
MagmaDNN – High-Performance Data Analytics
for Manycore GPUs and CPUs	

Lucien Ng
The Chinese University of Hong Kong

Kwai Wong

The Joint Institute for Computational Sciences (JICS), UTK and ORNL

Azzam Haidar, Stanimire Tomov, and Jack Dongarra
(haidar | tomov | dongarra@icl.utk.edu)
The Innovative Computing Laboratory, UTK

2017 Summer Research Experiences for Undergraduate (REU)
Research Experiences in Computational Science, Engineering, and Mathematics (RECSEM)
Knoxville, TN
	

Dense Linear Algebra (DLA) is needed in a wide variety of science and
engineering applications:

•  Linear systems: Solve Ax = b
•  Computational electromagnetics, material science, applications using

boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

•  Least squares: Find x to minimize || Ax – b ||
•  Computational statistics (e.g., linear least squares or ordinary least squares),

econometrics, control theory, signal processing, curve fitting, and many more
•  Eigenproblems: Solve Ax = λ x

•  Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

•  SVD: A = U Σ V* (Au = σv and A*v = σu)
•  Information retrieval, web search, signal processing, big data analytics, low rank

matrix approximation, total least squares minimization, pseudo-inverse, and many more
•  Many variations depending on structure of A

•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.

•  DLA is crucial to the development of sparse solvers

Dense Linear Algebra in Applications

Dense Linear Algebra (DLA) is needed in a wide variety of science and
engineering applications:

•  Linear systems: Solve Ax = b
•  Computational electromagnetics, material science, applications using

boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

•  Least squares: Find x to minimize || Ax – b ||
•  Computational statistics (e.g., linear least squares or ordinary least squares),

econometrics, control theory, signal processing, curve fitting, and many more
•  Eigenproblems: Solve Ax = λ x

•  Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

•  SVD: A = U Σ V* (Au = σv and A*v = σu)
•  Information retrieval, web search, signal processing, big data analytics, low rank

matrix approximation, total least squares minimization, pseudo-inverse, and many more
•  Many variations depending on structure of A

•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.

•  DLA is crucial to the development of sparse solvers

Dense Linear Algebra in Applications

 Provided in MAGMA 2.3

http://icl.cs.utk.edu/magma
https://bitbucket.org/icl/magma

0	

1000	

2000	

3000	

4000	

5000	

6000	

2k	
 4k	
 6k	
 8k	
 10k	
 12k	
 14k	
 16k	
 18k	
 20k	
 22k	
 24k	
 26k	
 28k	
 30k	
 32k	
 34k	
 36k	

V100	

P100	

K40	

CPU	

Why use GPUs in HPC?

PERFORMANCE & ENERGY EFFICIENCY

GF
LO

Ps
 / W

at
t

Matrix size N x N

Pe
rfo

rm
an

ce
 G

FL
OP

/s

MAGMA 2.3 LU factorization in double precision arithmetic
K40 CPU Intel Xeon E5-2650 v3 (Haswell)

2x10 cores @ 2.30 GHz
NVIDIA Kepler GPU
15 MP x 192 @ 0.88 GHz P100 NVIDIA Pascal GPU

56 MP x 64 @ 1.19 GHz

0	

5	

10	

15	

20	

25	

CPU	
 K40	
 P100	
 V100	

V100 NVIDIA Volta GPU
80 MP x 64 @ 1.38 GHz

10x
10x

Energy efficiency
(under ~ the same power draw)

What about accelerated LA for Data Analytics?

•  Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
in data analytics applications

•  Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for
Data that is multidimensional / relational

Small matrices, tensors, and batched
computations

Fixed-size
batches

Variable-size
batches

Dynamic batches

Tensors

Data Analytics and LA on many small matrices

Data Analytics and associated with it Linear Algebra on small LA
problems are needed in many applications:

•  Machine learning,
•  Data mining,
•  High-order FEM,
•  Numerical LA,
•  Graph analysis,

•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Multi-physics problems,
•  Signal processing, etc.

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .
Convolution Pooling Convolution Pooling Fully Output

 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4
boat 0.3

person 0.1
dog 0.01

Batched LAPACK
Sparse / Dense Matrix

System

Single calls to
Batched BLAS

DAG-based factorization

•  Matrix-free basis evaluation needs efficient tensor contractions,

•  Within ECP CEED Project, designed MAGMA batched methods
to split the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

 Batch_{ Ci3 = AT Bi3, for range of i3 }

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

Machine learning Applications using high-order FEM

Sparse/Dense solvers & preconditioners

MagmaDNN – Data Analytics Tool

Ø  MagmaDNN 0.1-Alpha – HP Data analytics and ML
GPU-accelerated numerical software using MAGMA as
computational backend to accelerate its LA computations

Ø Open source; looking for feedback and contributions
Started with students from REU/RECSEM program
https://bitbucket.org/icl/magmadnn

Ø  Implemented/proposed so far
Ø  Tensors and tensor operations
Ø  Deep learning primitives:

Fully-connected layers, convolutional layers,
pooling layers, activation layers, and output layers.
All of them support SGD back-propagation training

Ø  Established adapters for calling CuDNN
Ø  Applied MagmaDNN to the MNIST benchmark using

multilayer perceptron or a convolutional neural network.

 Provided in MAGMA 2.3

http://icl.cs.utk.edu/magma https://bitbucket.org/icl/magmadnn

Fully connected layers

Fully-connected 3-layer Neural Network example

Ø  Data (input, output, NN weights, etc.) is handled
through tensor abstractions
// 2d tensor for n_images and n_features in the corresponding dimensions
Tensor<float> Images = Tensor<float>({n_images, n_features});

Ø  Support for various layers:
Fully connected (FCLayer), convolution, activation, flatten,
pooling, input, output, etc. layers
// Create layers for the network
FCLayer<float> *FC1 = new FCLayer<float>(&inputLayer, 128);
ActivationLayer<float> *actv1 = new ActivationLayer<float>(FC1, SIGMOID);
FCLayer<float> *FC2 = new FCLayer<float>(actv1, n_output_classes);

Ø  Support networks – composed of layers

std::vector<Layer<float>*> vec_layer;
vec_layer.push_back(&inputLayer);

 vec_layer.push_back(FC1);
 vec_layer.push_back(actv1);
 vec_layer.push_back(FC2);
 …

Convolutional network layers

Convolution Network (ConvNet) example

Ø  Layers are typically 3D volumes

Ø  Handled through tensors

Ø  Each layer transforms 3D tensor to 3D tensor

Ø  Layers support the forward and backward pass
algorithms for the training

Ø  Support for optimization solvers (GD and derivatives)
Ø  Gradient Descent (GD)
Ø  Stochastic Gradient Descent (SGD)
Ø  Mini-Batch Gradient Descent (MB-GD)

How to accelerate on manycore GPU and CPUs?

Convolution Network (ConvNet) example

Ø  Convolutions can be accelerated in various ways:
Ø  Unfold and GEMM
Ø  FFT
Ø  Winograd minimal

filtering – reduction
to batched GEMMs

Ø  Use autotuning to handle complexity of tuning

Require matrix-matrix products of various sizes,
including batched GEMMs

29

MCDRAM contribution in Performance

How to implement fast batched DLA?

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000 3500 4000

50~1000 matrices of size

Nvidia V100 GPU

Batch dgemm BLAS 3

Standard dgemm BLAS 3

small sizes
!
!
!
!
!
!
!
!
!
!
!
!
!
!

medium sizes
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Large sizes

!
!
!
!
!
!

Switch to non-batch
!
!
!
!
!
!

0

1000

2000

3000

4000

5000

6000

7000

8000

0 500 1000 1500 2000 2500 3000 3500 4000

50~1000 matrices of size

Nvidia V100 GPU

Batch dgemm BLAS 3

Standard dgemm BLAS 3

19X

1.4X

G
flo

p/
s

Problem sizes influence algorithms & optimization techniques

Matrix sizes (fixed) in the batch
Batch size 1,000 Batch size 300 Batch size 50

C11# C12# C13# C14#

C21# C22# C23# C24#

C31# C32# C33# C34#

C41# C42# C43# C44#

M

K

K

N

BLK
K

BLK
M

BLK
K

BLK
N

B

A

thy

thx

!!!!!

•  Reading/writing the elements is
based on the TB size (# threads)
and so is an extra parameter.

•  Also it could be different for A, B
and C

Optimizing GEMM’s: Kernel design

Kernels are designed various scenarios and
parameterized for autotuning framework to

find “best” performing kernels

Examples

Fully-connected 3-layer Neural Network example

Ø  MagmaDNN has testing/example drivers

Ø  Example implementing the MNIST benchmark
using MagmaDNN multilayer perceptron or a
convolutional neural network

Ø  The MNIST benchmark is a NN for
recognizing handwritten numbers

Ø  Input for the training are images of
handwritten numbers and the labels
indicating what are the numbers

Examples …

Current work and Future directions

•  Performance portability and unified support on GPUs/CPUs
–  C++ templates w/ polymorphic approach;
–  Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs.

•  Autotuning
–  Critical for performance to provide tuning that is application-specific;
–  A lot of work has been done (on certain BLAS kernels and the approach) but

still need a simple framework to handle the entire library.

•  Extend functionality, kernel designs, and algorithmic variants
–  BLAS, Batched BLAS, architecture and energy-aware
–  New algorithms and building blocks, architecture and energy-aware
–  Randomization algorithms, e.g., for low-rank approximations, and applications

•  Use and integration with applications of interest (with ORNL collaborators)
–  Brain-computer interface systems
–  Post-processing data from electron detectors for high-resolution microscopy studies (Unmixing 4-D Ptychographic Images)
–  Optimal cancer treatment strategies

Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
Lawrence Livermore National Laboratory
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

