
Dynamic Task Discovery in PaRSEC- A data-flow task-based
Runtime

Reazul Hoque, Thomas Herault, George Bosilca
The University of Tennessee

Knoxville, USA

Jack Dongarra
The University of Tennessee, Knoxville, USA

Oak Ridge National Laboratory, Oak Ridge, USA
University of Manchester, Manchester, UK

ABSTRACT
Successfully exploiting distributed collections of heterogeneous
many-cores architectures with complex memory hierarchy through
a portable programming model is a challenge for application de-
velopers. The literature is not short of proposals addressing this
problem, including many evolutionary solutions that seek to extend
the capabilities of current message passing paradigms with intra-
node features (MPI+X). A different, more revolutionary, solution
explores data-flow task-based runtime systems as a substitute to
both local and distributed data dependencies management. The solu-
tion explored in this paper, PaRSEC, is based on such a programming
paradigm, supported by a highly efficient task-based runtime. This
paper compares two programming paradigms present in PaRSEC,
Parameterized Task Graph (PTG) and Dynamic Task Discovery
(DTD) in terms of capabilities, overhead and potential benefits.

CCS CONCEPTS
• Theory of computation→ Distributed computing models;

KEYWORDS
PaRSEC, task-based runtime, data-flow, dynamic task-graph

ACM Reference Format:
Reazul Hoque, Thomas Herault, George Bosilca and Jack Dongarra. 2017.
Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime. In
ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3148226.3148233

1 INTRODUCTION
The future of high performance computing is shifting towards
increasingly hybrid machines with many fat nodes with deep mem-
ory hierarchies and augmented with different types of accelerators
(GPUs, APUs etc.). After hitting the physical frequency barrier the
need to transition to an increase in parallelism in order to improve
performance becomes unquestionable. This trend demands finer
granularity of parallelism, but as long as we don’t have the tools to
automatically extract it from sequentially described source code,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ScalA17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5125-6/17/11. . . $15.00
https://doi.org/10.1145/3148226.3148233

the burden to expose the intrinsic algorithmic parallelism remains
on software developers. In a traditional programming environment,
software developers are required in addition of exposing parallelism
from the algorithms, to manage the resources and also decompose
and express their computations in a way that is portable among
shared and distributed memory machines with widely varying con-
figurations. To address the challenges of efficiently utilizing this
type of heterogeneous resources we need programming paradigms
that provide the ability to express parallelism in flexible and pro-
ductive manners. MPI and OpenMP are two of the most popular
programmingmodels for parallel applications. They both encourage
a practice of parallel programming for hero-programmers, where
the developers perform multiple jobs: express parallelism, manage
the computational resources and communications, and program-
matically provide the mapping between these two. These burdens
become heavier with the increase in core and node count, in het-
erogeneity of computational resources and application size.

At the opposite of the spectrum, task based runtime systems
have become popular in tackling such challenges and making it
easier to write parallel HPC applications. Runtimes relieve the users
from managing low-level resources and gives them the opportunity
to focus on writing parallel applications by describing the potential
parallelism in a way that is comprehensible by the runtime. Any
task-based runtime expects the users to express their computations
and the data on which the computations will be performed, in
a way where computations become entities (aka. tasks) and the
data flowing among them are the dependencies. Runtimes then
create a complete, or in some cases partial, directed acyclic graph
(DAG) of tasks based on these dependencies to figure out a correct
execution. Thus, the major challenge of using a runtime is not only
on the capabilities of the runtime, but also on the expressivity of the
language or API the runtime provides for expressing the task-graph.

In this paper we propose a dynamic feature of one such runtime:
Parallel Runtime Scheduling and Execution Controller (PaRSEC) and
compare two different methods of expressing parallel computation
in PaRSEC. PaRSEC has been previously proposed as a runtime for
heterogeneous architecture where users would use a parameterized
expression of task dependencies with PaRSEC implicitly inferring
the communication between nodes and the accelerators. This pro-
gramming model is called Parameterized Task Graph (PTG) [12]. In
this paradigm, users provide a concise description of all data flow,
the tasks that are the source of such data and also those that are
the destination. This creates a compressed algebraic representation
of the task graph, which is then transformed into C code using a
pre-compiler. Users need to know all the data-flow of all the types
of task in this model, but data-dependent algorithms are possible.

https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/3148226.3148233

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

We propose to augment the capabilities of the PaRSEC runtime
with another task-based programming paradigm, Dynamic Task
Discovery (DTD), to provide an alternative way to express task
dependency in PaRSEC that achieves a similar purpose, hopefully
with comparable performance. Using this new paradigm users can
write sequential constructs (ifs, loops, etc.) to insert task in PaRSEC
instead of expressing them in a parameterized manner. Each task
is expressed to the runtime with the data it will use and the mode
of usage, based on which dependencies are created. This mode is
somewhat similar to the task directive in OpenMP, in the sense
that dependencies will be automatically computed by the runtime,
out of data pointers used by the tasks. However, unlike OpenMP,
exposing the data as independent entities instead of mere hash
keys opens the opportunity to derive distributed version of the
algorithms in a simple way. The data movement among the nodes
in a distributed system become completely implicit in this paradigm.
A similar programming paradigm has been previously proposed by
other runtimes such as QUARK[20] and StarPU[4]. In this paper:

• We propose an alternative way to express dependency in PaRSEC,
that blends into the runtime and interoperates with all the other
PaRSEC programming paradigms;

• We describe the API for inserting task that allow online dis-
tributed building of the dependency DAG, and highlight how
dependencies between tasks are built and maintained;

• We discuss the optimizations required to minimize the overhead
of building dynamic task-graph dynamically during runtime;

• We model the overhead of dynamically building a task-graph
compared to the PTG’s compressed representation using a math-
ematical model and validate the model using experimental data;

• We present the performance of dense linear algebra algorithms
in shared and distributed memory systems. We compare the
results with several other runtimes (where similar capabilities
are available).

