
S7728 - MAGMA Tensors and Batched Computing
 for Accelerating Applications on GPUs

Abstract: Learn how to accelerate your machine learning, data mining, and other
algorithms through fast matrix and tensor operations on GPUs. There's an increasing
demand for accelerated independent computations on tensors and many small matrices.
Although common, these workloads cannot be efficiently executed using standard linear
algebra libraries. To fill the gap, we developed the MAGMA Batched library that achieves
dramatically better performance by repetitively executing the small operations in
"batches." We'll describe a methodology on how to develop high-performance BLAS,
SVD, factorizations, and solvers for both large- and small-batched matrices. We'll also
present the current state-of-the-art implementations and community efforts to
standardize an API that extends BLAS for Batched computations.

 GTC 2017
 San Jose, CA
 May 8—11, 2017

Stan Tomov - Research Director, UTK
Azzam Haidar - Research Scientist, UTK

MAGMA Tensors and Batched Computing
for Accelerating Applications on GPUs	

Innovative Computing Laboratory
Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville

In collaboration with:
 LLNL, Livermore, CA, USA
 University of Manchester, Manchester, UK
 University of Paris-Sud, France

GTC 2017
San Jose, CA
May 8—11, 2017
	

Stan	
 Tomov	
 and	
 Azzam	
 Haidar	

Outline

•  Introduction
•  MAGMA library

–  Numerical Linear Algebra (NLA) for large problems
–  NLA for applications that need small problems

•  MAGMA Tensor contraction computations
•  MAGMA Batched Computing
•  MAGMA-DNN NLA backend for DNN
•  Algorithms and optimization techniques
•  Conclusions

Wide range of Applications depend on
Numerical Linear Algebra (NLA) Libraries

•  Airplane wing design,
• Quantum chemistry,
• Geophysical flows,
•  Stealth aircraft,
• Diffusion of solid bodies in a liquid,
•  Adaptive mesh refinement,
• Computational materials research,
• Deep learning in neural networks,
•  Stochastic simulation,
• Massively parallel data mining,
• …

NLA is the backend that accelerates a wide variety of
science and engineering applications:

•  Linear system Solve Ax = b
•  Computational electromagnetics, material science, applications using boundary integral equations,

airflow past wings, fluid flow around ship and other offshore constructions, and many more
•  Least squares: Find x to minimize || Ax – b ||

•  Convex optimization, Computational statistics (e.g., linear least squares or ordinary least squares),
econometrics, control theory, signal processing, curve fitting, and many more

•  Eigenproblems: Solve Ax = λ x
•  Computational chemistry, quantum mechanics, material science, face recognition, PCA, data-mining,

marketing, Google Page Rank, spectral clustering, vibrational analysis, compression, and many more
•  Singular Value Decomposition (SVD): A = U Σ V*

•  Information retrieval, web search, signal processing, big data analytics, low rank matrix approximation, total
least squares minimization, pseudo-inverse, and many more

•  Many variations depending on structure of A
•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded, sparse with dense blocks, etc.

•  LA is crucial to the development of sparse solvers

Numerical Linear Algebra (NLA) in Applications

NLA is the backend that accelerates a wide variety of
science and engineering applications:

Numerical Linear Algebra (NLA) in Applications

•  For big NLA problems
(BLAS, convolutions, SVD, linear system solvers, etc.)

In contemporary libraries:
BLAS
LAPACK
ScaLAPACK

MAGMA (for GPUs)

Large matrices

NLA is the backend that accelerates a wide variety of
science and engineering applications:

Numerical Linear Algebra (NLA) in Applications

•  For big NLA problems
(BLAS, convolutions, SVD, linear system solvers, etc.)

•  Numerous important applications need NLA for small problems

In contemporary libraries:
BLAS
LAPACK
ScaLAPACK

MAGMA (for GPUs)

Large matrices

•  Machine learning / DNNs
•  Data mining / analytics
•  High-order FEM,
•  Graph analysis,
•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Signal processing, and more

Where data can be multidimensional / relational

NLA is the backend that accelerates a wide variety of
science and engineering applications:

Numerical Linear Algebra (NLA) in Applications

•  For big NLA problems
(BLAS, convolutions, SVD, linear system solvers, etc.)

•  Adding in MAGMA application backends for small problems

In contemporary libraries:
BLAS
LAPACK
ScaLAPACK

MAGMA (for GPUs)

Large matrices

•  Machine learning / DNNs
•  Data mining / analytics
•  High-order FEM,
•  Graph analysis,
•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Signal processing, and more

Small matrices / tensors
Fixed-size
batches

Variable-size
batches

Dynamic batches

Tensors

Key Features of MAGMA 2.2
TASK-BASED ALGORITHMS
MAGMA uses task-based algorithms where the computation is split into tasks of
varying granularity and their execution scheduled over the hardware components.
Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,
often on the critical path, are scheduled on the CPU, and larger more parallelizable
ones, often Level 3 BLAS, are scheduled on the GPUs.

PERFORMANCE & ENERGY EFFICIENCY

GF
LO

Ps
 / W

at
t

B
LA

S
ta

sk
in

g
+

hy

br
id

 s
ch

ed
ul

in
g

Matrix size N x N

Pe
rfo

rm
an

ce
 G

FL
OP

/s

0
500

1000
1500
2000
2500
3000
3500
4000

2k

4k

6k

8k

10
k

12
k

14
k

16
k

18
k

20
k

22
k

24
k

26
k

28
k

30
k

32
k

34
k

36
k

P100

2 K40

1 K40

CPU

MAGMA LU factorization in double precision arithmetic

K40 CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

NVIDIA K40 GPU
15 MP x 192 @ 0.88 GHz P100 NVIDIA Pascal GPU

56 MP x 64 @ 1.19 GHz

0
2
4
6
8

10
12
14

CPU K40 P100

CPU K40 P100

Nvidia P100
The theoretical peak double precision is 4700 Gflop/s
CUDA version 8.0

MAGMA – designed to use Level 3 BLAS as much as possible
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

Matrix size (N), vector size (NxN)
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

G
flo

p/
s

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

dgemm BLAS Level 3
dgemv BLAS Level 2
daxpy BLAS Level 1

145 Gflop/s

52 Gflop/s

4503 Gflop/s

31x

C = C + A*B

y = y + A*x

y = �*x + y

MAGMA Algorithms (influenced by hardware trend)
Hybrid (using CPU + GPUs) and/vs. GPU-only

���

���

���

���

���

���

� � �� �� �� �� �� �� ��

��
��
��

������ ���� � � ���� �

�������� �������
�������� ����������
�����
��������
�������
�������

MAGMA LU factorization in double precision arithmetic

K40 CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

NVIDIA K40 GPU
15 MP x 192 @ 0.88 GHz P100 NVIDIA Pascal GPU

56 MP x 64 @ 1.19 GHz

magma native (opt)
magma native
magma hybrid

Matrix size

Solving general dense linear systems using mixed precision iterative refinement

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2500 5000 7500 10000 12500 15000 17500 20000

CPOSV
ZCPOSV
ZPOSV

GPU TITAN X (3,072 CUDA cores @ 1.076 GHz)
 Z/C GEMM peak ~ 190 / 5,600 GFlop/s; Maxwell
CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)

26 x

MAGMA Algorithms (influenced by hardware trend)
 Mixed-precision iterative refinement

Backend for DNN and Data Analytics
Support for various Batched and/or Tensor contraction routines
e.g., Convolutional Neural Networks (CNNs) used in computer vision
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .

Convolution Pooling Convolution Pooling Fully Output
 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4

boat 0.3
person 0.1

dog 0.01

Tensor contractions for high-order FEM

Reference:
A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, S. Tomov,
High-Performance Tensor Contractions for GPUs, ICCS 2016, San Diego, CA, June 6—8, 2016.

