time in second (speedups) with the number of iterations (CPU-resident).

Fig. 9. Performance of sampling algorithm, Smp(τ), when adding new users
to netflix matrix, (n = 5, 000, d = 5, 000), using different sampling
rates τ but fixed parameters (k = 30, � = 30, and s = 3).

Hence, for the rest of this section, we store both D and DT on

the GPU, while we only store D on the CPUs. On the CPUs,

we used SpMM of MKL whose interface supports SpMM with

the sampled matrix D̃r using the original matrix D stored in

the CSR format. Hence, only the matrix D needs to be stored

in the memory. This in-place SpMM adds a small overhead

since the rows of D̃r are stored in noncontiguous locations,

leading to more irregular memory accesses. However, it avoids

the additional storage for D̃r.

In Fig. 9(a), we study the effects of sampling on the perfor-

mance of the randomized algorithms using different sampling

rates τ = c
m . First, we see that the time spent computing the

SVD of the projected matrix B could become significant in the

performance of Rnd1, whereas Rnd2 reduces this bottleneck,

significantly. For this particular setup, though not shown in the

figure, the updating algorithm [7] (adding 60 user columns at a

time) needed about 8.9 seconds to add the 5, 000 user columns

(7.5 seconds for Orth). Hence, Rnd2 obtained the speedup of

about 5.7× over the updating algorithm. Then, Smp1,2 reduces

both the computation and data traffic needed by Rnd2 for

SpMM by a factor of 2s−1
2(s−1)τ+1 (see Fig. 2). Hence, when

the performance of Rnd2 is dominated by SpMM, with s = 3,

we expect the speedups of about 1.67×, 2.78×, and 3.57×
using Smp1,2 with τ = 0.5, 0.2, and 0.1, respectively. Fig. 9(a)

shows that our implementation obtains the speedups close to

these expectations.

Fig. 9(b) then shows the speedups obtained using the sam-

pling technique with an increasing number of iteration counts.

Using Smp1,2 with τ = 0.5, the reduction in the data access,

and hence the expected speedups, are 1.67×, 1.75×, 1.80×,

824

n/100 10 25 50 75 100

COPY (s) 0.03 0.07 0.13 0.19 0.25
(GB/s) 7.78 7.61 7.91 7.99 8.11

GEMM(‘N’, D) (s) 0.01 0.02 0.03 0.04 0.05
(Gflp/s) 608.2 695.1 926.1 943.7 911.5

GEMM(‘T’, D) (s) 0.01 0.02 0.03 0.05 0.07
(Gflp/s) 366.5 526.2 767.7 781.8 759.0

GEMM(‘N’, DT) (s) 0.01 0.02 0.03 0.04 0.05
(Gflp/s) 384.1 594.9 762.8 836.3 877.1

(a) Non-GPU-resident.

n/100 10 25 50 75 100

SSD
READ (contig) (s) 1.2 2.7 5.1 7.9 10.6

(MB/s) 177.1 185.9 197.5 188.7 193.4
READ (by row) (s) 1.3 3.2 6.4 8.0 10.8

(MB/s) 155.9 156.8 156.9 187.6 184.7
READ (noncont) (s) 14.0 13.0 10.9 9.1 9.2

(MB/s) 14.3 38.5 91.9 165.5 218.1

HD
READ (contig) (s) 1.29 3.18 5.02 7.09 9.13

(MB/s) 155.6 157.3 199.4 211.5 219.1
READ (by-row) (s) 1.28 3.20 5.62 6.90 10.2

(MB/s) 155.7 156.4 177.9 217.4 196.8
READ (noncont) (s) 10.0 11.3 12.2 12.0 11.9

(MB/s) 20.0 44.2 81.7 125.4 167.5

GEMM(‘N’, D) (s) 0.02 0.05 0.10 0.18 0.23
(Gflp/s) 232.1 260.4 248.5 272.4 275.4

GEMM(‘T’, D) (s) 0.03 0.05 0.09 0.13 0.17
(Gflp/s) 184.2 240.4 280.6 296.1 297.7

GEMM(‘N’, DT) (s) 0.03 0.06 0.10 0.17 0.20
(Gflp/s) 185.6 216.6 252.4 226.1 250.0

(b) Non-CPU-resident.

Fig. 10. Time in seconds (average of five runs) for GPU and I/O data transfer
(m = 25, 000, n+ d = 10, 000, � = 100).

