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Dense Linear Algebra (DLA) is needed in a wide variety of science and 
engineering applications:  

•  Linear systems:               Solve Ax  = b 
•  Computational electromagnetics, material science, applications using  

boundary integral equations, airflow past wings, fluid flow around ship  
and other offshore constructions, and many more 

•  Least squares:                  Find x to minimize || Ax – b ||  
•  Computational statistics (e.g., linear least squares or ordinary least squares),  

econometrics, control theory,  signal processing, curve fitting,  and many more 
•  Eigenproblems:                Solve Ax = λ x 

•  Computational chemistry, quantum mechanics, material science, face recognition,  
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational  
analysis, compression, and many more 

•  SVD:                                    A = U Σ V* (Au = σv and A*v = σu) 
•  Information retrieval, web search, signal processing, big data analytics, low rank  

matrix approximation, total least squares minimization, pseudo-inverse, and many more 
•  Many variations depending on structure of A 

•  A can be symmetric, positive definite, tridiagonal, Hessenberg, banded,  
sparse with dense blocks, etc. 

•  DLA is crucial to the development of sparse solvers 

Dense Linear Algebra in Applications 
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Dense Linear Algebra in Applications 

 Provided in MAGMA 2.3 

http://icl.cs.utk.edu/magma   
https://bitbucket.org/icl/magma  
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Why use GPUs in HPC? 

PERFORMANCE  &  ENERGY EFFICIENCY 
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MAGMA 2.3 LU factorization in double precision arithmetic  
K40 CPU Intel Xeon E5-2650 v3 (Haswell) 

2x10 cores @ 2.30 GHz  
NVIDIA Kepler GPU 
15 MP x 192 @ 0.88 GHz  P100 NVIDIA Pascal GPU 

56 MP x 64 @ 1.19 GHz  
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What about accelerated LA for Data Analytics? 

•  Traditional libraries like MAGMA can be used as backend to accelerate the LA computations 
in data analytics applications 

•  Need support for  
1) New data layouts,  2)  Acceleration for small matrix computations, 3) Data analytics tools  

Need data processing and analysis support for  
Data that is multidimensional / relational 

Small matrices, tensors, and batched 
computations 

Fixed-size 
batches 
 
Variable-size 
batches 
 
Dynamic batches 
 
Tensors 



Data Analytics and LA on many small matrices 

Data Analytics and associated with it Linear Algebra on small LA 
problems are needed in many applications: 
 
 
 
 
 

•  Machine learning, 
•  Data mining, 
•  High-order FEM,  
•  Numerical LA, 
•  Graph analysis, 

•  Neuroscience, 
•  Astrophysics, 
•  Quantum chemistry, 
•  Multi-physics problems, 
•  Signal processing, etc. 
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Convolution of Filters Fi (feature detection) and input image D: 
•  For every filter Fn and every channel, the computation for 

every pixel value On,k  is a tensor contraction: 

 
•  Plenty of parallelism; small operations that must be batched 
•  With data “reshape” the computation can be transformed into  

a batched GEMM (for efficiency; among other approaches) 

chicken 0.4 
boat 0.3   

person 0.1 
dog 0.01 

Batched LAPACK 
Sparse / Dense Matrix 

System 

Single calls to  
Batched BLAS 

DAG-based factorization 

•  Matrix-free basis evaluation needs efficient tensor contractions,  
 
  

•  Within ECP CEED Project, designed MAGMA batched methods  
to split the computation in many small high-intensity GEMMs, 
grouped together (batched) for efficient execution: 
  

      Batch_{ Ci3 = AT Bi3, for range of i3 } 

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

Machine learning Applications using high-order FEM 

Sparse/Dense solvers & preconditioners  



MagmaDNN – Data Analytics Tool 

Ø  MagmaDNN 0.1-Alpha – HP Data analytics and ML  
GPU-accelerated numerical software using MAGMA as  
computational backend to accelerate its LA computations 
 

Ø Open source; looking for feedback and contributions 
Started with students from REU/RECSEM program 
https://bitbucket.org/icl/magmadnn 

Ø  Implemented/proposed so far 
Ø  Tensors and tensor operations 
Ø  Deep learning primitives: 

Fully-connected layers, convolutional layers,  
pooling layers, activation layers, and output layers.  
All of them support SGD back-propagation training 

Ø  Established adapters for calling CuDNN 
Ø  Applied MagmaDNN to the MNIST benchmark using  

multilayer perceptron or a convolutional neural network. 

