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Abstract PLASMA is a numerical library intended as a successor to LAPACK for
solving problems in dense linear algebra on multicore processors. PLASMA relies on
the QUARK scheduler for efficient multithreading of algorithms expressed in a serial
fashion. QUARK is a superscalar scheduler and implements automatic parallelization
by tracking data dependencies and resolving data hazards at runtime. Recently, this
type of scheduling has been incorporated in the OpenMP standard, which allows to
transition PLASMA from the proprietary solution offered by QUARK to the standard
solution offered by OpenMP. This article studies the feasibility of such transition.
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1 Introduction

Dataflow scheduling is a very old idea that offers numerous benefits to traditional
multithreading and message-passing, but it never gained wide acceptance until the
dawn of the multicore era. Part of the problem is cultural, as dataflow programming
takes some control away from the programmer by forcing a more declarative, rather
than imperative, style of coding. One needs to let the system decide what work is
executed where and at what time.

The multicore revolution of the late 2000’s brought the idea back and put it in the
mainstream. One of the first task-based multithreading systems that received attention
in the multicore times, was the Cilk programming language, originally developed
at MIT in the 1990s. Cilk offers nested parallelism based on a tree of threads that
is heavily geared towards recursive algorithms. About the same time, the idea of
superscalar scheduling gained traction, based on scheduling tasks by resolving data
hazards in real time, in a similar way that superscalar processors dynamically schedule
instructions on CPUs.

The appeal of the superscalar model is its simplicity. The user presents the compiler
with serial code, where tasks are, in principle, functions. They have to be free of side-
effects (no internal state and no access to global state). In addition, the parameters
have to be marked as passed by-values or as references to memory locations that
will be used as input, output, input-and-output, or a temporary buffer (scratch). This
is very similar to the attributes available in modern Fortran standard. Based on this
information, the task graph is built at runtime and tasks are scheduled in parallel and
assigned to multiple cores by resolving data dependencies and avoiding data hazards
(Sect. 3.2).

2 Related Work

This superscalar technique was pioneered by a software project from the Barcelona
Supercomputer Center, which went through multiple names as its hardware target
was changing: GridSs, CellSs, SMPSs, OMPSs, StarSs, where “Ss” stands for super-
scalar [8,18,30]. A similar development was the StarPU project from INRIA, which
applied the same methodology to systems with GPU accelerators, named for its capa-
bility to schedule work to “C”PUs and “G”PUs, hence the name *PU, transliterated
into StarPU [7]. Yet another scheduler was developed at the Uppsala University, called
SuperGlue [34]. Finally, a system called QUARK was developed at the University of
Tennessee [36], and used for implementing the PLASMA numerical library [2].

The OpenMP community has been swiftly moving forward with standardization of
newscheduling techniques formulticores. First, theOpenMP3.0 standard [29] adopted
the Cilk schedulingmodel, then theOpenMP 4.0 standard [29] adopted the superscalar
scheduling model. Not without significance is the fact that the GNU compiler suite
was also quick to follow with high quality implementations of the new extensions.
The preliminary results, presented in this article, indicate that, at this point, there are
no roadblocks to fully migrate the PLASMA library from QUARK to OpenMP.
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Sadly, the situation is worse in programming distributed memory machines, where
the MPI+X model is currently the predominant solution (meaning MPI+OpenMP /
POSIX threads / CUDA / OpenCL / OpenACC / etc.) While the superscalar model can
be extended to support distributed memory, the paradigm is inherently non-scalable
to very large core numbers, due to the serial bottleneck of unrolling the task graph at
runtime. Numerous project tackled the problem, Charm++ from UIUC [26], Swift
from Argonne [35,37], ParalleX from LSU (now Indiana) [19,25], just to name a few.
The PaRSEC [9] and PULSAR [15] projects were developed at UTK. However, while
dataflow scheduling seems inevitable at exascale, there is currently no paradigm on
the radar that could serve as basis for standardization.