The organization of the rest of the paper is as follows: Section 2
gives an overview of the state-of-the-art of task-based runtimes.
Section 3 describes the proposed programming model, the required
optimizations and a look at the theoretical overhead. Section 4
explains the various experiments performed and their results on
shared and distributed memory. Finally, Section 5 summarizes the
programming model and its performance with some discussion
about future work.

2 RELATEDWORK
In this context we refer to task-based runtimes that are designed
specifically to handle fine granularities tasks below the millisecond.
Workflow systems where the usual granularities are in the order of
tens of seconds, share some similitudes with task-based runtime but
are outside the scope of this paper. There are multiple task-based
runtime systems that allow developers to express their application
in a way that takes away the burden of mapping computational
tasks to the underlying hardware. Some of the recent task-based
runtimes such as Legion [5], StarPU [4], QUARK [20], HPX [16],
OCR [15], OmpSs[10], SuperGlue[18], OpenMP [2] and PaRSEC [8]
abstract the available resources to simplify the process of writing
massive parallel scientific application.

Legion describes logical regions of data and uses those regions to
express the data flow and dependencies between tasks. It uses a low
level runtime, Realm[19], to schedule and execute tasks and uses
GASNet as the underlying communication layer. It supports het-
erogeneous architecture and works in both shared and distributed
memory systems.

QUARK and StarPU each lets users submit tasks using their API
and dynamically builds the task-graph. QUARK does not support
heterogeneous architecture and works only in shared memory sys-
tems whereas StarPU has support for heterogeneous systems, and
a nascent support for distributed memory. Both runtimes manage
threading internally and has their own scheduler.

Open Community Runtime (OCR) currently supports homoge-
neous architecture in distributed systems and uses Intel Threading
Building Blocks to manage threading. It is still in very early devel-
opment stage.

OmpSs uses Nanos++ runtime to manage tasks and follows a
master-slave model. It allows nesting of tasks in individual node to
relieve the master, however the master-slave model may suffer from
scalability issues as the scale of the underlying execution platform
increases or the scale of the application.

SuperGlue employs data versioning to represent dependencies.
This means that a task depends on data rather than on another task
and as of now it supports shared memory systems.

OpenMP introduced depend clause in standard 4.0 which allows
users to express the computation in task form which indicates the
popularity and potential of task based runtime systems. OpenMP is
widely used and supports homogeneous shared memory systems,
but extensions in the heterogeneous environments exists and are
currently investigated by the OpenMP standardization body.

The common point between all these runtimes is the fact that
they all use some codified description of dependencies to build
the task graph during execution, and then distribute the work on
the available resources. Their capability of using heterogeneous
computing resources varies, as well as what is the definition of a task
(in the sense of what types of operations are allowed to be executed).
The proposed extension to PaRSEC, DTD, while looking similar
to many of them, differs in many subtle ways, providing more
opportunities for efficient scheduling over heterogeneous resources,
and overlapping between communications and computations.

3 PaRSEC AND DYNAMIC TASK DISCOVERY
This section describes PaRSEC runtime and introduces a new fea-
ture - Dynamic Task Discovery. We discuss the advantages and
disadvantages of the existing and proposed programming para-
digm and explain the optimizations required to reach comparable
performance with the new interface.

3.1 PaRSEC
PaRSEC [8] is a task-based runtime for distributed heterogeneous
architectures, capable of tracking (and when necessary moving)
data between different memory (in and between nodes) and sched-
uling tasks on heterogeneous resources. It employs several Domain
Specific Languages (DSL) to provide flexible domain specific pro-
gramming models to application developers. These DSLs create

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime ScalA17, November 12–17, 2017, Denver, CO, USA

a data-flow model to create dependencies between tasks and ex-
ploits the available parallelism present in application. PaRSEC is
rich with many features aimed at helping developers express their
application to the runtime correctly and efficiently. Certainly the
most exposed DSL, PTG, allow users to use a parameterized task
graph (PTG) [13] known as Job Data Flow (JDF) which handles the
dependencies between tasks. To enhance the productivity of the
application developers, PaRSEC implicitly infers all the communica-
tion from the expression of the tasks, supporting one-to-many and
many-to-many types of communications. The runtime has been
designed to excel in distributed systems and has been extensively
tested for performance yielding excellent results [13] in comparison
to widely used library, ScaLAPACK [6], or currently state-of-the-art
computational chemistry applications [14, 17].

Multiple components constitute PaRSEC runtime: programming
interfaces (DSL), schedulers, communication engines and data inter-
faces. The runtime uses a modular component architecture, allow-
ing different modules to be selected, providing different capabilities
to different instances of the runtime (such as scheduling policies,
or support for heterogeneity). A clear API for these modules allows
interested developers or users to implement their own, application
specific, policies. The different DSL share the same runtime, data
representation, communication engine, scheduler, allowing them
to seamlessly inter-operate in the context of the same application.

Traditionally, application developers have a propensity to write
sequential code. PaRSEC, with the help of a pre-compiler, transforms
some form of sequential code to PTG, with the limitation that the
sequential code must be affine [9]. In the remaining of this paper,
we propose a different PaRSEC programming model, Dynamic Task
Discovery, that removes the need of a pre-compiler, and therefore
abolish the loop-affine limitation.

