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Abstract— Many applications – from data compression to
numerical weather prediction and information retrieval – need
to compute large dense singular value decompositions (SVD).
When the problems are too large to fit into the computer’s main
memory, specialized out-of-core algorithms that use disk storage
are required. A typical example is when trying to analyze a large
data set through tools like MATLAB or Octave, but the data is
just too large to be loaded. To overcome this, we designed a
class of out-of-memory (OOM) algorithms to reduce, as well as
overlap communication with computation. Of particular interest
is OOM algorithms for matrices of size m×n, where m >> n or
m << n, e.g., corresponding to cases of too many variables, or
too many observations. To design OOM SVDs, we first study
the communications cost for the SVD techniques as well as
for the QR/LQ factorization followed by SVD. We present the
theoretical analysis about the data movement cost and strategies
to design OOM SVD algorithms. We show performance results
for multicore architecture that illustrate our theoretical findings
and match our performance models. Moreover, our experimental
results show the feasibility and superiority of the OOM SVD.

I. INTRODUCTION

The singular value decomposition (SVD) of an m×n matrix

A finds two orthogonal matrices U , V , and a diagonal matrix Σ
with non-negative numbers, such that A=UΣV T . The diagonal

elements of Σ are called the singular values, and the orthogonal

matrices U and V contain the left and right singular vectors of

A, respectively. The SVD is typically done by a three-phase

process: 1) Reduction phase BRD: orthogonal matrices Q and

P are applied on both the left and the right side of A to reduce

it to a bidiagonal form matrix, B; 2) Solver phase: a singular

value solver computes the singular values Σ, and the left and

right singular vectors ˜U and ˜V , respectively, of the bidiagonal

matrix B; 3) Singular vectors update phase: if required, the

left and the right singular vectors of A are computed as U =
QT

˜U and V = P ˜V . In this work, we are interested in the

computation of the singular values only. When the matrix A
is too large and does not fit in-memory, our goal is to design

efficient algorithms to perform the computation while A is

out-of-memory (e.g., A could be in the hard disk drive, flash

memory, or fast buffer when a CPU computation is considered,

or in the CPU memory for GPU or Xeon Phi computations).

The memory bottleneck of the SVD computation is the first

phase (BRD). Once A is reduced, B consists of two vectors

that fit (in general) in-memory, where the singular value solver

will be able to compute the singular values of B in-memory. If

the singular vectors are needed, the second phase also requires

the use of OOM techniques.

Since A resides out-of-memory, the communications to

bring parts of A in-memory and back will have a high impact

on the overall run time of any OOM algorithm. Thus, to

develop efficient OOM SVDs, first and foremost we must

study the SVD computational processes and communication

patterns, in order to successfully design next the algorithms

that minimize communications, as well as overlap them with

computation as much as possible.

A number of dense linear algebra algorithms have been

designed to solve problems that are too large to fit in the main

memory of a computer at once, and are therefore stored on

disks [12], [5], [4]. Called out-of-core, these algorithms mainly

targeted one-sided factorizations (LU, QR, and Cholesky).

Similar algorithms can be derived between other levels of

the memory hierarchy, e.g., for problems that use GPUs but

can not fit in the GPU’s memory and therefore also use CPU

memory, e.g., called non-GPU-resident in [13], [14].

Similar algorithms are computationally not feasible for the

standard eigensolvers or SVD problems in LAPACK, as we

showed recently [7], and therefore have not been developed

before. Exceptions are special cases that we target here, when

m >> n or m << n, where a direct SVD computation can be

replaced by an out-of-core QR (or LQ) first, followed by an

in-core SVD of the resulting small R (or L, respectively).

II. CONTRIBUTIONS

The primary goal of this paper is to design OOM SVD

algorithms and efficient implementations that reduce, as well

as overlap communications with computations as much as

possible. Our main contributions towards this goal are:

• We developed and presented the analysis of the com-

munication costs for the SVD algorithms as well as for

QR factorization on hierarchical memories, e.g., CPU

memory for main memory and disk for out-of-memory

storage, or the GPU/Coprocessor for main memory and

CPU DRAM for out-of-memory storage;

• We discussed techniques, along with their theoretical

analysis, to hide communication overheads for OOM QR;

• We also designed a OOM SVD algorithm and developed

an optimized implementation for multicore architecture

based on OOM QR + SVD on R. We showed performance
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results that illustrate its efficiency and high performance

which highlight the feasibility to compute whatever was

not possible to compute in a near past.

