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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

• Matrix					contains	only	few	nonzero	elements.
• Storing	all	entries	results	in	large	overhead	(memory	&	computation).

A
Input																	Output	A, x, y

y = A · x
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore
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value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

• Matrix					contains	only	few	nonzero	elements.
• Storing	all	entries	results	in	large	overhead	(memory	&	computation).
• Idea:	Store	only	nonzero	elements	[nz]	explicitly.	

A
Input																	Output	A, x, y

y = A · x
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Memory	footprint	of	COO	format:
nz(val)	+	2*nz(int)	

A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore
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colidx = [ 0 1 0 1 3 4 5 2 0 3 4 5 ] Column-index

value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

Row-indexrowidx = [ 0 0 1 1 1 1 1 2 3 3 4 5 ]

COO	format	:

• Matrix					contains	only	few	nonzero	elements.
• Storing	all	entries	results	in	large	overhead	(memory	&	computation).
• Idea:	Store	only	nonzero	elements	[nz]	explicitly.	

Need	to	also	store	location	of	nonzero	elements!

A
Input																	Output	A, x, y

y = A · x
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Memory	footprint	of	COO	format:
nz(val)	+	2*nz(int)	

Memory	footprint	of	CSR	format:
nz(val)	+	nz(int)	+	(n+1)	(int)
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

colidx = [ 0 1 0 1 3 4 5 2 0 3 4 5 ] Column-index

value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

rowptr = [ 0 2 7 8 10 11 12 ] Points	to	the	first	element	in	each	row

Number	of	nonzero	elements

CSR	format	:

• Matrix					contains	only	few	nonzero	elements.
• Storing	all	entries	results	in	large	overhead	(memory	&	computation).
• Idea:	Store	only	nonzero	elements	[nz]	explicitly.	

Need	to	also	store	location	of	nonzero	elements!

A
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

colidx = [ 0 1 0 1 3 4 5 2 0 3 4 5 ] Column-index

value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

Row-indexrowidx = [ 0 0 1 1 1 1 1 2 3 3 4 5 ]

How	to	parallelize	this?
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How	to	parallelize	this?
• Parallelize	by	rows:

• Every	“thread”	handles	the	computation	of	one	sum	in	local	memory.
• Significant	workload	imbalance!
• Need	branching	logic,	branch	divergence	on	vector	machines.

input vector x output vector y
access to access to

T1
T2
T3
T4
T5
T6

T1
T2
T3
T4
T5
T6

=*

A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

colidx = [ 0 1 0 1 3 4 5 2 0 3 4 5 ] Column-index

value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

Row-indexrowidx = [ 0 0 1 1 1 1 1 2 3 3 4 5 ]
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

Number	of	nonzero	elements

ELL	format	:

value = [ 5.4 1.1 0.0 0.0 0.0 2.2 8.3 3.7 1.3 3.8 4.2 0.0 0.0 0.0 0.0 5.4 9.2 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 ]

colidx = [ 0 1 � � � 0 1 3 4 5 0 � � � � 0 3 � � � 4 � � � � 5 � � � � ]

Values	and	column-index	padded	for	uniform	“row-length”	

How	to	parallelize	this?
• Parallelize	by	rows:

• Every	“thread”	handles	the	computation	of	one	sum	in	local	memory.
• Balanced	workload.
• Can	result	in	significant	overhead	for	unbalanced	problems.

input vector x output vector y
access to access to

T1
T2
T3
T4
T5
T6

=*

T1
T2
T3
T4
T5
T6
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How	to	parallelize	this?
• Parallelize	by	rows:

• Every	“thread”	handles	the	computation	of	one	sum	in	local	memory.
• Significant	workload	imbalance!
• “Ordered”	access	to	input	vector	x.

input vector x output vector y
access to access to

T1
T2
T3
T4
T5
T6

T1
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T3
T4
T5
T6

=*

A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

colidx = [ 0 1 0 1 3 4 5 2 0 3 4 5 ] Column-index

value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

Row-indexrowidx = [ 0 0 1 1 1 1 1 2 3 3 4 5 ]



How	to	parallelize	this?
• Parallelize	by	elements:

• Balanced	workload.
• Partial	sums	need	synchronization:	Write	conflicts!
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colidx = [ 0 1 0 1 3 4 5 2 0 3 4 5 ] Column-index

value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

Row-indexrowidx = [ 0 0 1 1 1 1 1 2 3 3 4 5 ]
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input vector x output vector y
access to access to
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

colidx = [ 0 1 0 1 3 4 5 2 0 3 4 5 ] Column-index

value = [ 5.4 1.1 2.2 8.3 3.7 1.3 3.8 4.2 5.4 9.2 1.1 8.1 ] Value

Row-indexrowidx = [ 0 0 1 1 1 1 1 2 3 3 4 5 ]

G.	Flegar et	al.:	Overcoming	Load	Imbalance	for	Irregular	Sparse	Matrices,	IA3,	2017.



12

A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

“Different	kernels	optimal	for	different	problem	classes”