3.2 Dynamic Task Discovery in PaRSEC
Dynamic Task Discovery (DTD) is a new PaRSEC DSL (or in this
particular instance low-level task interface) proposed in this work.
This interface allows users to write sequential-looking code, in-
cluding conditionals, for loops, code blocks, to insert task using
PaRSECs API. There are three main concepts to express a task graph
in PaRSEC using DTD: task, dependency and data. A task is any
kind of computation that will not block, data are pieces of memory
on which the computations will be performed and dependencies
are the ordering relationship between tasks. To insert a task in
PaRSEC, users indicate the data and the mode of operation that will
be performed on the data by a task (read, write or read/write). De-
pendencies between tasks are created based on the operation-type
on the data, a task performing a write before a task performing a
read on the same data will create a read-after-write (RAW) depen-
dency between the write-task and read-task, such that the read-task
will only execute after the write-task is completed. The sequential
expression guarantees the correct ordering of tasks. In distributed
memory systems all the participating processes need to have a con-
sistent view of the DAG for DTD to maintain the correct sequential
order of tasks and this require the whole DAG to be discovered by
all the processes.

Applications operating in distributed memory have data dis-
tributed among participant processes. PaRSEC has its own data

description interface that allows users to express how the data
should be distributed (block-cyclic, 2d-block-cyclic, completely ir-
regular etc). PaRSEC then abstracts the distribution information in
a consistent global structure called data-collection. Each piece of
data is represented by a data_t structure that can hold references
of multiple data-copy(s) in circulation and each data_t in turn will
belong to a certain data-collection. PaRSEC manages the data_t and
data-copy internally. Both the DSL in PaRSEC shares the same data
interface.

To illustrate PaRSEC’s API to insert taskwe provide in Listing 1 an
example of tiled Cholesky factorization, composed of three nested
levels of affine loops, and contains four operations (tasks), namely:
POTRF, TRSM, HERK and GEMM.

1 f o r (k = 0 ; k < t o t a l ; k++) {
2 parsec_insert_task (POTRF ,
3 t i l e _ o f (A , k , k) , INOUT | AFFINITY) ;
4 f o r (m = k +1 ; m < t o t a l ; m++)
5 parsec_insert_task (TRSM ,
6 t i l e _ o f (A , k , k) , INPUT ,
7 t i l e _ o f (A , m, k) , INOUT | AFFINITY) ;
8 f o r (m = k +1 ; m < t o t a l ; m++) {
9 parsec_insert_task (HERK ,
10 t i l e _ o f (A , m, k) , INPUT ,
11 t i l e _ o f (A , m, m) , INOUT | AFFINITY) ;
12
13 f o r (n = m+1 ; n < t o t a l ; n++)
14 parsec_insert_task (GEMM,
15 t i l e _ o f (A , n , k) , INPUT ,
16 t i l e _ o f (A , m, k) , INPUT ,
17 t i l e _ o f (A , n , m) , INOUT | AFFINITY) ;
18 }
19 }

Listing 1: Cholesky Factorization

Each operation takes a number of data as input and performs a
specific mathematical operations on the input data. Line 2 of list-
ing 1 shows the API to insert task in PaRSEC. Each data, the tasks
take as input, has an ’operation-type’ flag associated with it. The
operation-type flags currently supported are INPUT - specifying
the data is read-only, INOUT - the data will be read and written on
and OUTPUT - the task will write on the data. The AFFINITY flag
indicates the placement of the task in a distributed environment, on
the rank where the data corresponding to the AFFINITY flag resides,
e.g. line 3 of listing 1 shows that POTRF tasks will be placed in the
rank where data A(k, k) resides. Task placement in a distributed
environment depends on the initial data distribution. The DTD
interface builds a DAG of all the tasks inserted in the runtime de-
pending on the data and the way each task consumes and produces
them. All the communications required to carry out a deterministic
and coherent execution of any application are implicitly inferred,
depending on the affinity of the tasks that update and consume a
data. In a more general context, assuming Task 1 updates Data A
in rank 0 and has a successor Task B in rank 1, the necessary data
transfer from rank 0 to rank 1 is automatically inferred from the
dependency between the tasks and is completed asynchronously
by PaRSEC. This eliminates the cumbersome and error-prone re-
quirement of expressing explicit communication, and makes the
algorithm itself independent of the data distribution, with each
task instance affinity dependent. For the sake of understanding the
difference with the original PaRSEC programming model listing 2

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

10000 20000 30000 40000 50000 60000 70000

Size(N)

500

1000

1500

2000

2500

3000

3500

G
fl

op
s

0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y

u
se

d
in

ea
ch

n
o

d
e

(M
eg

ab
yt

es
)

Cholesky Factorization on 8 nodes Haswell, 20 cores each, Tile Size = 180

Window=4000

Window=2

Window=8000

Window=2000

Window=100000000

Figure 1: Performance and Memory-footprint
per node for different window size

POTRF

TRSM

HERK

GEMM

2

0

1

3 4 5

6

7

8

9

Node 1

2
0

1

4 5

6

7
8

9

Node 0

0
1

3 4

6

7

Stub DAG
entries for
remote tasks

Figure 2: Sample Trimmed DAG

10000 20000 30000 40000 50000 60000 70000

Size(N)

0

2000

4000

6000

8000

10000

M
em

or
y

u
se

d
in

ea
ch

n
o

d
e

(M
eg

ab
yt

es
)

Cholesky Factorization on 8 nodes Haswell, 20 cores each, Tile Size = 180

No Trimming

With Trimming

Figure 3: Memory-footprint in each node
with and without Trimming

shows a sample code for one of the task class, POTRF, using the
PTG interface of the same tiled Cholesky factorization used above
to illustrate the proposed interface.

1 POTRF(k)
2 k = 0 . . t o t a l / / Execu t i on space
3 : A(k , k) / / Task a f f i n i t y
4 RW T <− (k == 0) ? A(k , k) : T HERK(k−1 , k)
5 −> T TRSM(k+1 . . t o t a l , k)
6 −> A(k , k)
7 BODY { POTRF (. . .) ; } END

Listing 2: JDF of Cholesky Factorization

Line 2 of listing 2 defines the range of the parameter k, which in
turn defines how many tasks belonging to task class POTRF will
be there. Line 3, defines the task placement in a distributed envi-
ronment, where each POTRF (k) task will be placed where data A(k,
k) resides (equivalent to the AFFINITY flag described previously).
Line 4-6 specifies the parameterized data dependency of this task
class. Each POTRF task will consume and produce one data T. RW
on line 4 specifies that the data will be read and written by each
task of this task class. Arrow pointing to the left indicates input
dependency for that data and arrow pointing right indicates output
dependency. Line 4-6, in words would read POTRF (k) will consume
data T in RW mode, where T will either come from memory(A(k,
k)) or from task HERK(k-1, k) depending on parameter k and the
data produced will be consumed by a bunch of tasks belonging to
the same task class TRSM ranging from (k+1 .. total, k) and also
that POTRF (k) will be the final writer of data A(k, k) (line 6).

3.2.1 Challenges and Optimization. Dynamic Task Discovery
has the advantage of being able to dynamically discover tasks,
but poses challenges that need to be tackled in order to obtain
scalability and performance. Some of the features like, untying task
insertion from a specific thread, independent task insertion from
multiple threads, DAG trimming in distributed environment are
novel to DTD. We list some of those challenges, including the ones
mentioned earlier, and discuss how we address them.

Unrolling the DAG. The whole DAG of tasks needs to be un-
rolled in memory in order to progress and schedule them in DTD.
Saving the task graph in memory is defined as unrolling. Looking
ahead in the task-graph gives the runtime opportunity to improve
the scheduling decisions and the occupancy of the computational

units, and in extreme cases might result in unrolling the whole DAG.
The other paradigm, PTG, does not incur this overhead. PTG does
not need to unroll a DAG as the whole DAG has been compressed by
the parameterized expression given by the user. In case of DTD, the
memory requirement for the DAG is O(|V | + |E |) where |V | is the
number of tasks discovered, and |E | the number of dependencies.
In PTG, the memory requirement is O(|TC | + |DC |), where |TC | is
the number of types of task, and |DC | the number of data each type
of task refers. Building a DAG is an operation that is at least O(N)

where N is the size of the representation. This theoretically puts
PTG ahead in terms of performance and less memory overhead. The
memory requirement of unrolling the whole DAG can limit the size
of the problem we want to solve using DTD.We solve this challenge
by implementing a throttling mechanism for task insertion in the
system. It works like a sliding window of DAG that user can control
with environment variables read by PaRSEC. This bounds the mem-
ory usage of any problem to the size of the window. DTD reuses the
task structure of completed tasks to keep the memory footprint at
a minimum. Figure 1 shows the performance of Cholesky factoriza-
tion with different window sizes and the memory footprint of the
application at those window sizes. We can see, with a bounded slid-
ing window we achieve the same performance with substantially
less memory overhead. The window size is a performance tuning
parameter and it dictates how many tasks the task-inserting thread
will insert before joining the other threads in doing useful work. So,
a window of 2k means the responsible thread will insert 2k tasks
(local tasks in case of distributed memory) before it stops to join
the others. If the window size is too small not enough tasks are
discovered which results in less parallel work and bad performance.
If the window size is too large, more memory is used to store the
DAG and this results in large memory overhead. Another impor-
tant variable is the threshold parameter, which dictates the lower
watermark after which the responsible thread will start inserting
task again. For the experiment we show in Figure 1, the threshold is
1 for window size 100 million and half the corresponding window
size for the rest. Setting a small threshold will result in starvation
as the runtime will be delayed in inserting tasks. We see in Figure 1
that window size of 2 shows dramatic performance loss with less
memory overhead, while a window size of 100 million has the same
performance as a more reasonable window size of 4k or 8k with
significantly higher memory overhead. At window size 4k and 8k

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime ScalA17, November 12–17, 2017, Denver, CO, USA

we see as good a performance as we would if the runtime had a
large look ahead and observe much better performance compared
to performance of small window sizes like 2k or smaller. We also
observe the memory overhead at those window sizes to be almost
similar to storing a very small DAG like we would at window size 2.
At window size 100 million we are storing the whole DAG for each
process in memory and we see for large size (70k) that occupies
almost a gigabyte per process more than storing window (4k, 8k)
of DAG.

Untying task insertion from specific thread. User can select
to insert task using a specific thread, where the thread blocks after
a certain number of task is inserted to maintain a sliding window.
This results in having only one specific thread inserting task and
creates dependency on that single thread for task insertion (poor
performance in this case) and reduces parallelism. Alternatively,
the user can insert a task that will generate other tasks and untie
the tasks insertion from a specific thread. In the latter case PaRSEC
provides mechanism for a task to de-schedule itself without com-
pletion. Tasks can return a special ’schedule-me-later’ flag to the
runtime signaling that the task is not complete and needs to be
rescheduled later. The untied scheme eliminates performance degra-
dation in the case of the responsible thread being de-scheduled by
the operating system, and permits a sliding window of tasks, as
described in the previous section. It also enables users to generate
independent tasks simultaneously and provides a mechanism to
insert task recursively in DTD.