III. STUDY OF THE BRD ALGORITHM

The reduction of a matrix A to a bidiagonal form, as

implemented in LAPACK, applies orthogonal transformation

matrices on the left and right side of A to reduce A to

bidiagonal, for that it is called a “two-sided factorization.” The

blocked BRD [6] proceeds by steps of “panel/trailing matrix

update” and can be summarized as follows. At every step, the

panel factorization zeroes the entries below the subdiagonal

and above the diagonal. It goes over its ”nb” columns and

rows (red portion in Figure 1) and annihilates them one after

another in an alternating fashion (a column followed by a row,

as shown in Figure 1). The panel computation requires two

matrix-vector multiplications: one with the trailing matrix to

the right of the column that is being annihilated, and a second

with the trailing matrix below the row that is being annihilated.

The panel computation generates the left and right reflectors

U and V , and the left and right accumulation X and Y . Once

the panel is done, the trailing matrix is updated by two matrix-

matrix multiplications:

As+nb:n,s+nb:n ← As+nb:n,s+nb:n −U ×YT−X ×VT, (1)

where s denotes the step and nb denotes the panel width. The

process is repeated until the whole matrix is reduced to a

bidiagonal form. The total cost of such algorithm is

BRD = 4mn2 −4/3n3 +3n2 −mn+25/3n (2)

IV. THEORETICAL STUDY OF THE COMMUNICATION COST

OF DATA MOVEMENT FOR THE OOM BRD REDUCTION

In this section we develop and present the communica-

tion pattern for the OOM reduction to bidiagonal form. The

bidiagonal reduction needs two matrix-vector multiplications

(dgemv) with the trailing matrix at every column and row

annihilation, and two matrix-matrix multiplications (dgemm)

after every panel computation. Thus, when the matrix is large

and does not fit into the main memory, it must be loaded

from out-of-memory once for each dgemv as well as loaded

and stored back once after each panel to perform the two

dgemm operations. The algorithm requires 2(m×nb+n×nb)
in-memory workspace to hold the panel (U and V ) and the

arrays X and Y of Equation (1). Therefore, for an m×n matrix,

the amount of words to be read and written (i.e., the amount

of data movement) is given by the following formula:

R(A) dgemv #1+R(A) dgemv #2+R/W(A) dgemm

=
min(m,n)−1

∑
s=0

(m− s)(n− s)+
min(m,n)−1

∑
s=0

(m− s)(n− s−1)

+2
n/nb

∑
s=1

(m− s×nb)(n− s×nb).

= (mn2 − n3

3
)(1+

1

nb
)+

n2

2
−3mn+

n
3
(

5

2
+nb)

≈ mn2 − n3

3
+n2/2−3mn (3)

From this formulation, one can easily observe that the reduc-

tion to bidiagonal requires a large amount of data movement

compared to the total cost in term of number of operations

depicted in Equation (2).

Tricks to hide the communication with the computation

cannot be used here since the whole matrix need to be loaded

or stored at each step and the cost of reading/storing is more

expensive than the computation. To highlight the importance of

the communications, we start by giving an example. Figure 2

show the time required to perform the OOM bidiagonal

reduction using a recent hardware, Solid State Drives (SSD),

or out-of-GPU memory where the communication bandwidths

are about 150 MB/s, 500 MB/s, respectively, for both square

and tall-skinny matrices. We mention that for the one-sided

factorisation (such as Cholesky, LU or QR) the matrix do not

need to be loaded/stored at each step, thus some tricks and

algorithmic variant (e.g., left looking) can be used to hide the

cost of communication with the computation. We discuss this

techniques later in the section related to the OOM QR.