CSR
• small	memory	 footprint
• Needs	some	logic	for	row-parallel	processing	

ELL
• zero-padding	allows	for	efficient	SIMD	execution
• Efficient	for	balanced	matrices

COO
• can	compensate	workload	 imbalance	for	irregular	patterns

…
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

“Different	kernels	optimal	for	different	problem	classes”

For	a	single	problem,	we	can	usually	 find	an	optimal	kernel,	BUT…

CSR
• small	memory	 footprint
• Needs	some	logic	for	row-parallel	processing	

ELL
• zero-padding	allows	for	efficient	SIMD	execution
• Efficient	for	balanced	matrices

COO
• can	compensate	workload	 imbalance	for	irregular	patterns

…
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

• What	if	we	process	many	different	matrices	at	a	time?	(Assume	they	are	all	small…)

… …
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

… …

• Design	a	batched	SpMV kernel.
• Process	a	large	number	of	data-independent	problems	in	parallel.

• What	if	we	process	many	different	matrices	at	a	time?	(Assume	they	are	all	small…)
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… …

• Design	a	batched	SpMV kernel.
• Process	a	large	number	of	data-independent	problems	in	parallel.

• What	if	we	process	many	different	matrices	at	a	time?	(Assume	they	are	all	small…)
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

… …

• Design	a	batched	SpMV kernel.
• Process	a	large	number	of	data-independent	problems	in	parallel.
• Are	the	problems

• Same	Size?
• Same	number	of	nonzerosoverall?
• Same	number	of	nonzeros in	every	row?
• Same	sparsity	pattern?

• What	if	we	process	many	different	matrices	at	a	time?	(Assume	they	are	all	small…)
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

… …

• Design	a	batched	SpMV kernel.
• Process	a	large	number	of	data-independent	problems	in	parallel.
• Are	the	problems

• Same	Size?
• Same	number	of	nonzerosoverall?
• Same	number	of	nonzeros in	every	row?
• Same	sparsity	pattern?

Let’s	be	as	flexible	as	possible!
• Flexible	means	“everything	can	be	different”
• Every	Thread	block	handles	one	system
• Memory	pointers	to	distinct	systems
• Load	input	vector	x into	shared	memory
• Kernel	for	all	matrices	in	CSR,	COO,	ELL	

• What	if	we	process	many	different	matrices	at	a	time?	(Assume	they	are	all	small…)
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A	never	ending	story:	The	sparse	matrix	vector	Product	(SpMV)	on	Manycore

… …

Let’s	be	as	flexible	as	possible!
• Flexible	means	“everything	can	be	different”
• Every	Thread	block	handles	one	system
• Memory	pointers	to	distinct	systems
• Load	input	vector	x into	shared	memory
• Kernel	for	all	matrices	in	CSR,	COO,	ELL	

…
…

Load	respective	vector	x

Load	respective	vector	x

All	matrices	stored	the	same	format.
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s

• What	if	we	process	many	different	matrices	at	a	time?	(Assume	they	are	all	small…)
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Flexible	batched	SpMV

First	experiment:
• Use	different	batched	SpMV kernels	 (COO,	CSR,	ELL	…)
• A	batch	consisting	of	the	same	matrices	(homogeneous	batch)

CAGE_8

CAN838

DWT_922

EX25

EX27

GR_30_30

…
…
…
…
…
…
…

NVIDIA	P100	GPU
56	SMX,	5.3	TF	DP
16	GB	@	768GB/s
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Flexible	batched	SpMV

First	experiment:
• Use	different	batched	SpMV kernels	 (COO,	CSR,	ELL	…)
• A	batch	consisting	of	the	same	matrices	(homogeneous	batch)

CAGE_8

CAN838

DWT_922

EX2

EX27

GR_30_30

…
…
…
…
…
…
…

NVIDIA	P100	GPU
56	SMX,	5.3	TF	DP
16	GB	@	768GB/s

Disclaimer:	This	is	an	artificial	 problem	setting!	
In	a	real-world	scenario,	a	homogeneous	batched	SpMVwould	be	handled	as	SpMM.
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Flexible	batched	SpMV
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Flexible	batched	SpMV
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Flexible	batched	SpMV

Second	experiment:
• Use	different	batched	SpMV kernels	 (COO,	CSR,	ELL	…)
• A	batch	consisting	of	different	matrices	(in-homogeneous	batch)

1. “somewhat	similar”	(similar	size,	nonzero	count)

2. completely	different



25

Flexible	batched	SpMV

Batch	of	random
“similar-sized”	problems

n 2 [900, 1000]

nz 2 [3000, 40000]

Performance Bandwidth
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Flexible	batched	SpMV

Batch	of	random
“similar-sized”	problems

Batch	of	random
”any-sized”	problems.

n 2 [900, 1000]

n 2 [10, 1000]

nz 2 [100, 40000]

nz 2 [3000, 40000]

Performance Bandwidth
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Flexible	batched	SpMVon	GPUs

• Large	number	of	small	SpMV simultaneously

• Matrices	can	be	different	in	size,	nnz,	pattern

• COO	format	most	suitable	for	inhomogeneous	 batches

This	work	is	in	Collaboration	with:


