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Abstract: Learn how to accelerate your machine learning, data mining, and other 
algorithms through fast matrix and tensor operations on GPUs. There's an increasing 
demand for accelerated independent computations on tensors and many small matrices. 
Although common, these workloads cannot be efficiently executed using standard linear 
algebra libraries. To fill the gap, we developed the MAGMA Batched library that achieves 
dramatically better performance by repetitively executing the small operations in 
"batches." We'll describe a methodology on how to develop high-performance BLAS, 
SVD, factorizations, and solvers for both large- and small-batched matrices. We'll also 
present the current state-of-the-art implementations and community efforts to 
standardize an API that extends BLAS for Batched computations. 
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Wide range of Applications depend on 
Numerical Linear Algebra (NLA) Libraries 

•  Airplane wing design,  
• Quantum chemistry,  
• Geophysical flows,  
•  Stealth aircraft, 
• Diffusion of solid bodies in a liquid,  
•  Adaptive mesh refinement,  
• Computational materials research,  
• Deep learning in neural networks, 
•  Stochastic simulation, 
• Massively parallel data mining, 
• … 



NLA is the backend that accelerates a wide variety of 
science and engineering applications:  

•  Linear system                               Solve Ax  = b 
•  Computational electromagnetics, material science, applications using boundary integral equations,  

airflow past wings, fluid flow around ship and other offshore constructions, and many more 
•  Least squares:           Find x to minimize || Ax – b ||  

•  Convex optimization, Computational statistics (e.g., linear least squares or ordinary least squares), 
econometrics, control theory,  signal processing, curve fitting,  and many more 

•  Eigenproblems:                             Solve Ax = λ x 
•  Computational chemistry, quantum mechanics, material science, face recognition, PCA, data-mining, 

marketing, Google Page Rank, spectral clustering, vibrational analysis, compression, and many more 
•  Singular Value Decomposition (SVD):         A = U Σ V* 

•  Information retrieval, web search, signal processing, big data analytics, low rank matrix approximation, total 
least squares minimization, pseudo-inverse, and many more 

•  Many variations depending on structure of A 
•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded, sparse with dense blocks, etc. 

•  LA is crucial to the development of sparse solvers 

Numerical Linear Algebra (NLA) in Applications 



NLA is the backend that accelerates a wide variety of 
science and engineering applications:  

Numerical Linear Algebra (NLA) in Applications 

•  For big NLA problems 
(BLAS, convolutions, SVD, linear system solvers, etc.) 

 

In contemporary libraries: 
BLAS 
LAPACK 
ScaLAPACK 
 
MAGMA (for GPUs)  

Large matrices 



NLA is the backend that accelerates a wide variety of 
science and engineering applications:  

Numerical Linear Algebra (NLA) in Applications 

•  For big NLA problems 
(BLAS, convolutions, SVD, linear system solvers, etc.) 

•  Numerous important applications need NLA for small problems 

 

In contemporary libraries: 
BLAS 
LAPACK 
ScaLAPACK 
 
MAGMA (for GPUs)  

Large matrices 

•  Machine learning / DNNs 
•  Data mining / analytics 
•  High-order FEM,  
•  Graph analysis, 
•  Neuroscience, 
•  Astrophysics, 
•  Quantum chemistry, 
•  Signal processing, and more 

 

Where data can be multidimensional / relational 



NLA is the backend that accelerates a wide variety of 
science and engineering applications:  

Numerical Linear Algebra (NLA) in Applications 

•  For big NLA problems 
(BLAS, convolutions, SVD, linear system solvers, etc.) 