In conclusion, these results illustrate that it is unacceptable

to build an OOM bidiagonal reduction algorithm. For that,

it has been thought that the OOM SVD implementation is

practically impossible. However, for big data analysis most of

the matrices are tall-skinny matrices. In this case, there is an

alternative technique that minimizes the cost in both number of

operations and data movement. Such technique is well known

for tall-skinny matrices and it consists of performing a QR
factorisation first and then a bidiagonal reduction on the R of

the QR which is small and can be performed in memory. In

this paper we are interested in this type of computation.

V. THE OOM QR+SVD ALGORITHM

The QR factorization of an m × n real matrix A is the

decomposition of A as A = QR, where Q is an m×m real

orthogonal matrix and R is a n×n real upper triangular matrix.

QR factorization generates a smaller n× n upper triangular

matrix R when m � n. Instead of reducing A to bidiagonal

form directly for SVD, the following two-step approach can

be adopted.
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Fig. 1. LAPACK one-stage blocked algorithm: illustration of the main BLAS kernels used.
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Fig. 2. Estimated OOM SVD time based on the amount of R/W.

• Compute QR factorization of the general matrix A, as

A = QR.

• Compute singular value decomposition of the matrix R,

as R =U1ΣV T
1 .

Both A and R matrices have the same singular values. The

computational complexity for computing QR + BRD for a

matrix A of size (m,n) where m � n is as follows:

QR f or A(m,n)+BRD f or R(n,n)

2n2(m− n
3
)+

8

3
n3

2n2(m+n)

The computation complexity to reduce directly the m× n
matrix A to bidiagonal form is (4mn2 − 4

3 n3) flop, while

the two-step approach requires 2n2(m + n) flop only. The

advantages of two step approach are as follows:

• One-sided factorization i.e., QR is faster than two-sided

factorization, as transformations are applied from one

side.

• For a m × n matrix A, if m � n, the upper triangular

matrix, R, may fit in main memory and an in-memory

SVD algorithm will be used. Otherwise, the OOM SVD

of R must be faster than OOM SVD of A, since R is much

smaller than A. This later is not discussed in this paper.

A. The QR Algorithm

In LAPACK, QR factorization is performed as a blocked

algorithm by the dgeqrf [1] routine for double precision. The

QR factorization algorithm is a two-phases process:

• Panel factorization — for a panel of size nb, nb columns

are factored using Householder transformations as shown

in Figure 3.

• Update trailing matrix — in the update phase, the nb
transformations that are generated during the panel fac-

torization are applied all at once to the rest of the trailing

sub-matrix by Level-3 BLAS operations (dlarfb).

The process is repeated until all columns have been factored.

The panel factorization process is rich in Level-2 BLAS

operations and does not scale well on a multicore system, as

Level-2 BLAS cannot be efficiently parallelized. The execu-

tion flow of a block factorization algorithm represents a fork-

join model between the panel factorization and the updates of

the trailing sub-matrix. The problem of fork-join bottleneck

in block algorithms has been overcome in [2], [3], [8], [9],

[11] where panel factorization and trailing submatrix updates

are broken into smaller task that operates on tile of size

b and that can be represented as a DAG. This technique

is called tile algorithm. In the DAG, nodes represent tasks

and edges represent the dependencies among them. Execution

of the algorithm is performed by out-of-order asynchronous

execution of the tasks without violating the dependencies,

which helps to hide sequential tasks behind fast, parallel ones.

B. The Tile QR Algorithm

High-performance implementation of tile QR factorization

is presented in [2], [3] for multicore architecture. The algo-

rithm processes square tile instead of rectangular panel as in

an LAPACK blocked algorithm [1]. The tile QR algorithm is

presented in Algorithm 1 . It consists of the following four

basic computational kernels:
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TABLE I
COMPUTATION COST FOR TILE QR KERNEL

Kernel
Computation cost

(flop)

Total cost
for u×u

tile matrix

geqrt 2b3 O(u)×2b3 = O(m)×b2

ormqr 3b3 O(u2)×3b3 = O(m2)×b
tsqrt 10

3 b3 O(u2)× 10
3 b3 = O(m2)×b

tsmqr 5b3 O(u3)×5b3 = O(m3)

• dgeqrt performs the QR factorization of a diagonal tile

and generates an upper triangular matrix R and a unit

lower triangular matrix V . The lower triangular matrix V
contains the Householder reflectors.