DAG Trimming. In distributed environment DTD improves its
memory footprint by trimming the DAG.We keep track of all the lo-
cal tasks and all the remote tasks that are either a direct successor or
a predecessor of a local task and trim the rest of the DAG. Trimming
the DAG is not as simple as storing a task if it is local and ignoring it
if it is not, as we have to keep related remote tasks. To achieve this,
we need to keep track of all the data, local or remote, that has been
discovered by the runtime so far to identify the remote tasks that
are related to local ones and then decide on keeping or ignoring
them. Figure 2 shows a sample trimmed DAG in each node in a
distributed run. We can see the advantage of trimming the DAG
of remote not-related tasks in Figure 2. We are successfully able to
restrict the memory overhead of large distributed problems using
this technique. Figure 3 shows the memory usage of distributed
Cholesky factorization on 8 nodes in double precision with and
without trimming. Factorization of a large matrix involves a lot
more tasks compared to smaller one and we see by trimming the
DAG and reusing the task structures we require almost five times
less memory in the case of size 70000.

Communication. Communication in DTD is accomplished us-
ing the communication engine present in PaRSEC. In DTD paradigm
each individual process in a distributed environment will discover
the entire task-graph independently and at its own speed. This
results in situations where processes are out of sync, and process
Pi is trying to send a message about a task T (k) to process Pj , and
Pj did not yet discover task T (k). The task is then known, but not
yet locally discovered, and in order to minimize the local impact on
memory usage we delay the communication between process Pi
and process Pj until process Pj discovers T (k), and knows how the

data should be fetched. This situation is unique in DTD and adds
more overhead in the communication side compared to PTG.

Moreover, as we discover that due to the tasks dependencies,
the same data version would need to be transfered multiple time
between 2 processes, we optimize the number of communication
necessary by marking the data accordingly with the local knowl-
edge, and avoiding to send it more than once. This avoids redundant
communications. We have also carefully engineered the communi-
cation engine, to maximize the memory reuse by recycling buffers
allocated for remote data, reducing the number of calls to costly
memory allocation/deallocation and pinning/unpinning functions.
A local copy of a remote data becomes reusable once all the local
uses of the data version are completed and the local process has
also discovered the next writer.

3.3 Overhead of DTD compared to PTG
In this section we present a mathematical model to represent the
overhead present in Dynamic Task Discovery compared to Parame-
terized Task Graph. We start by defining the notations to represent
the different performance tuning parameters of any task based
runtime. Let’s define N as the total number of tasks, CT as the
cost/duration of each task, P as total number of process and n as
the number of actual cores in each process. Let us also define CD
as the cost/duration of discovering each task during execution and
CR as the cost/duration of building the DAG/relationship. Given
these definitions we can very simply express the overall execution
time of a PTG run as :

TPTG =
N ×CT
P × n

(1)

and DTD’s overall time as:

TDTD =
N ×CT
P × n

+ N ×CD +
N ×CR

P
(2)

Here, we consider both PTG and DTD to have the same schedul-
ing overhead as they share the scheduler and the communication
engine, and do not include that in the total time. For PTG we show
the total useful computation time as the total time. DTD’s total time
include the computation time plus the time to discover and build
the task graph. Having the advantage of the compressed represen-
tation of the task-graph, PTG does not incur this cost. The total
overhead of DTD paradigm is the time needed to discover N tasks
in all P processes and the linking of tasks that are dependent. Since,
all the processes will have to discover all the tasks to maintain the
same coherent view of any DAG, the cost is N×CD×P

P = N × CD .
We assume a perfectly balanced task-graph where each process is
concurrently building N

P part of the DAG and hence the total DAG
building cost is N×CR

P .
To validate the overhead of DTD, we performed Cholesky factor-

ization in distributed setting of 8 nodes. By tuning the tile size, we
can vary the cost of each task, CT , and the total number of tasks
in the system, N , two principal overhead tuning parameters. In
Figure 4, we see the performance of both the paradigm drops as we
move to finer granularity resulting in smaller tasks. Important thing
to notice is the drop of DTD is significantly higher than PTG. Alter-
ing the matrix size varies one of the tuning parameters, N , while
the other two: P andCT are constant. By looking at Equation 2, we

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

50k/59.3 70k/162.810k/0.5 30k/12.8 40k/30.4 60k/102.520k/3.8 80k/244.1

Size(N)/No. of Tasks(millions), Tile size: 128

1500

2000

2500

3000

3500

4000

50k/3.8 70k/10.410k/0.030 30k/0.8 40k/2.0 60k/6.520k/0.2 80k/15.6
Size(N)/No. of Tasks(millions), Tile size: 320

Cholesky(double) on Haswell, 8 nodes, 20 cores

PaRSEC-DTD, Tile size: 320

PaRSEC-DTD, 128, Execution Only

PaRSEC-DTD, Tile size: 128

PaRSEC-PTG, Tile size: 128

PaRSEC-PTG, Tile size: 320

G
fl

op
s

Figure 4: Overhead test in PaRSEC

can identify the cases where the overhead of DTD paradigm will
be visible compared to PTG.

Let us start with the parameter N . For varying matrix sizes, the
performance of DTD and PTG are comparable in the case of tile size
320. Here, as we grow the matrix size, only N increases. We do not
see any performance drop in either case, as when N alone grows it
only increases the shared scheduling overhead and the ratio of cost
parameters in DTD remains constant in this case as P is fixed. As
we move from 320 to a lower tile size we see performance drop in
both PTG and DTD. We change two parameters as we lower the
tile size, the CT and N , we decrease the cost of each task and we
increase the number of tasks. In the previous example we see that
varying only N does not effect the performance when the other
parameters are constant, so we can attribute the performance drop
in this case to the decrease in CT . In Equation 2 as we decrease CT
the ratio CT

CD+CR follows. This affects only DTD as this overhead is
not present in PTG. To validate this relationship we repeated the
same experiment for DTD, but this time we build the whole DAG
before and excluded this building time. We see that the performance
improves drastically and is only 4% lower than PTG.