•  Adding in MAGMA application backends for small problems 

 

In contemporary libraries: 
BLAS 
LAPACK 
ScaLAPACK 
 
MAGMA (for GPUs)  

Large matrices 

•  Machine learning / DNNs 
•  Data mining / analytics 
•  High-order FEM,  
•  Graph analysis, 
•  Neuroscience, 
•  Astrophysics, 
•  Quantum chemistry, 
•  Signal processing, and more 

 

Small matrices / tensors 
Fixed-size 
batches 
 
Variable-size 
batches 
 
Dynamic batches 
 
Tensors 



Key Features of MAGMA 2.2 
TASK-BASED ALGORITHMS 
MAGMA uses task-based algorithms where the computation is split into tasks of  
varying granularity and their execution scheduled over the hardware components. 
Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,  
often on the critical path, are scheduled on the CPU, and larger more parallelizable 
ones, often Level 3 BLAS, are scheduled on the GPUs. 
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Nvidia P100 
The theoretical peak double precision is 4700 Gflop/s 
CUDA version 8.0 

MAGMA – designed to use Level 3 BLAS as much as possible 
Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s  

Matrix size (N), vector size (NxN)
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MAGMA Algorithms (influenced by hardware trend)   
Hybrid (using CPU + GPUs) and/vs. GPU-only 
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MAGMA LU factorization in double precision arithmetic  

K40 CPU Intel Xeon E5-2650 v3 (Haswell) 
2x10 cores @ 2.30 GHz  

NVIDIA K40 GPU 
15 MP x 192 @ 0.88 GHz  P100 NVIDIA Pascal GPU 

56 MP x 64 @ 1.19 GHz  

magma native (opt) 
magma native 
magma hybrid 



Matrix size 

Solving general dense linear systems using mixed precision iterative refinement 
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Backend for DNN and Data Analytics 
Support for various Batched and/or Tensor contraction routines 
e.g., Convolutional Neural Networks (CNNs) used in computer vision  
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):     

Filters F 
Fn 

    Output On 

n,kO

n,kO = k,iD
i
∑ n,iF

Dk . 

Convolution                Pooling        Convolution           Pooling           Fully                      Output 
      connected               predictions  Data D 

Convolution of Filters Fi (feature detection) and input image D: 
•  For every filter Fn and every channel, the computation for 

every pixel value On,k  is a tensor contraction: 

 
•  Plenty of parallelism; small operations that must be batched 
•  With data “reshape” the computation can be transformed into  

a batched GEMM (for efficiency; among other approaches) 

chicken 0.4 

boat 0.3   
person 0.1 

dog 0.01 



Tensor contractions for high-order FEM 

Reference: 
A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, S. Tomov, 
High-Performance Tensor Contractions for GPUs, ICCS 2016, San Diego, CA, June 6—8, 2016. 

 

Code Generation
C++11 features will be used as much as possible. Additional 
needs will be handled by defining a domain specific embedded 
language (DSEL). This technique is used in C++ to take advantage 
of DSL features while using the optimizations provided by a 
standard compiler. It will handle the generation of versions (index 
reordering, next) to be empirically evaluated and be part of the 
autotuning framework. 

 

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi, 
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of 
generic versions are developed and parametrized for 
performance. The parameters are autotuned (empirically) to find 
“best” kernels for specific size.  

 

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with 
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where 

Take the nq x nd matrix                          and                                          
Then,                                                       , or omitting the E subscript                       
                     .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is 
dense O(pd) x O(pd) matrix. 

If the FE basis and the quadrature rule have tensor product 
structure, we can decompose dofs and quadrature point indices in 
logical coordinate axes
                   i = (i1, …, id),    j = (j1, …, jd),    k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd. 

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below  
● Evaluations of M times V, referred as equations (3) & (4) below 

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM 
simulations, can be expressed through tensors. Examples are 
computation of FE matrices and SpMV products expressed as 
generalized tensor contractions. Contractions by the first index 
can often be represented as tensor index reordering plus gemm, 
which is a key factor to achieve high-performance. We present 
ongoing work on the design of a high-performance package in 
MAGMA for Tensor algebra that includes techniques to organize 
tensor contractions, data storage, and parametrization related to 
batched execution of large number of small tensor contractions. 
We apply auto-tuning and code generation techniques to provide 
an architecture-aware, user-friendly interface.

Motivation 
Numerous important applications can be expressed through 
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g., 

sub-vector/warp size)
● Must determine (in software) if possible to do it through 

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface 
To provide various interfaces, including one using C++11. 
Top level design to provide features similar to the 
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every 
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir  =  j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise 
contractions. There is enough complexity here to search for 
something better: code generation, index reordering, and 
autotuning will be used, e.g., contractions (3a) - (4f) can be 
implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
  Tensor<2,5,2> ts;
  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
  Tensor<2,5,5,gpu_> d_ts;
  // Call a thrust function to set values to 9
  thrust::fill(d_ts.begin() , d_ts.end() , 9);
  // Send back values to the cpu tensor
  ts = d_ts ;
  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
  view<2,10>  mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure: 
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance 
CUBLAS for “small” sizes, currently 
tuned for above 32. Current work is 
concentrated on kernels for fixed 
smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

 

Code Generation
C++11 features will be used as much as possible. Additional 
needs will be handled by defining a domain specific embedded 
language (DSEL). This technique is used in C++ to take advantage 
of DSL features while using the optimizations provided by a 
standard compiler. It will handle the generation of versions (index 
reordering, next) to be empirically evaluated and be part of the 
autotuning framework. 

 

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi, 
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of 
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Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with 
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where 
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so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd. 

Summary of kernels needed:
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● Evaluations of M times V, referred as equations (3) & (4) below 
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Abstract
Numerous important applications, e.g., high-order FEM 
simulations, can be expressed through tensors. Examples are 
computation of FE matrices and SpMV products expressed as 
generalized tensor contractions. Contractions by the first index 
can often be represented as tensor index reordering plus gemm, 
which is a key factor to achieve high-performance. We present 
ongoing work on the design of a high-performance package in 
MAGMA for Tensor algebra that includes techniques to organize 
tensor contractions, data storage, and parametrization related to 
batched execution of large number of small tensor contractions. 
We apply auto-tuning and code generation techniques to provide 
an architecture-aware, user-friendly interface.

Motivation 
Numerous important applications can be expressed through 
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g., 

sub-vector/warp size)
● Must determine (in software) if possible to do it through 

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface 
To provide various interfaces, including one using C++11. 
Top level design to provide features similar to the 
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every 
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir  =  j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise 
contractions. There is enough complexity here to search for 
something better: code generation, index reordering, and 
autotuning will be used, e.g., contractions (3a) - (4f) can be 
implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
  Tensor<2,5,2> ts;
  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
  Tensor<2,5,5,gpu_> d_ts;
  // Call a thrust function to set values to 9
  thrust::fill(d_ts.begin() , d_ts.end() , 9);
  // Send back values to the cpu tensor
  ts = d_ts ;
  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
  view<2,10>  mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure: 
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance 
CUBLAS for “small” sizes, currently 
tuned for above 32. Current work is 
concentrated on kernels for fixed 
smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

•  Contractions can often be implemented as index reordering 
plus batched GEMM (and hence, be highly efficient)      

Reference: 
V. Dobrev, Tz. Kolev, R. Rieben, High-order curvilinear finite element methods 
for Lagrangian hydrodynamics, SIAM J. Sci. Comp., B606-B641. (36 pages) 



Batched routines released in MAGMA 



REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16		

INTERCONNECT	
CRAY	GEMINI	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Haswell	
E5-2650	v3		

KNL	7250	
DDR5|MCDRAM	

ARM	 K40c	 P100	

10	cores	 68	cores	 4	cores	
15	SM	x		
192	cores	

56	SM	x		
64	cores	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 64	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 1.5	MB	 4	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 12	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 26	GB/s	 288	GB/s	 720	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	

6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		
Implementation on  

current hardware 
is becoming challenging  

 

Draft Reports 
Batched BLAS Draft Reports:
https://www.dropbox.com/s/olocmipyxfvcaui/batched_api_03_30_2016.pdf?dl=0 
  
Batched BLAS Poster: 
https://www.dropbox.com/s/ddkym76fapddf5c/Batched%20BLAS%20Poster%2012.pdf?dl=0 
  
Batched BLAS Slides: 
https://www.dropbox.com/s/kz4fhcipz3e56ju/BatchedBLAS-1.pptx?dl=0 
  
Webpage on ReproBLAS: 
http://bebop.cs.berkeley.edu/reproblas/ 
  
Efficient Reproducible Floating Point Summation and BLAS: 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.pdf  

Workshop on Batched, Reproducible,  
and Reduced Precision BLAS 

 

Georgia Tech 
 Computational Science and Engineering 

Atlanta, GA 
February 23—25, 2017 

http://bit.ly/Batch-BLAS-2017 



Tensor contractions – performance 

Performance comparison of tensor contraction versions using 
batched C = αAB + βC on 100,000 square matrices of size n on a 
K40c GPU and 16 cores of Intel Xeon E5-2670, 2.60 GHz CPUs. 

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300

350

400
Nvidia K40 / Intel Xeon E5-2650 v3 (Haswell) 10 cores

Our design MAGMA K40
Cublas K40
Rocache design
MKL+openMP on CPU 
Roofline bound

Reference: 
I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra, High-performance 
matrix-matrix multiplications of very small matrices, Euro-Par’16, Grenoble, France, August 22-26, 2016. 

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s 

   
   

   
   

   
   

  
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

Nvidia P100
Magma tensor dgemm predefined size at compile
Magma batched dgemm generic small
cuBLAS v8.0
Roofline bound



MAGMA-DNN 

•  Deep learning architectures show promising results in abstract tasks like image 
classifications 

•  They inherently consist of same old neural networks as before except 
o  The size of the networks has increased drastically, more compute power,  
o  Training dataset is huge, but fast 

•  Any improvement in the core modules of such networks will greatly influences the 
training and increases performance, also helps in understanding the network well 

•  Spatial convolution in convnets takes up to 70% of the total execution.  

•  We optimize spatial convolution module specifically for convnets. 

Motivation 



Introduction to Spatial Convolution: 

6

Introduction to Spatial Convolution

● Input and weights are 3D tensors
● Output of a neuron is a dot product 

operation over a receptive field
● As the filter traverses across the input 

volume horizontally and vertically it 
generates a 2D activation map 

● Multiple filters generate multiple 2D 
output frames

● These output frames are stacked to form 
a 3D output tensor 

•  Input and weights are 3D 
tensors  

•  As the filter traverses across 
the input volume horizontally 
and vertically it generates a 
2D activation map  

•  Multiple filters generate 
multiple 2D output frames  

•  These output frames are 
stacked to form a 3D output 
tensor  
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Background or existing technique: Unfold and GEMM 

8

Background or existing technique: Unfold and GEMM

VGG-16 D  conv modules
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Background or existing technique: Unfold and GEMM 

Advantages: 
•  Unfold involves streaming memcpy and can be made parallel by 

having many threads working on many sections of the input 

•  Many BLAS libraries contain fine tuned GEMM routines that can 
be used  

•  The output format is consistent with the actual convolution output 

Disadvantages: 
•  Unfold operation requires extra memory  

•  Matrix shapes can be greatly skewed 

MAGMA-DNN 



Convolution using transformation techniques 

FFT method: 
•  Convolution becomes elementwise product in frequency domain 
•  Complexity in 2D is O(RS log(HW)) , better than O(RSHW) in 

direct convolution 
•  Caution !! filter dimension should be similar to image dimension 

but in convnets that are used widely RS << HW 

Winograd Minimal filtering: 
•  Best suited for small filters, RS << HW 
•  Reduces the arithmetic operations by constant factor thus 

improves the asymptotic timing 

MAGMA-DNN 
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Winograd algorithm

Steps:

● Transform a 4x4 image tile

● Transform a 3x3 +lter

● Perform element wise product 
between the transformed tiles

● Inverse transform on the 
product tile 

1.

2.

3.

4.

Winograd algorithm 
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Is Winograd +ltering e/cient ??

● Tile by tile processing is very inefficient

● Need to amortize the transformation and inverse transformation cost to have speed 
up over direct convolution

MAGMA-DNN 



Winograd algorithm: reduction to GEMM’s 
•  Each Image tensor has 16 matrices of size 

TxC 

•  The K filters are reduced to 16 CxK matrices 

•  For a batch size of N there are 16N GEMMs, 
for example N=64 gives 1024 GEMMs. 

•  16 filter matrices are common for all the 
GEMMs, so better last level cache efficiency 

 
•  Once GEMM are performed, “Gather” the 

elements from the 16 output matrices to form 
a 4x4 output tile 

•  Apply inverse transform on the output tile to 
obtain 2x2 convolution output 

20

Reduction to GEMM (Part 1): Transform Image

● For each transformed tile, scatter the 
elements to different matrices

● Elements across C are in a row

● Elements across the tiles are in a 
column

● Image matrix Ax,y  is  TxC, where 

T=(H-2)(W-2)/4  tiles

● Summary, input tensor CxHxW is 
transformed to P matrices each of 
dimension TxC

● If tile is 2x2 then P=4, in actual case 
tile is 4x4 and hence P=16

MAGMA-DNN 



Winograd algorithm: Advantage of GEMM’s 
•  Each transformed image tile is reused with K filters. Similarly, each filter 

tile is reused with all the input tiles across the batch of N 

•  If N and K are large enough, the transformation cost is amortized 
because of max re- usage of transformed tiles 

•  Instead of applying inverse across C and then accumulating, the natural 
form of GEMM accumulates the result across C and then inverse can 
be applied once to the GEMM output tile. 

•  This is possible because of the linearity property for Winograd 
convolution Fine tuned GEMM APIs are available 

•  Good cache efficiency Good arithmetic intensity 

MAGMA-DNN 



Winograd algorithm 

29

MCDRAM contribution in Performance
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Optimizing GEMM’s: Kernel design 
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B21 T3 = αA13 
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C11 = βC11 + ΣTk 
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C = βC + αAB 
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Optimizing GEMM’s: Kernel design 

C = βC + αAB 

C11	
   C12	
   C13	
   C14	
  

C21	
   C22	
   C23	
   C24	
  

C31	
   C32	
   C33	
   C34	
  

C41	
   C42	
   C43	
   C44	
  

M
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N 

BLK
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BLK
M 

BLK
K 

BLK
N 

B 

A 

•  Assign every block of Cii to a TB 

•  Hold the block Cii in register/sm 

•  Slide the green tile of A and B 
and compute C = βC + αAB 

•  This design guarantee 
reproducibility of results 

•  The kernel is parameterized to 
allow tuning and optimization 
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T	
  

T   = A1 B1 
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K 

BLK
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T += A2 B2 

T += A3 B3 
T += A4 B4 

C22 = βC22 + α T 

C22	
  

C = βC + αAB 

Optimizing GEMM’s: Kernel design 
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•  Reading/writing the elements is 
based on the TB size (# threads) 
and so is an extra parameter. 

•  Also it  could be different for A, B 
and C 

Optimizing GEMM’s: Kernel design 
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Optimizing GEMM’s: Kernel design 
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•  Prefetching 
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Optimizing GEMM’s: Kernel design 

Are we done, we have our best kernel ? 
 

•  for most of the case  LA algorithms, Deep Learning, etc., the matrices 
A,B,C are not squares which requires autotunning 
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Optimizing GEMM’s: Kernel tuning 
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Optimizing GEMM’s: Kernel tuning 
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Optimizing GEMM’s: Kernel tuning 
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Conclusions and future work 

•  Developed a number of NLA in MAGMA targeting applications 
•  High-order FEM, DNN, and data analytics; 
•  Tensor abstractions and high-performance tensor contractions (for high-order FEM) 

•  Multidisciplinary effort 
•  Achieve 90+% of theoretical maximum on GPUs and multicore CPUs 
•  Use on-the-fly tensor reshaping to cast tensor contractions as 

small but many GEMMs, executed using batched approaches 
•  Custom designed GEMM kernels for small matrices and autotuning 

In conclusion: 

Future directions: 
•  To release a tensor contractions package through the MAGMA library 
•  To release NLA backend for DLA and data analytics 
•  Integrate developments in applications 
•  Complete autotuning and develop all kernels 
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