 Provided in MAGMA 2.3 

http://icl.cs.utk.edu/magma  https://bitbucket.org/icl/magmadnn 



Fully connected layers  

Fully-connected 3-layer Neural Network example 

Ø  Data (input, output, NN weights, etc.) is handled 
through tensor abstractions 
// 2d tensor for n_images and n_features in the corresponding dimensions  
Tensor<float> Images = Tensor<float>({n_images, n_features}); 
 

Ø  Support for various layers:  
Fully connected (FCLayer), convolution, activation, flatten, 
pooling, input, output, etc. layers 
// Create layers for the network   
FCLayer<float> *FC1              = new FCLayer<float>(&inputLayer, 128); 
ActivationLayer<float> *actv1 = new ActivationLayer<float>(FC1, SIGMOID); 
FCLayer<float> *FC2              = new FCLayer<float>(actv1, n_output_classes); 

 
Ø  Support networks – composed of layers 

std::vector<Layer<float>*> vec_layer; 
vec_layer.push_back(&inputLayer); 

      vec_layer.push_back(FC1); 
      vec_layer.push_back(actv1); 
      vec_layer.push_back(FC2);  
      … 



Convolutional network layers  

Convolution Network (ConvNet) example 

Ø  Layers are typically 3D volumes 

Ø  Handled through tensors 

Ø  Each layer transforms 3D tensor to 3D tensor 

Ø  Layers support the forward and backward pass 
algorithms for the training 

Ø  Support for optimization solvers (GD and derivatives) 
Ø  Gradient Descent (GD) 
Ø  Stochastic Gradient Descent  (SGD) 
Ø  Mini-Batch Gradient Descent  (MB-GD) 



How to accelerate on manycore GPU and CPUs? 

Convolution Network (ConvNet) example 

Ø  Convolutions can be accelerated in various ways: 
Ø  Unfold and GEMM 
Ø  FFT 
Ø  Winograd minimal  

filtering – reduction 
to batched GEMMs 

 
Ø  Use autotuning to handle complexity of tuning 

Require matrix-matrix products of various sizes, 
including batched GEMMs 

29

MCDRAM contribution in Performance



How to implement fast batched DLA? 
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Problem sizes influence algorithms & optimization techniques 

Matrix sizes (fixed) in the batch 
Batch size 1,000                  Batch size 300                             Batch size 50 
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!!!!!

•  Reading/writing the elements is 
based on the TB size (# threads) 
and so is an extra parameter. 

•  Also it  could be different for A, B 
and C 

Optimizing GEMM’s: Kernel design 

Kernels are designed various scenarios and 
parameterized for autotuning framework to 

find “best” performing kernels  



Examples 

Fully-connected 3-layer Neural Network example 

Ø  MagmaDNN has testing/example drivers 
 

Ø  Example implementing the MNIST benchmark  
using MagmaDNN multilayer perceptron or a 
convolutional neural network 

Ø  The MNIST benchmark is a NN for 
recognizing handwritten numbers  

Ø  Input for the training are images of 
handwritten numbers and the labels 
indicating what are the numbers 



Examples … 



Current work and Future directions 

•  Performance portability and unified support on GPUs/CPUs 
–  C++ templates w/ polymorphic approach;  
–  Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APIs. 

•  Autotuning 
–  Critical for performance to provide tuning that is application-specific; 
–  A lot of work has been done (on certain BLAS kernels and the approach) but  

still need a simple framework to handle the  entire library. 

•  Extend functionality, kernel designs, and algorithmic variants 
–  BLAS, Batched BLAS, architecture and energy-aware 
–  New algorithms and building blocks, architecture and energy-aware 
–  Randomization algorithms, e.g., for low-rank approximations, and applications  

•  Use and integration with applications of interest (with ORNL collaborators) 
–  Brain-computer interface systems 
–  Post-processing data from electron detectors for high-resolution microscopy studies  (Unmixing 4-D Ptychographic Images) 
–   Optimal cancer treatment strategies 
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