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

•  Contractions can often be implemented as index reordering
plus batched GEMM (and hence, be highly efficient)

Reference:
V. Dobrev, Tz. Kolev, R. Rieben, High-order curvilinear finite element methods
for Lagrangian hydrodynamics, SIAM J. Sci. Comp., B606-B641. (36 pages)

Batched routines released in MAGMA

REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16		

INTERCONNECT	
CRAY	GEMINI	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Haswell	
E5-2650	v3		

KNL	7250	
DDR5|MCDRAM	

ARM	 K40c	 P100	

10	cores	 68	cores	 4	cores	
15	SM	x		
192	cores	

56	SM	x		
64	cores	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 64	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 1.5	MB	 4	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 12	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 26	GB/s	 288	GB/s	 720	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	

6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		
Implementation on

current hardware
is becoming challenging

Draft Reports
Batched BLAS Draft Reports:
https://www.dropbox.com/s/olocmipyxfvcaui/batched_api_03_30_2016.pdf?dl=0

Batched BLAS Poster:
https://www.dropbox.com/s/ddkym76fapddf5c/Batched%20BLAS%20Poster%2012.pdf?dl=0

Batched BLAS Slides:
https://www.dropbox.com/s/kz4fhcipz3e56ju/BatchedBLAS-1.pptx?dl=0

Webpage on ReproBLAS:
http://bebop.cs.berkeley.edu/reproblas/

Efficient Reproducible Floating Point Summation and BLAS:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.pdf

Workshop on Batched, Reproducible,
and Reduced Precision BLAS

Georgia Tech
 Computational Science and Engineering

Atlanta, GA
February 23—25, 2017

http://bit.ly/Batch-BLAS-2017

Tensor contractions – performance

Performance comparison of tensor contraction versions using
batched C = αAB + βC on 100,000 square matrices of size n on a
K40c GPU and 16 cores of Intel Xeon E5-2670, 2.60 GHz CPUs.

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300

350

400
Nvidia K40 / Intel Xeon E5-2650 v3 (Haswell) 10 cores

Our design MAGMA K40
Cublas K40
Rocache design
MKL+openMP on CPU
Roofline bound

Reference:
I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, High-performance
matrix-matrix multiplications of very small matrices, Euro-Par’16, Grenoble, France, August 22-26, 2016.

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

Nvidia P100
Magma tensor dgemm predefined size at compile
Magma batched dgemm generic small
cuBLAS v8.0
Roofline bound

MAGMA-DNN

•  Deep learning architectures show promising results in abstract tasks like image
classifications

•  They inherently consist of same old neural networks as before except
o  The size of the networks has increased drastically, more compute power,
o  Training dataset is huge, but fast

•  Any improvement in the core modules of such networks will greatly influences the
training and increases performance, also helps in understanding the network well

•  Spatial convolution in convnets takes up to 70% of the total execution.

•  We optimize spatial convolution module specifically for convnets.

Motivation

Introduction to Spatial Convolution:

6

Introduction to Spatial Convolution

● Input and weights are 3D tensors
● Output of a neuron is a dot product

operation over a receptive field
● As the filter traverses across the input

volume horizontally and vertically it
generates a 2D activation map

● Multiple filters generate multiple 2D
output frames

● These output frames are stacked to form
a 3D output tensor

•  Input and weights are 3D
tensors

•  As the filter traverses across
the input volume horizontally
and vertically it generates a
2D activation map

•  Multiple filters generate
multiple 2D output frames

•  These output frames are
stacked to form a 3D output
tensor

MAGMA-DNN

Background or existing technique: Unfold and GEMM

8

Background or existing technique: Unfold and GEMM

VGG-16 D conv modules

MAGMA-DNN

Background or existing technique: Unfold and GEMM

Advantages:
•  Unfold involves streaming memcpy and can be made parallel by

having many threads working on many sections of the input

•  Many BLAS libraries contain fine tuned GEMM routines that can
be used

•  The output format is consistent with the actual convolution output

Disadvantages:
•  Unfold operation requires extra memory

•  Matrix shapes can be greatly skewed

MAGMA-DNN

Convolution using transformation techniques

FFT method:
•  Convolution becomes elementwise product in frequency domain
•  Complexity in 2D is O(RS log(HW)) , better than O(RSHW) in

direct convolution
•  Caution !! filter dimension should be similar to image dimension

but in convnets that are used widely RS << HW

Winograd Minimal filtering:
•  Best suited for small filters, RS << HW
•  Reduces the arithmetic operations by constant factor thus

improves the asymptotic timing

MAGMA-DNN

17

Winograd algorithm

Steps:

● Transform a 4x4 image tile

● Transform a 3x3 +lter

● Perform element wise product
between the transformed tiles

● Inverse transform on the
product tile

1.

2.

3.

4.