• dtsqrt performs the QR factorization of a tile below the

diagonal coupled with the R of the diagonal tile produced

by either dgeqrt or by the previous dtsqrt. Thus it update

the R and generates a square matrix V for Householder

reflectors.

• dormqr applies the orthogonal transformations computed

by dgeqrt to the right of the diagonal tile.

• dtsmqr applies the orthogonal transformations computed

by dtsqrt to the right of the tiles factorized by dtsqrt.
The kernels are represented by a DAG and executed each as

a task using a dynamic runtime scheduler. In our example

we used QUARK [15] but it could be easily replaced by

OpenMP [10].

Algorithm 1 Tile QR algorithm.

A.mt = m/nb; A.nt = n/nb
for k ∈ {0 ... min(A.mt,A.nt)} do

{Panel factorization}
Akk,kk ← GEQRT (Ak,k)
for m ∈ {k+1 .. A.mt} do

Am,k ← T SQRT (Ak,k,Am,k)
end for

{Trailing matrix update}
for n ∈ {k+1 .. A.nt} do

Ak,n ←UNMQR(Ak,k,Ak,n)
end for
for m ∈ {k+1 .. A.mt} do

for n ∈ {k+1 .. A.nt} do
Am,n ← T SMQR(Ak,n,Am,n,Am,k)

end for
end for

end for

For an m×m matrix with tile size b and, if u= m
b , we present

in Table I the computation cost for the kernels used in tile QR.

The most expensive kernel is the update kernel (tsmqr) and

it requires O(m3) flop. For all our theoretical analysis, we

consider the computation cost of the tsmqr routine.

(a) Right-looking (b) Left-looking

Fig. 3. QR factorization, right looking vs. left looking variants.

C. Algorithmic Variants

There exist two algorithmic variants for the QR factoriza-

tion, the left looking one and the right looking one. The

right looking variant factorize then update meaning it factorize

the current panel and once done it applies the corresponding

updates to the right as shown in Figure 3a. The right-looking

variant requires access to the trailing matrix for each panel

it processes and therefore reads and writes the whole trailing

matrix. Meanwhile the left-looking variant update and then

factorize meaning it applies all the updates coming from the

left side to the current panel as shown in Figure 3b and then

it factorize it. Therefore delays subsequent updates of the

remaining parts of the matrix and thus need only to read the

portion on the left instead of R/W the portion on the right. As

a result, the left looking variant was always advantageous for

Out Of Memory techniques and this will be our choice for our

OOM QR. For that reason we decided to develop our OOM

QR algorithm based on the left looking implementation of the

tile algorithm.

D. A theoretical study of the design of an OOM QR

The efficiency of the OOM QR algorithm depends on its

ability to hide the data communication with the computation.

We used the left looking implementation. In order to update a

current panel (see the green portion of Figure 4a) the data on

the left need to be loaded. It is loaded by chunk into a local

in memory workspace (the dark red portion of Figure 4a) we

want to investigate the circumstances in which the updating of

the panel may be overlapped with the reading of the tiles from

the left needed by the update. More specifically, we want to

know whether the updating of the green tiles (size - m×w)

can be overlapped with the reading of the red tiles into a local

temporary workspace as as shown in Figure 4a.

Assume the panel is already loaded into memory. If u is the

number of tiles in the vertical direction, then, u = m
b where b

is the size of the tile. Let define w = k×b. The computation

cost for the update kernel (tsmqr) is 5b3 flops. Let’s define

α the computational performance that can be achieved by the

update kernel and β the bandwidth that can be reached by the

978-1-5386-3472-1/17/$31.00 ©2017 IEEE



read/write of the data from the OOM storage. Thus the time

to update the panel tupdate, is given by:

tupdate =
(u−1)× k×5b3

α
≈ m×w×5b

α
The time to read the red tiles into the temporary local

memory storage, tread is:

tread =
u×8b2

β ×106
=

m×8b
β

In order to overlap the communication with the update:

tupdate ≥ tread

=>
m×w×5b

α
≥ m×8b

β

=> w ≥ 1.6α
β

Hence, if the panel width, w, is at least 1.6α
β , the updating

of the panel, overlaps with the reading of the tiles into the

temporary storage. For example, for a Haswell E5 2650V3

machine where α = 300G f lop/s and β = 150MB/s, if the

panel width is 3200, the panel updating overlaps with the

reading of the tiles into the ”in memory” temporary storage,

meaning that the cost of reading from the out of Memory

can be hidden with the computation and thus the OOM QR

factorization will perform at the same speed as the in-memory
QR. One can see that overlapping the updating of the panel

with reading depends only from the panel width, not from

the panel height. Thus, we do not need to wait for the entire

column of tiles to be loaded into the temporary block in order

to start the computtaion. This is another advantage of using

tile algorithms.

(a) Updating the panel. (b) Factorizing the panel.

Fig. 4. Left-looking tile QR — updating and factorizing

VI. EXPERIMENTAL RESULTS OF THE OOM SOLVER

To evaluate the performance of the OOM QR tile algorithm,

we have conducted a number of experiments and collected ex-

ecution traces to show how it overlaps with tile reading/writing

from/to the disk.

We note that there is many other optimization challenges

that are implemented in order to increase the performance.

We will give brief description of these optimization. First

of all, the way the tiles are read from the Out of Memory

storage is important since it define the achievable bandwidth.

For example a row-wise tile reading is slower than a column-

wise reading for that it is beneficial to submit the tasks in a

way to prioritize the column-wise reading. Second, if too many

”reading tasks” are submitted and since they are independent,

these tasks get scheduled into the queue which will delay

the computation tasks, and thus a careful order of submission

might help. Third, As the reading and writing from the disk is

kind of a sequential process (meaning that 1 thread is enough

to achieve the bandwidth), thus having more threads to read

will not help rather it might slowdown. For that, we force

all the Read/Write task to be executed by 1 particular thread.

When the panel get updated, the only tile that need to be

factorized are the one from the diagonal and below (yellow

tiles of Figure 4b) thus the above diagonal one can be written

back to the disk while the factorization is happening. This also

require a careful attention in the submitting order of the task

to the scheduler.

Fig. 5. OOM Tile QR algorithm: Trace of the left looking panel update and
factorize.

First we used a panel width less than
1.6α

β
and showed

in Figure 5 the execution trace of the OOM QR. The read

tasks are represented in blue, and the computational task in

yellow and some red. As we can see, the yellow portion is

sparse meaning that the computation is waiting for data to

arrive. The communication overlap is partial. In Figure 6 we

illustrate the trace when the panel width is larger than
1.6α

β
and where the optimization cited above are applied. We can

easily see that the trace is more condensed, the blue task (Read

task) are completely overlapped with the computation (yellow

tasks) as well as the writing back (the write tasks in purple)

start as soon as the data concerned is done (meaning either it

is in the above diagonal portion and so when its update finish,

it is ready to be written back, or it has to be factorized and it

is written back as soon as its factorization finish).
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Fig. 6. OOM Tile QR algorithm: Trace of the optimized left looking panel
update and factorize.

System A:SSD
Haswell i7-5930K

System B:Spindle
Haswell Xeon E5 2650V3

Core 6 10
Memory 32GB 32GB

in memory QR
peak performance 170 Gflop/s 300 Gflops

Achievable bandwidth 430 MB/s 150 MB/s

TABLE II
MACHINE CONFIGURATIONS.

A. OOM QR Performance

In this section we present the performance of our OOM QR

when the matrix does not fit in the main memory. We have

run our experiment on both Haswell i7-5930K and Haswell

E5 2650 V3 machines. The details of the machines we used

are given in Table-II.

We compare the performance of our OOM QR with the

extrapolated performance of in-memory QR. To compute the

extrapolated performance of the in memory QR, we take the

peak that the ”in memory QR can achieve for large matrices

that fit into the main memory (meaning the asymptotic peak)

and extrapolate. This is considered to be an upper bound

of what the in memory algorithm can achieve. The peak

performance value is summarized in Table II. Obviously, we

consider that the original matrix is in the disk and so it need

to be read/written back even for the in memory algorithm.

Table III and Table IV show the performance of our OOM QR

for the Haswell i7-5930K and Haswell E5 2650V3 machines

respectively. We have also presented the ”in-memory QR

performance that we extrapolated using Table II. We would

like to highlight the attractive performance of our OOM QR

that is close to the extrapolated performance of the in-memory

QR for most of the test cases. This mean that our design is

overlapping the data transfer with the computation and behave

as if the data is in memory. Note that, for System B, the OOM

QR can be slightly faster than the in memory QR because the

OOM algorithm can start the computation while still reading

whereas the in memory has to wait that the whole matrix is

in memory to start the computation.

TABLE III
OUR OOM QR PERFORMANCE ON SYSTEM A

Matrix
Read

+Write
time(s)

Extrapolated
in-memory
QR time(s)

Extrapolated
in-memory
QR time(s)

(with read write)

Our
OOM
QR(s)

100k x 40k 148 1631 1779 1802
100k x 60k 222 3388 3610 3694
100k x 80k 296 5521 5817 5932
100k x 100k 372 7843 8215 8309

TABLE IV
OUR OOM QR PERFORMANCE ON SYSTEM B

Matrix
Read

+Write
time(s)

Extrapolated
in-memory
QR time(s)

Extrapolated
in-memory
QR time(s)

(with read write)

Our
OOM
QR(s)

100k x 40k 426 924 1350 1341
100k x 60k 640 1920 2560 2527
100k x 80k 852 3128 3980 3959
100k x 100k 1066 4444 5510 5485

B. OOM SVD using OOM QR

In this section we present performance of our OOM SVD

solver for tall-skinny matrices using OOM-QR and in memory
SVD. In the first step, we factorized the original matrix A using

our OOM QR and then since the matrix R fit in memory we

used in memory SVD solver for the SVD computation.

Table V presents the performance of our OOM SVD for tall-

skinny matrices. The column ”Our OOM SVD” is the sum of

the first two columns of Table V. The column ”extrapolated

OOM SVD(A)” is the extrapolation of the time for computing

Out Of Memory SVD directly on A based on Equation (3).

As mentioned in Section IV, an OOM SVD on A for large A
is not feasible since it requires a lot of time to finish. This is

also seen in the fourth column of Table V.

Consequently, when comparing our OOM SVD (that com-

putes an OOM QR first, followed by an in memory SVD)

to a hypothetical OOM SVD on A directly, our algorithm is

about 4,000× faster. As many applications require SVD for

tall-skinny matrices, our OOM SVD for tall-skinny matrices

can solve such big problems in a brief time.

TABLE V
OUR OOM SVD PERFORMANCE ON SYSTEM B

Matrix
Our

OOM QR(A)
time(s)

In memory
SVD(R)
time(s)

Our OOM SVD
OOM QR(A)+SVD(R)

hours

extrapolated
OOM SVD(A)

days
100k x 40k 1331 908 0.62 81
200k x 40k 2804 908 1.03 175
300k x 40k 4278 908 1.44 270
400k x 40k 5752 908 1.85 364

VII. CONCLUSION

We developed and presented the analysis of the communica-

tion costs for an OOM SVD algorithms on hierarchical mem-
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ories. We discussed techniques to improve the performance of

the OOM SVD for tall-skinny matrices by developing OOM

QR factorization. The idea here is to precede the SVD by

an OOM QR decomposition, and then perform an in memory
SVD on the small upper triangular matrix R. We presented

tile algorithm for the OOM QR implementation as well as we

analyzed techniques to hide communication overheads.
Optimized implementations of the proposed algorithm en-

able us to solve efficiently SVD problems where the matrix

is too large and does not fit into the system memory, and

for which traditional SVD algorithms can not be used. Future

work includes efforts to further improve our solver to the case

where R does not fit in memory. In this case an OOM SVD

solver for R will be developed.
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