3 Background

3.1 PLASMA

Parallel Linear Algebra Software for Multicore Architectures (PLASMA) [2] was
developed to address the performance deficiency of the LAPACK library [6] on mul-
ticore processors. LAPACK’s shortcomings stem from the fact that its algorithms
are coded in a serial fashion, with parallelism only possible inside the set of Basic
Linear Algebra Subroutines (BLAS) [17], which forces a fork-and-join style of mul-
tithreading. In contrast, algorithms in PLASMA are coded in a way that allows for,
much more powerful, dataflow parallelism [11,28]. Currently, PLASMA supports a
substantial subset of LAPACK’s functionality, including solvers for linear systems of
equations, linear least squares problems, singular value problems, symmetric eigen-
value problems and generalized symmetric eigenvalue problems. It also provides a
full set of Level 3 BLAS routines for matrices stored in tile layout and a highly opti-
mized (cache-efficient and multithreaded) set of routines for layout translation [21].
PLASMAis based on three principles: tile algorithms, tilematrix layout and task-based
scheduling, all of which are geared towards efficient multithreaded execution.

Tile algorithms are the cornerstone of PLASMA [11]. In tile algorithms, matrix
entries are represented by square tiles of relatively small size, such that multiple cores
can operate on different tiles independently. At the same time, a tile can be cached
and fully processed, before being evicted from the cache, which helps to minimize the
number of capacity misses. This is in contrast with LAPACK, where one tall panel
(blockof columns) is eliminated at a time,making it difficult to achieve cache efficiency
and apply multithreading. In the course of the PLASMA project, tile algorithms have
been developed for a wide range of algorithms, including: Cholesky, LU and QR
factorizations [11,14,16], as well as reductions to band forms for solving the singular
value problem or the eigenvalue problem [23,31].

The development of tile algorithms made it natural to lay out the matrix in memory
by tiles, where each tile occupies a contiguous block of memory. PLASMA provides
cache-efficient, multithreaded routines for in-place translation of matrices from the
LAPACK layout to the tile layout [21]. Tile layout prevents the possibility of con-
flict/collision misses, which are due to cache lines being mapped to the same set in a
set-associative cache. It also minimizes the possibility of false sharing of cache lines

123



Int J Parallel Prog

crossing tile boundaries. Most importantly, though, tile layout hugely simplifies the
use of dataflow scheduling by making sure that each piece of data is contiguous and
can be easily manipulated by the runtime system, e.g., copied to eliminate certain
types of dependencies.

Initially, PLASMA routines were implemented using the Single Program Multiple
Data (SPMD) programming style, where each thread executed a statically scheduled
preassigned set of tasks, while coordinating with other threads using progress tables,
with busy-waiting as the main synchronization mechanism. While seemingly very
rudimentary, this approach actually produced very efficient, systolic-like, pipelined
processing patterns, with good data locality and load balance. At the same time, the
codes were hard to develop, error prone and hard to maintain, which motivated a move
towards dynamic scheduling.

3.2 QUARK

The basic principle of QUARK’s operation is automatic parallelization of code that
is structured as a sequence of side effect free tasks (no internal state and no access
to global state) with arguments annotated as input, output or inout. QUARK tracks
data pointers and creates a list of tasks accessing each data pointer. Given the order
in which tasks are inserted and the data annotations, the following data dependencies
can be tracked:

– read after write: Read access has to wait until a preceding write completes. Oth-
erwise an outdated copy would be read.

– write after read:Write access has to wait until a preceding read completes. Other-
wise new value would overwrite the old value, while the old value is still needed.

– write after write: Write access has to wait until a preceding write completes.
Otherwise the new value would be overwritten by the old value.

These dependencies define theDirect Acyclic Graph (DAG) of the algorithm. How-
ever, the DAG is never explicitly created. Instead, DAG traversal is implicitly realized
in the way tasks are queued for execution and data accesses are blocked to preserve
correctness. This process relies on enforcement of two basic rules: (1) Writes cannot
proceed until all previous reads and writes complete. (2) Reads cannot proceed until
all previous writes complete, i.e., multiple reads can occur at the same time.

QUARK provides scheduling capabilities through an API with bindings for the C
language. Figure 1 shows the primary functions of the QUARK API. QUARK is ini-
tialized by calling the QUARK_New function, which spawns the threads that are subse-
quently used asworkers. The desired number of threads can be provided as a parameter
to QUARK_New or specified in the environment variable QUARK_NUM_THREADS.
QUARK is terminated by calling the QUARK_Delete function, which terminates
the worker threads. Between the calls to QUARK_New and QUARK_Delete, the user
can insert tasks for execution, by calling the QUARK_Insert_Task function.

The first three parameters ofQUARK_Insert_Task are: a pointer to the QUARK
object, a pointer to the function that is to be executed, and a bitmask with a set of flags
to provide task specific information. They are followed by a variable length list of
parameters describing the task’s data. Each data object is presented as a triplet: the
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Fig. 1 The primary functions of the QUARK API

size of the data in bytes, a pointer to the data, and a flag indicating the way that the
data is to be used. The sequence is terminated by a zero. The data flags have to include
one of the following, mutually exclusive values:

– INPUT: The data is only read.
– OUTPUT: The data is only written.
– INOUT: The data is both read and written.
– VALUE: The data is passed by value and not used for dependency resolution.
– NODEP: The data is passed by reference, but not used for dependency resolution.
– SCRATCH: The data is temporary scratch space and, if the pointer is NULL, will
be allocated by QUARK.

Optionally, one of the following flags may also be included:

– ACCUMULATOR: The data is subject to a reduction operation and successive
accesses of that type can be safely reordered.

– GATHERV: The data is accessed in a non-conflicting manner andmultiple accesses
of that type can be performed simultaneously.

– LOCALITY: Task placement should attempt to follow this data item, i.e., consec-
utive tasks with this flag should be executed by the same thread.

– QUARK_REGION_X: A specific region of the data is accessed (QUARK_REGION
_0 through QUARK_REGION_7). Accesses to different regions do not cause
conflicts.

At the time of queuing, each task can be augmented with a number of settings,
passed in an object of type Quark_Task_Flags. Through the use of this object,
the user can:

– Set task priority such that tasks with higher priorities are executed before tasks
with lower priorities.

– Lock a task to a thread with a specific number.
– Associate the task with a specific task sequence. In the case of an error, an entire
sequence of tasks can be canceled. At the same time, unrelated tasks, assigned to
other sequences can proceed independently.

– Designate the task as a multithreaded task. At the time of execution, the task
function will be called by multiple threads. QUARK is oblivious to the type of
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Fig. 2 OpenM #depend annotation example

multithreading (synchronization) taking place within the task and schedules it as
one unit of work executed by multiple threads.

Finally, QUARK allows for creating an empty task, without any dependencies,
and then adding dependencies incrementally. This is critical in situations when the
task’s dependencies are a function of the loop counter. For instance, in case of the LU
factorization (Sect. 4.4), in order to build the list of dependencies for the panel, the
code needs to loop over all the tiles of the panel.

3.3 OpenMP

OpenMP (OpenMulti-Processing) is anApplicationProgramming Interface (API) that
supports multi-platform sharedmemorymultiprocessing programming in C, C++, and
Fortran, on most platforms, processor architectures and operating systems, including
Solaris, AIX, HP-UX, Linux, OS X, and Windows. It consists of a set of compiler
directives, library routines, and environment variables that influence run-timebehavior.

ThefirstOpenMPspecification, Fortran version 1.0,was published inOctober 1997.
C/C++ version 1.0 was published in October 1998. Fortran version 2.0 was published
in November 2000, and C/C++ version 2.0 in March 2002. Version 2.5 combined
Fortran and C/C++ interfaces and was published in May 2005. Version 3.0 introduced
the concept of tasks, and was published in May 2008. The critical development, from
the standpoint of this work, was the introduction of task superscalar scheduling in
OpenMP 4.0, published in July 2013.