Winograd algorithm

19

Is Winograd +ltering e/cient ??

● Tile by tile processing is very inefficient

● Need to amortize the transformation and inverse transformation cost to have speed
up over direct convolution

MAGMA-DNN

Winograd algorithm: reduction to GEMM’s
•  Each Image tensor has 16 matrices of size

TxC

•  The K filters are reduced to 16 CxK matrices

•  For a batch size of N there are 16N GEMMs,
for example N=64 gives 1024 GEMMs.

•  16 filter matrices are common for all the
GEMMs, so better last level cache efficiency

•  Once GEMM are performed, “Gather” the

elements from the 16 output matrices to form
a 4x4 output tile

•  Apply inverse transform on the output tile to
obtain 2x2 convolution output

20

Reduction to GEMM (Part 1): Transform Image

● For each transformed tile, scatter the
elements to different matrices

● Elements across C are in a row

● Elements across the tiles are in a
column

● Image matrix Ax,y is TxC, where

T=(H-2)(W-2)/4 tiles

● Summary, input tensor CxHxW is
transformed to P matrices each of
dimension TxC

● If tile is 2x2 then P=4, in actual case
tile is 4x4 and hence P=16

MAGMA-DNN

Winograd algorithm: Advantage of GEMM’s
•  Each transformed image tile is reused with K filters. Similarly, each filter

tile is reused with all the input tiles across the batch of N

•  If N and K are large enough, the transformation cost is amortized
because of max re- usage of transformed tiles

•  Instead of applying inverse across C and then accumulating, the natural
form of GEMM accumulates the result across C and then inverse can
be applied once to the GEMM output tile.

•  This is possible because of the linearity property for Winograd
convolution Fine tuned GEMM APIs are available

•  Good cache efficiency Good arithmetic intensity

MAGMA-DNN

Winograd algorithm

29

MCDRAM contribution in Performance

MAGMA-DNN

Optimizing GEMM’s: Kernel design

A21	
 A22	
 A23	
 A24	

A31	
 A32	
 A33	
 A34	

A41	
 A42	
 A43	
 A44	

B11	
 B12	
 B13	
 B14	

B21	
 B22	
 B23	
 B24	

B31	
 B32	
 B33	
 B34	

B41	
 B42	
 B43	
 B44	

C11	
 C12	
 C13	
 C14	

C21	
 C22	
 C23	
 C24	

C31	
 C32	
 C33	
 C34	

C41	
 C42	
 C43	
 C44	

T1 = αA11
B11 T2 = αA12
B21 T3 = αA13
B31 T4 = αA14
B41

C11 = βC11 + ΣTk

K

N

M

K

A11	
 A12	
 A13	
 A14	
 A11	
 A12	
 A13	
 A14	

B11	

B21	

B31	

B41	

C11	

C = βC + αAB

MAGMA-DNN

Optimizing GEMM’s: Kernel design

C = βC + αAB

C11	
 C12	
 C13	
 C14	

C21	
 C22	
 C23	
 C24	

C31	
 C32	
 C33	
 C34	

C41	
 C42	
 C43	
 C44	

M

K

K

N

BLK
K

BLK
M

BLK
K

BLK
N

B

A

•  Assign every block of Cii to a TB

•  Hold the block Cii in register/sm

•  Slide the green tile of A and B
and compute C = βC + αAB

•  This design guarantee
reproducibility of results

•  The kernel is parameterized to
allow tuning and optimization

MAGMA-DNN

T	

T = A1 B1

M

K

K

N

BLK
K

BLK
M

BLK
K

BLK
N

B

A

T += A2 B2

T += A3 B3
T += A4 B4

C22 = βC22 + α T

C22	

C = βC + αAB

Optimizing GEMM’s: Kernel design

MAGMA-DNN

C11	
 C12	
 C13	
 C14	

C21	
 C22	
 C23	
 C24	

C31	
 C32	
 C33	
 C34	

C41	
 C42	
 C43	
 C44	

M

K

K

N

BLK
K

BLK
M

BLK
K

BLK
N

B

A

thy

thx

	
 	
 	
 	
 	

•  Reading/writing the elements is
based on the TB size (# threads)
and so is an extra parameter.