1.83×, 1.86×, 1.88× when s = 3, 4, . . . , 8, respectively,

while with τ = 0.2, the respective reductions are 2.78×,

3.18×, 3.46×, 3.67×, 3.82×, and 3.95×. Due to the overhead

associated with the irregular memory accesses, the sampling

algorithm obtained smaller speedups using the in-place SpMM
than those when the sampled matrix D̃r is explicitly stored.

The sampling algorithm obtained the speedups close to the

expectations when D̃r is explicitly stored in the memory.

C. Out-of-core Sampling to Add Columns

We now study the performance with the non-GPU-resident

or non-CPU-resident SpMM, where the matrix does not fit in

either the GPU or CPU memory, respectively. To perform the

out-of-core SpMM, we transfer a block row of the matrix into

the core memory at a time and perform the partial SpMM with

the block row. For this, we first focused on dense matrices

and profiled the bandwidth for transferring the matrix into

the memory, and compared it with the performance of the

required matrix multiplication. Fig. 10(a) shows the observed

bandwidths when copying a 25,000-by-n block row from the

CPU memory to the GPU memory for different numbers of

columns, n. We observed the bandwidth of around 8.2 GB/s,

while GEMM with D achieved the performance of about

920∼735 Gflop/s, and when multiplying with DT , it reached

about 889∼756 Gflop/s when DT is explicitly stored, and

762∼684 Gflop/s when D is transposed on the fly. Overall,

the data transfer took about 3× more time compared with the

required computation.

Next, Fig. 10(b) shows the data-transfer rates between the

CPU and external disk, where the dense matrix is stored in the

row major order in a binary file on the disk. In the table, for

SpMM(D) SpMM(DT) total speedup
Recompute 1.02 / 3.73 2.19 / 2.73 3.31 / 6.48 1.0 / 1.0
Rnd2 0.25 / 0.83 0.55 / 0.63 1.00 / 1.50 3.3 / 4.3
Smp1,2 0.17 / 0.44 0.15 / 0.04 0.34 / 0.50 10.3 / 13.0

Fig. 11. Performance with non-GPU-persident SpMM when adding 25% of
the columns, assuming 25% of D fits in the main memory with netflix /
dense matrices (i.e., n = 7, 500, d = 2, 500, and s = 3).

SpMM(D) SpMM(DT) total speedup
Recomp 937.2 / 941.5 620.4 / 622.3 1558.1 / 1564.0 1.0 / 1.0
Rnd2 231.2 / 232.4 154.3 / 155.0 385.7 / 387.6 4.0 / 4.0
Smp1,2 97.1 / 96.9 0.1 / 0.1 97.2 / 97.1 16.0 / 16.1

(a) netflix matrix with local HD / SSD.

GEMM(D) GEMM(DT) total speedup
Recomp 139.7 / 158.1 101.0 / 105.4 240.9 / 263.4 1.0 / 1.0
Rnd2 146.6 / 169.9 110.0 / 116.9 257.0 / 286.8 0.9 / 0.9
Smp1,2 38.6 / 61.4 0.1 / 0.1 38.7 / 61.5 6.2 / 4.3

(b) dense matrix with local HD / SSD.

GEMM(D) GEMM(DT) total speedup
Rnd2 37.6 26.0 63.7 3.8×
Smp1,2 24.2 0.1 24.3 9.9×

(c) dense matrix, D is stored in a separate file, with local HD.

Fig. 12. Performance with non-CPU-resident SpMM when adding 25% of
columns, and assuming 25% of D fits in the main memory (i.e., n = 7, 500,
d = 2, 500, and s = 3).

“contig,” we read the matrix, which is stored contiguously

in the file, at once (i.e., a single call to freed), while

for “by-row,” the matrix is still stored contiguously, but we

read the matrix one row at a time. Finally, for “noncont,”

the total of 104 columns are stored contiguously, but we

read only the last n columns of these columns. Hence, for

“noncont,” we read the columns whose rows are not stored

in the contiguous locations (each row is read using fseek
followed by fread). We see that both “contig” and “by-

row” obtained near-peak bandwidth, while “noncont” added

significant overhead reading the noncontiguous data in the

file, and lead to much lower bandwidth. We have also tried

storing the matrix in the column major order. This allows us to

access the subset of the columns in the contiguous locations.

However, the sampled matrix must be read one matrix element

at a time.

We now show the performance of the randomized and

sampling algorithms using the out-of-core SpMM or GEMM.

For these experiments, we split both the netflix and a

105-by-104 dense matrix such that A and D have 75% and

25% of the columns, respectively. We further assumed that

25% of D fits in the core memory. Hence, to perform SpMM
with D for the randomized algorithm, we copy 25% of its

rows into the memory at a time. On the other hand, when

recomputing the SVD, for SpMM with the matrix Â = [A D],
we bring in 12.5% of the matrix rows into the core memory

at a time. In Fig. 12, we present the performance of the non-

GPU-resident algorithms. Since we used the CSR format to

store the sparse matrix in the CPU memory, we can directly

access each block row of both the sparse and dense matrices

on the CPU, and copy it to the GPU. However, since the whole

matrix does not fit in the GPU memory, for both recomputing

825

the SVD and running the randomized algorithm, we must

copy the matrix from the CPU memory for each SpMM. The

randomized algorithm performs SpMM with D that is 25%
of the matrix Â. Therefore, the randomized algorithm reduces

the amount of the data copy to the GPU by a factor of 4×,

and was expected to obtain the speedup of about 4× over

recomputing the SVD. Then, the sampling algorithm samples

25% of D, which stays in the GPU memory during the power

iterations, and then copies the whole D once into the GPU

memory for the projection at the end. Hence, compared with

Rand2, Smp1,2 reduces the amount of data copy by a factor of

2.5×, and was expected to obtain the speedups of about 2.5×.

Our performance results confirm these expectations. In these

experiments, we used a relatively large sampling rate (i.e.,

τ = 25%). The benefit of sampling is expected to increase

with a smaller sampling rate.

Fig. 12(a) shows the performance with the non-CPU-

resident SpMM for the netflix matrix. For the sparse

matrix, each nonzero entry ai,j of the matrix is stored as

an (i, j, ai,j) triplet in an ASCII file. These nonzero entries

may be stored in any order. Therefore, to read a block row

of the matrix into the CPU memory, we scan the entire file

for the row block.4 For recomputing the SVD, only 12.5%
of the matrix [A,D] fits in the CPU memory at a time.

Hence, for each SpMM, we need to scan the file sixteen

times. On the other hand, 25% of D fits in the memory,

and the randomized algorithm requires scanning the file only

four times for each SpMM. Hence, we expect a speedup of

four using the randomized algorithm. The sampling scheme

samples 25% of the rows in the matrix D, and hence it

scans the file once to sample the file, and then after the three

power iterations with the sampled matrix in the memory, we

read the file four times to perform SpMM to compute the

projection space. Recomputing SVD requires reading the file

80 times over the three power iterations, while the randomized

algorithm scan the file total of 20 times. Hence, using the

sampling algorithm, which reads the file five times, we expect

the speedups of about 16 and 4 over recomputing the SVD and

the randomized algorithm, respectively. We see these speedups

in Fig. 12(a).

For the non-CPU-resident GEMM, the dense matrix is stored

by rows in a binary file, and hence, we can directly read

each row of any submatrix.5 Compared with recomputing

the SVD that accesses the matrix [A D], the randomized

algorithm reads only D. Since D contains only 25% of the

columns of [A D], we expected the speedups of about four.

However, this was not the case due to the different bandwidth

obtained by each algorithm. For recomputing the SVD, we

read the matrix stored contiguously in the file, and as seen in

Fig. 10(b), we reached the near-peak bandwidth (about 160

MB/s). On the other hand, the randomized algorithm accesses

the last 25% of the columns, where each row is stored in

4We scan the file twice (once to count the number of nonzeros and then to
copy them to the memory), but we count them as one scan.

5For our non-CPU-resident performance studies, to avoid the I/O cache-
effects, we read a separate file, storing the same dense matrix, for each GEMM.