From Equation 2 we can identify the cases where DTD will not
scale and perform well. If the ratio CT

CD+CR is small the overhead
of discovering and building DAG will be significant. For large dis-
tributed execution involving numerous processes and billions of
task the middle part of Equation 2 (N ×CD) will be a bottleneck.
All processes needs to at least discover all the tasks in the DAG
for correctness and for large P the computation time as well as the
partial DAG building time (last part of Equation 2) will be lower, but
as the middle part is not a function of P , it will not be affected at all.
Given, N remains constant and we keep adding P up to the point
where there is enough parallel work for all the processes, DTD will
stop performing because of the bottleneck of discovering all the
tasks. Given, N and P both increases, the discovery part will grow
much faster(depending on P) than the computation time, and will
eventually not perform. The one possible solution to this problem
is pruning the task-graph, where user takes more responsibility
and does not submit all the tasks in all processes, which in ideal
case will make N ×CD go down to N×CD

P .

Table 1: Summary of Softwares used
Software Version Software Version
Compiler GCC 5.1 BLAS MKL
StarPU 1.2.0 Chameleon 0.9.1
Quark 0.9.0 PaRSEC 2.0 rc

Open MPI 2.1

4 EXPERIMENTS AND PERFORMANCE
In this section we describe the different experiments we have per-
formed to assess the performance of DTD and the environment
and parameters of each experiment. We present the performance
of each experiment and discuss the outcome.

4.1 Experiment Details
Dense Linear Algebra Routines. We test tiled Cholesky and

QR factorization (double precision) on both shared and distributed
memory system and compare with other runtimes. QR factorization
uses multiple data where as Cholesky uses one and both factor-
izations create DAGs with multiple task types. These tests should
allow us to assess the performance of both the interfaces in PaRSEC
and the other runtimes. It is important to note that the tile size in
these tiled algorithms determine the total number of tasks that will
be generated and that in turn determines the stress on the runtime.
With all these experiments the target is not to show the percentage
of machine peak we are reaching but rather how the runtimes are
performing compared to each other given the same stress. PTG [13]
has already shown to scale better than the alternatives, so achieving
comparable results to PTG with obvious more runtime-overhead
should be an indication of good performance.

We have used Chameleon to test all the runtime systems other
than PTG in sharedmemory. Chameleon [3] provides the PLASMA [11]
library with an option to choose the underlying runtime. Currently
supported runtimes are QUARK, StarPU and PaRSEC. For distributed
systemwe have used DPLASMA [7] for PaRSEC and ScaLAPACK [6].
Runtimes and libraries compared in the dense linear algebra rou-
tines for shared memory are QUARK [20] and StarPU [4] and for
distributed memory, ScaLAPACK [6]. For PaRSEC we have used the
local flat queue (LFQ) scheduler and for StarPU we have used local
work stealing (LWS) scheduler. GCC 5.1 was used to compile all the
libraries and OpenMPI 2.1 was used as the communication library.

For shared memory tests we have used Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30GHz machine with 20 physical cores. We also
report result of Cholesky on Intel(R) Xeon Phi(TM) CPU 7250 @
1.40GHz with 68 physical cores.

For distributed memory system we have used TACC [1] cluster
- Stampede. Each node is equipped with 2 8-core Xeon E5 proces-
sors and 32GB of memory and connected with Infiniband FDR
interconnect.

4.2 Performance Evaluation
Shared Memory. We present result of Cholesky factorization

on two architectures, Intel Haswell and Intel KNL. Figure 5 shows
the performance on Haswell, where the peak performance of the
GEMM kernel is 645 GFlops. The top plot shows the performance
of the runtime systems for a tile size of 320x320. At this size there is
a clear convergence in terms of performance between all runtimes,

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime ScalA17, November 12–17, 2017, Denver, CO, USA

5000 10000 15000 20000 25000 30000
Size(N)

100

200

300

400

500

600
Overall performance at Tile size: 320, Haswell, 20 Cores

PaRSEC-DTD

StarPU

PaRSEC-PTG

PLASMA-QUARK

64 192 320 448 576
Tile size

0

150

300

450

0

150

300

450

QUARK

PaRSEC-PTG

PaRSEC-DTD

StarPU

G
fl

op
s

S
iz

e
1

4
k

S
iz

e
2

0
k

P
er

fo
rm

an
ce

in
va

ry
in

g
T

ile
S

iz
e

Figure 5: Performance of Cholesky factorization on
Haswell (shared memory)

5000 10000 15000 20000 25000 30000 35000 40000
Size(N)

200

400

600

800

1000

1200

Overall performance at Tile size: 320, KNL, 68 Cores

PaRSEC-DTD

StarPU

PaRSEC-PTG

PLASMA-QUARK

64 192 320 448 576
Tile size

0

300

600

900

1200

0

300

600

900

1200

QUARK

PaRSEC-PTG

PaRSEC-DTD

StarPU

G
fl

op
s

S
iz

e
1

5
k

S
iz

e
2

0
k

P
er

fo
rm

an
ce

in
va

ry
in

g
T

ile
S

iz
e

Figure 6: Performance of Cholesky factorization on
KNL (shared memory)

the computational intensity of the target kernel (matrix-matrix
multiplication) tolerate a lot of overheads in the runtimes. In the
bottom figure, we fix the size of the matrices (14k and 20k) and
investigate the impact of the tile size on the performance. For each
chosen matrix size we varied the tile size from 64 to 576 increment-
ing by 128 at each step. The results is that without modifying the
total amount of computations needed to solve the problem, we are
decreasing the granularity of each task and therefore increase the
number of tasks (for Cholesky there is a cube relationship), and as
a result we increase the task-management stress on the different
runtimes. We see that all runtime based on PaRSEC, PTG and DTD,
perform better for small tasks, certainly due to a more careful im-
plementation of the base runtime. In addition, PTG is favored by
the fact that it does not build a task-graph at runtime unlike the
others and as a result has a lower task management overhead.