•  Also it could be different for A, B
and C

Optimizing GEMM’s: Kernel design

MAGMA-DNN

Optimizing GEMM’s: Kernel design

C11	
 C12	
 C13	
 C14	

C21	
 C22	
 C23	
 C24	

C31	
 C32	
 C33	
 C34	

C41	
 C42	
 C43	
 C44	

M

K

K

N

BLK
K

BLK
M

BLK
K

BLK
N

B

A

C22	
 C22	
 C22	

•  Prefetching

MAGMA-DNN

Optimizing GEMM’s: Kernel design

Are we done, we have our best kernel ?

•  for most of the case LA algorithms, Deep Learning, etc., the matrices
A,B,C are not squares which requires autotunning

MAGMA-DNN

Optimizing GEMM’s: Kernel tuning

 0

 7

 14

 21

 28

 35

 42

 49

 56

 63

 70

 77

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
flo

ps

matrix size

sgemm NN square

Performance bound
gemm 739 (6)
gemm 711 (6)
gemm 742 (5)
gemm 741 (4)
gemm 738 (4)
Performance min

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

MAGMA-DNN

Optimizing GEMM’s: Kernel tuning

 0

 6

 12

 18

 24

 30

 36

 42

 48

 54

 60

 66

 72

 0 1 2 3 4 5 6 7 8 9

G
flo

ps

matrix size

sgemm NN custom1

Performance bound
gemm 636 (4)
gemm 777 (3)
gemm 765 (3)
gemm 745 (3)
gemm 732 (3)
Performance min

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

MAGMA-DNN

 0

 112

 224

 336

 448

 560

 672

 784

 896

 1008

 1120

 1232

 0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

G
flo

ps

matrix size

sgemm NN square

Performance bound
gemm 845 (7)
gemm 843 (7)
gemm 847 (6)
gemm 844 (6)
gemm 789 (5)
Performance min

Optimizing GEMM’s: Kernel tuning

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

MAGMA-DNN

Optimizing GEMM’s: Kernel tuning

 0

 83

 166

 249

 332

 415

 498

 581

 664

 747

 830

 913

 0 1 2 3 4 5 6 7 8 9

G
flo

ps

matrix size

sgemm NN custom1

Performance bound
gemm 447 (4)
gemm 557 (3)
gemm 496 (3)
gemm 440 (3)
gemm 837 (2)
Performance min

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz

MAGMA-DNN

�
��
���
���
���
���
���
���

� �� ��� ��� ��� ���

�
��
��
�

� � �

���� �����
���� ����
���� ����

���� ����
���� ����
���� ����

���� �����

�

���

���

���

���

���

� �� ��� ��� ��� ���

�
��
��
�

� � �

���� �����
���� ����
���� ����

���� ����
���� ����
���� ����

���� �����

m=n, k=16

m=n, k=64

�

���

���

���

���

���

���

� �� ��� ��� ��� ���

�
��
��
�

� � �

���� �����
���� ����
���� ����

���� ����
���� ����
���� ����

���� �����

m=n=k

K40 NVIDIA K40 GPU
15 MP x 192 @ 0.88 GHz

�

��

���

���

���

� �� ��� ��� ��� ���

�
��
��
�

� � �

���� �����
���� ����
���� ����

���� ����
���� ����
���� ����

���� �����

m=n, k=8

Conclusions and future work

•  Developed a number of NLA in MAGMA targeting applications
•  High-order FEM, DNN, and data analytics;
•  Tensor abstractions and high-performance tensor contractions (for high-order FEM)

•  Multidisciplinary effort
•  Achieve 90+% of theoretical maximum on GPUs and multicore CPUs
•  Use on-the-fly tensor reshaping to cast tensor contractions as

small but many GEMMs, executed using batched approaches
•  Custom designed GEMM kernels for small matrices and autotuning

In conclusion:

Future directions:
•  To release a tensor contractions package through the MAGMA library
•  To release NLA backend for DLA and data analytics
•  Integrate developments in applications
•  Complete autotuning and develop all kernels

Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

Collaborating partners
University of Tennessee, Knoxville
Lawrence Livermore National Laboratory,
 Livermore, CA
 LLNL led ECP CEED:
 Center for Efficient Exascale Discretizations
University of Manchester, Manchester, UK
University of Paris-Sud, France
INRIA, France