τ2
10% 20% 30% 40% 50%

GPU-resident
Resample 0.05 0.09 0.16 0.21 0.26
Random τ1 =10% x 0.06 0.11 0.17 0.22

20% x x 0.06 0.12 0.16
30% x x x 0.07 0.10
40% x x x x 0.06

non-GPU-resident, τ1 = τ2 − 10%
Resample 0.05 0.15 0.25 0.31 0.48
Random x 0.06 0.07 0.06 0.06

Fig. 13. Performance comparison of resampling and randomized algorithms to
add sampled rows of dense matrix, where τ1 is the sampling rate of the number
of rows that have been previously compressed, and τ2 is the new sampling
rate after the new rows were added (m = 104, n = 2, 500, d = 7, 500).

the contiguous location but separated from the previous row

by 75% of the columns in the row. In many cases, compared

with recomputing the SVD, the randomized algorithm obtained

much lower bandwidth (about 30∼35 MB/s). As a result,

as shown in Fig. 12(b), the randomized algorithm could not

improve the performance of recomputing the SVD. When

sampling the rows of D, we obtained even lower bandwidth

than the randomized algorithm, especially on the HD (20 MB/s

on HD and 40 MB/s on SSD). However, since the sampling

algorithm accesses the file only five times (once to sample,

and four more times to compute the projection), it was able to

improve the performance. Finally, in Fig. 12(c), we show the

performance where the matrices D and A are stored in separate

files. Now, the randomized algorithm could obtain a near-

peak bandwidth (around 170 MB/s) and achieve the expected

speedup over recomputing the SVD. On the other hand, the

speedup obtained by the sampling algorithm over the random-

ized algorithm was still smaller than the expected speedup of

four due to the low bandwidth obtained when sampling the

rows (around 40 MB/s). These experiments demonstrate that

though sampling improves the performance, the performance

may be further improved through the hardware supports for

the random memory access.

D. Randomization to Add Rows

Fig. 13 compares the performance of updating the SVD

with all the sampled rows at once with that of incrementally

updating with a subset of the sampled rows at a time. First,

in the top of Fig. 13, we show the results with the GPU-

resident SpMM, and hence once we copy the whole matrix

into the GPU memory, it stays resident in the memory. For

these experiments, we have already compressed c1 sampled

rows (i.e., τ1 = c1
m), but we now want to increase the number

of the sampled rows to be c2 (i.e., τ2 = c2
m). The randomized

algorithm avoids accessing the previously compressed sampled

rows, and we see that when the data access dominates the

performance, the randomized algorithm could lead to signif-

icant performance improvement. In bottom of Fig. 13, we

show similar results with non-GPU-resident SpMM. Here, we

assumed that only 10% of the matrix D fits in the memory.

Hence, to recompute the updated SVD using all of the sampled

rows, we need to copy the matrix to the GPU memory for each

826

SpMM. On the other hand, since the new set of the sampled

rows fit in the GPU memory, the randomized algorithm need

to copy the sampled rows only once into the GPU memory.

VIII. CONCLUSION

In this paper, we studied two data sampling techniques to

reduce the data access cost of the randomized algorithm to

update a truncated SVD. Our case studies have shown that

only a small fraction of the data may be needed to maintain

the quality of the SVD. Our experimental results on multicore

CPUs with an NVIDIA GPU then demonstrated the potential

of the sampling algorithm to improve the performance of

the randomized algorithm, especially when the data access

dominates the performance. Though we often have knowledge

about the data (e.g., how much data needs to be sampled), we

may fail to sample enough data to obtain the required accuracy.

To address such a case, we also studied an updating scheme to

add additional sampled rows without accessing the previously-

compressed rows. We demonstrated the performance benefit of

such algorithms when the data access is expensive. Theoretical

results on the updating algorithm [10] and the sampling

algorithms to approximate the matrix multiplication exist [11].

We would like to investigate if such studies can be extended

for sampling to update SVD.

Our focus was on updating SVD. Such updating schemes

are attractive for the applications where the data access is

prohibitively expensive (e.g., the whole matrix does not fit

in the main memory, or the whole dataset is not available at

once because a part of the dataset is still to be generated or

has been deleted). A few previous studies have sampled the

matrices to compute (rather than update) the SVD [25], [26].

Computing the SVD would require at least one pass over the

entire dataset, while the updating scheme reads only the new

data to be used for updating the SVD, and reads the rest of

the data only in the compressed form. Nevertheless, we would

like to compare, and potentially combine, our approach with

these previous approaches. There also exist many randomized

sampling schemes beside the Gaussian randomization and

the sampling schemes used in this paper. We plan to use

larger datasets from different applications, potentially on a

hybrid CPU/GPU cluster, for studying the effectiveness of our

algorithms compared or combined with these other schemes

and also with the original updating algorithm (which has a

greater local computation cost but reads the data only once).

ACKNOWLEDGMENTS

This research was supported in part by the National Science

Foundation (NSF) OAC Award number 1708299.