Figure 6 shows the performance of Cholesky on KNL, where the
core count is 3 times higher and the frequency of each processor is
almost half of Haswell. The peak performance of GEMM kernel on
this machine is 2 TFlops. In the top plot we see that PTG and DTD
both perform similar at tile size 320 where StarPU does slightly
lower and QUARK seems to suffer a little. If instead of increasing
the problem size, we fix it and do a tile tuning experiment to assess
the behavior of the different runtimes under stress, a different pic-
ture emerges. Clearly, larger tile sizes (and directly tasks execution
duration) lead to similar results for all runtimes. However, when the
tile size decrease, we see a similar result to the Haswell experiment,
both PaRSEC DSL, PTG and DTD, outperform all the other runtimes.
For information at tile size of 64, PaRSEC DTD is 3x faster than the
other runtimes, where PTG is about 6x faster than DTD, due to it’s
efficient task handling, a smaller number of known tasks, and a
more streamlined scheduling.

Distributed Memory. We used a QR factorization on 128 nodes,
2048 cores, on Stampede, to perform a problem scaling test (the total
number of computing resource remains constant while the problem
size increases). Out of the 4 runtimes only 2 provide a distributedQR,
but we have added ScaLAPACK, which represent the current state-
of-art algorithm on this setup. Figure 7 show that for matrix size

of up to 120kx120k both PaRSEC DSL, PTG and DTD, outperform
ScaLAPACK by a significant factor (up to 3x for small matrices).
Once the problem size reaches saturation (280kx280k), ScaLAPACK
catches up with PaRSEC, and both asymptotically converge toward
the machine peak. These results show that, at least up this number
of processes, the QR performance of PTG and DTD are equivalent,
highlighting a similar scalability for both PaRSEC-DSL.

To further assess the scalability of DTD, we performed a weak
scaling test on Cholesky and QR varying the number of cores from
16 to 2304 cores. Here, the problem size is determined by the number
of process taking part in the execution while the workload per
process/node is kept constant. The workload per node for both
factorizations is kept constant at a matrix size of 20kx20k and the
final total size in both case was 240kx240k . The data was distributed
in a block-cyclic way across a PxQ processors grid. From 1 to 4
processes we see a drop in performance as communications will
introduce latencies. However, as P increases its impact on the ratio
of computation/communication becomes negligible, which is why
the performance stabilizes. The QR factorization is less impacted by
the process grid, and we observe good scalability for both PTG and
DTD. For Cholesky factorization DTD is 5% slower than PTG at 144
nodes. PTG is able to extract and realize collective communication
patterns, where DTD lack such capability due to the way the task
graph is discovered by different nodes (each process might have
discovered only a portion of the entire task graph).

5 CONCLUSION
In this paper, we presented a new task insertion extension for
PaRSEC, Dynamic TaskDiscovery, supporting shared and distributed
memory environments. We highlighted the differences with exist-
ing task insertion paradigms, described and implemented several
automatic runtime-level optimizations, and analyzed the new para-
digm’s performance using a set of widely-used dense linear algebra
algorithms. The result shows good scalability and comparable result
to PTG in most cases and, where comparable benchmarks exist,
consistently better performance compared to other runtime. We
also discussed the benefits and drawbacks of DTD programming

ScalA17, November 12–17, 2017, Denver, CO, USA R. Hoque et al.

200000 240000 28000040000 16000012000080000 200000 240000 28000040000 16000012000080000 200000 240000 28000040000 16000012000080000

Size(N)

10000

15000

20000

25000

G
fl

op
s

QR Factorization on Stampede, 2048 cores, Tile Size = 320, Block Size = 64

PaRSEC-PTG

PaRSEC-DTD

ScaLAPACK

Figure 7: QR factorization on 128 nodes (2048 cores)

1441 4 16 64 1441 4 16 64 1441 4 16 64 1441 4 16 64 1441 4 16 64 1441 4 16 64

No. of Nodes

175

200

225

250

275

300

325

350

G
fl

op
s/

N
o

d
e

Weak Scaling - DPOTRF and DGEQRF, (20k x 20k)/Node, Tile Size 320, up to 2304 Cores

Practical Peak DGEMM

DGEQRF PaRSEC-PTG

DGEQRF PaRSEC-DTD

DPOTRF PaRSEC-PTG

DPOTRF PaRSEC-DTD

Figure 8:Weak Scaling of Cholesky and QR, up to 2304 Cores

model compared to PTG. This feature opens up the opportunity
for application developers to build applications using multiple pro-
gramming API (currently DTD and PTG) over the same runtime,
merging in the same application multiple programming models
with complementary capabilities. It also highlights the opportu-
nity to develop specialized DSL over the PaRSEC runtime, without
making compromises regarding the performance of the resulting
applications.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

REFERENCES
[1] [n. d.]. TEXAS ADVANCED COMPUTING CENTER. ([n. d.]). https://www.tacc.

utexas.edu/
[2] 2013. OpenMP 4.0 Complete Specifications. (2013). http://www.openmp.org/

wp-content/uploads/OpenMP4.0.0.pdf
[3] Emmanuel Agullo, CÃľdric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond

Namyst, Samuel Thibault, and Stanimire Tomov. 2012. A Hybridization Method-
ology for High-Performance Linear Algebra Software for GPUs. GPU Computing
Gems Jade Edition (2012), 473âĂŞ484. https://doi.org/10.1016/b978-0-12-385963-1.
00034-4

[4] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Florent
Pruvost, Marc Sergent, and Samuel Thibault. 2014. Harnessing Supercomputers
with a Sequential Task-based Runtime System. 13, 9 (2014), 1–14.