REFERENCES

[1] G. Golub and C. van Loan, Matrix Computations, 4th ed. The Johns
Hopkins University Press, 2012.

[2] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” J. Amer. Soc. Info. Sci., vol. 41,
pp. 391–407, 1990.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recom-
mendation algorithms for e-commerce,” in Proceedings of the 2nd ACM
Conference on Electronic Commerce, 2000, pp. 158–167.

[4] P. Paschou, E. Ziv, E. Burchard, S. Choudhry, W. R.-Cintron, M. Ma-
honey, and P. Drineas, “PCA-correlated SNPs for structure identification
in worldwide human populations,” PLoS Genetics, vol. 3, pp. 1672–
1686, 2007.

[5] I. Karasalo, “Estimating the covariance matrix by signal subspace
averaging,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
34, pp. 8–12, Feb. 1986.

[6] I. Yamazaki, J. Kurzak, P. Luszczek, and J. Dongarra, “Randomized
algorithms to update partial singular value decomposition on a hybrid
CPU/GPU cluster,” in Proceedings of the international conference for
high performance computing, networking, storage and analysis (SC),
2015, pp. 59:1–59:12.

[7] H. Zha and H. Simon, “On updating problems in latent semantic
indexing,” SIAM J. Sci. Comput., vol. 21, pp. 782–791, 2006.

[8] M. Berry, S. Dumais, and G. O’Brien, “Using linear algebra for
intelligent information retrieval,” SIAM Rev., vol. 37, pp. 573–595, 1995.

[9] N. Halko, P. Martinsson, and J. Tropp, “Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions,” SIAM Rev., vol. 53, pp. 217–288, 2011.

[10] H. Zha and Z. Zhang, “Matrices with low-rank-plus-shift structure:
partial SVD and latent semantic indexing,” SIAM J. Matrix Anal. Appl.,
vol. 21, pp. 522–536, 1999.

[11] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms
for matrices I: Approximating matrix multiplication,” SIAM J. Comput.,
vol. 36, pp. 132–157, 2004.

[12] D. P. Woodruff, “Sketching as a tool for numerical linear algebra,” CoRR,
vol. abs/1411.4357, 2014.

[13] C. Bishop, Pattern recognition and machine learning. Springer, 2006.
[14] G. Salton and M. McGill, Introduction to modern information retrieval.

McGraw-Hill, 1983.
[15] R. Krovetz and W. B. Croft, “Lexical ambiguity and information

retrieval,” ACM Trans. Inf. Syst., vol. 10, pp. 115–141, 1992.
[16] T. Kolda and D. O’Leary, “A semidiscrete matrix decomposition for

latent semantic indexing information retrieval,” ACM Trans. Inf. Syst.,
vol. 16, pp. 322–346, 1998.

[17] P. Menozzi, A. Piazza, and L. C.-Sforza, “Synthetic maps of human
gene frequencies in Europeans,” Science, vol. 201, pp. 786–792, 1978.

[18] N. Patterson, A. Price, and D. Reich, “Population structure and eigen-
analysis,” PLoS Genet., vol. e190, 2006.

[19] A. Price, N. Patterson, R. Plenge, M. Weinblatt, N. Shadick, and
D. Reich, “Principal components analysis corrects for stratification in
genome-wide association studies,” Nat. Genet., vol. 38, pp. 904–909,
2006.

[20] W. Pratt, Digital image processing. Wiley-Interscience, 1978.
[21] G. Zientara, L. Panych, and F. Jolesz, “Dynamically adaptive MRI with

encoding by singular value decomposition,” Magnetic Resonance in
Medicine, vol. 32, pp. 268–274, 1994.

[22] E. Drinea, P. Drineas, and P. Huggins, “A randomized singular value
decomposition algorithm for image processing applications,” 2001.

[23] A. Stathopoulos and K. Wu, “A block orthogonalization procedure with
constant synchronization requirements,” SIAM J. Sci. Comput., vol. 23,
pp. 2165–2182, 2002.

[24] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal parallel and sequential QR and LU factorizations,” SIAM Jour-
nal on Scientific Computing, vol. 34, 2012.

[25] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, “Clustering
in large graphs and matrices,” in Proceedings of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1999, pp. 291–299.

[26] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms
for matrices II: Computing a low-rank approximation to a matrix,” SIAM
J. Comput., vol. 36, pp. 158–183, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