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independence with logical regions. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC.
https://doi.org/10.1109/SC.2012.71

[6] L Blackford, J Choi, A Cleary, E D’Azevedo, J Demmel, I Dhillon, J Dongarra,
S Hammarling, G Henry, A Petitet, K Stanley, D Walker, and R Whaley. 1997.
ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics. https:
//doi.org/10.1137/1.9780898719642

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam
Haidar, Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem
Ltaief, and et al. 2011. Flexible Development of Dense Linear Algebra Algorithms
on Massively Parallel Architectures with DPLASMA. 2011 IEEE International
Symposium on Parallel and Distributed ProcessingWorkshops and Phd Forum (2011).
https://doi.org/10.1109/ipdps.2011.299

[8] George Bosilca, Aurélien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack Dongarra. 2013. PaRSEC: A programming paradigm exploiting
heterogeneity for enhancing scalability. Computing in Science and Engineering
99 (2013), 1. https://doi.org/10.1109/MCSE.2013.98

[9] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, and Jack
Dongarra. 2012. From Serial Loops to Parallel Execution on Distributed Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 246–257. https://doi.org/10.1007/
978-3-642-32820-6_25

[10] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M. Badia, Xavier Martorell,
Eduard Ayguadé, and Jesús Labarta. 2012. Productive programming of GPU
clusters with OmpSs. Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, IPDPS 2012 (2012), 557–568. https://doi.org/10.
1109/IPDPS.2012.58

[11] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2009. A class
of parallel tiled linear algebra algorithms for multicore architectures. Parallel
Comput. 35, 1 (2009), 38 – 53. https://doi.org/10.1016/j.parco.2008.10.002

[12] M. Cosnard, E. Jeannot, and T. Yang. 1999. SLC: Symbolic scheduling for exe-
cuting parameterized task graphs on multiprocessors. In Proceedings of the 1999
International Conference on Parallel Processing. 413–421. https://doi.org/10.1109/
ICPP.1999.797429

[13] Anthony Danalis, George Bosilca, Aurelien Bouteiller, Thomas Herault, and Jack
Dongarra. 2014. PTG: An abstraction for unhindered parallelism. Proceedings of
WOLFHPC 2014: 4th International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing - Held in Conjunction
with SC 2014: The International Conference for High Performance Computing,
Networking, Stor (2014), 21–30. https://doi.org/10.1109/WOLFHPC.2014.8

[14] A. Danalis, H. Jagode, G. Bosilca, and J. Dongarra. 2015. PaRSEC in Practice:
Optimizing a Legacy Chemistry Application through Distributed Task-Based
Execution. In 2015 IEEE International Conference on Cluster Computing. 304–313.
https://doi.org/10.1109/CLUSTER.2015.50

[15] Jiri Dokulil, Martin Sandrieser, and Siegfried Benkner. 2016. Implementing
the Open Community Runtime for Shared-Memory and Distributed-Memory
Systems. Proceedings - 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2016 (2016), 364–368. https:
//doi.org/10.1109/PDP.2016.81

[16] T. Heller, H. Kaiser, and K. Iglberger. 2013. Application of the ParalleX execution
model to stencil-based problems. Computer Science - Research and Development
28, 2-3 (2013), 253–261. https://doi.org/10.1007/s00450-012-0217-1

[17] H. Jagode, A. Danalis, G. Bosilca, and J. Dongarra. 2016. Accelerating NWChem
Coupled Cluster Through Dataflow-Based Execution. Springer International Pub-
lishing, Cham, 366–376. https://doi.org/10.1007/978-3-319-32149-3_35

[18] Martin Tillenius. 2015. SuperGlue: A Shared Memory Framework Using Data
Versioning for Dependency-Aware Task-Based Parallelization. SIAM Journal on
Scientific Computing 37, 6 (2015), C617–C642. https://doi.org/10.1137/140989716

[19] Sean Treichler, Michael Bauer, and Alex Aiken. 2014. Realm: An Event-based
Low-level Runtime for Distributed Memory Architectures. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (PACT ’14).
ACM, New York, NY, USA, 263–276. https://doi.org/10.1145/2628071.2628084

[20] Asim Yarkhan. 2012. Dynamic Task Execution on Shared and DistributedMemory
Architectures. December (2012). http://trace.tennessee.edu/utk

https://www.tacc.utexas.edu/
https://www.tacc.utexas.edu/
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://doi.org/10.1016/b978-0-12-385963-1.00034-4
https://doi.org/10.1016/b978-0-12-385963-1.00034-4
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1109/ipdps.2011.299
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1007/978-3-642-32820-6_25
https://doi.org/10.1007/978-3-642-32820-6_25
https://doi.org/10.1109/IPDPS.2012.58
https://doi.org/10.1109/IPDPS.2012.58
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.1109/ICPP.1999.797429
https://doi.org/10.1109/ICPP.1999.797429
https://doi.org/10.1109/WOLFHPC.2014.8
https://doi.org/10.1109/CLUSTER.2015.50
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1109/PDP.2016.81
https://doi.org/10.1007/s00450-012-0217-1
https://doi.org/10.1007/978-3-319-32149-3_35
https://doi.org/10.1137/140989716
https://doi.org/10.1145/2628071.2628084
http://trace.tennessee.edu/utk

	Abstract
	1 Introduction
	2 Related Work
	3 PaRSEC and Dynamic Task Discovery
	3.1 PaRSEC
	3.2 Dynamic Task Discovery in PaRSEC
	3.3 Overhead of DTD compared to PTG

	4 Experiments and Performance
	4.1 Experiment Details
	4.2 Performance Evaluation

	5 Conclusion
	Acknowledgments
	References