Equally important is the support for the standard in compilers. The GNU compiler
suite has been on the forefront of adopting the standard. Support for OpenMP 2.5 was
added in GCC 4.2 (May 2007), support for OpenMP 3.0 was added in GCC 4.4 (April
2009), and support for OpenMP 4.0 was added in GCC 4.9 (April 2014).

The #pragma omp task depend clause can be used to inform the compiler
that the following code block is to be executed as a task (Fig. 2), i.e., dynamically
scheduled at runtime, and that it depends on earlier tasks that use the data referenced
by the depend clause.

– The in dependence makes the task a descendant of any previously inserted task
that lists the data items (i.e., A or B) in its out or inout dependency list.

– The inout or out dependence makes the task a descendant of any previously
inserted task that lists the data item (i.e., C) in its in, inout or out dependency
list.

TheOpenMP runtime provides the capability to schedule the tasks at runtime, while
avoiding data hazards by keeping track of dependencies. A task is not scheduled until
its dependencies are fulfilled, and then, when a task completes, it fulfills dependencies
for other tasks.
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This type of scheduling is more complex than the simpler scheduling of OpenMP
3.0 tasking, and the overhead associated with keeping track of progress may not be
negligible. Part of the objective of this article is to evaluate the quality of the GNU
implementation, with respect of the QUARK scheduler currently used for PLASMA.

TheOpenMP4.0 standard ismissing some of the linear algebra extensions that were
implemented by QUARK (e.g. automatic scratch space allocation, data region flag to
mark multi-region non-conflicting access, multithreaded tasks, etc). In implementing
linear algebra algorithms, workarounds need to be restricted to the OpenMP paradigm,
even though some of these solutions may not be as efficient as the original QUARK
extensions. The following examples discuss some of these QUARK extensions in
OpenMP, demonstrating a variety of simplicity and efficiency. The QUARK scratch
data type is emulated in OpenMP by having the tasks themselves allocate data. In
QUARK, data regions speed up data accesses which would cause a WAR constraint
by allowing simultaneous non-conflicting data access to different parts of a data tile
(upper/diagonal/lower regions in linear algebra terms). This is handled in OpenMP
by inserting tasks to create copies of the data which are passed to the tasks that are
only reading the data. The QUARK multi-threaded tasks are emulated in OpenMP by
creating a dummy task that synchronizes the data using read-write data access, then
inserts the actual task multiple times with data marked read-only (enabling multi-
threaded parallel execution), finalizing with a dummy task that synchronizes using
read-write data access. All this has to be carefully managed to avoid dead-locks. And,
in the absence of task priorities, this OpenMP emulation is often substantially slower.
In QUARK, the accumulator flag marks a data reduction, allowing the runtime to
reorder tasks for efficiency; there is currently no equivalent in OpenMP to allow task
reordering.

4 Implementations

4.1 Structure of PLASMA

Following the tradition of LAPACK and ScaLAPACK, PLASMA has a fairly shallow
structure. The top level routines follow LAPACK naming conventions and are prefixed
with PLASMA_, e.g., PLASMA routine for the Cholesky factorization in double pre-
cision is PLASMA_dpotrf, which stands for “d”ouble precision, “po”sitive definite,
“tr”iangular, “f”actorization. This routine takes the input matrix in LAPACK layout
(standard FORTRAN column major layout) and returns the result in the same layout.
It also has the standard synchronous semantics, i.e., when the routine returns, all the
work is done.

Internally, PLASMA operates on matrices in the tile layout only. All top level
routines translate the matrix to the tile layout, do their work, and translate the result
back to the LAPACK layout. The user also has the ability to work directly with the tile
layout. In addition to the standard interface, PLASMA also provides the tile interface.
The tile routine for the Cholesky factorization is PLASMA_dpotrf_Tile.

Finally, the main premise of PLASMA is dynamic scheduling and asynchronous
operation. Therefore, PLASMA also exposes an asynchronous interface. The asyn-
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chronous routine for theCholesky factorization isPLASMA_dpotrf_Tile_Async.
Asynchronous routines return as soon as all the work is queued for execution, but, pos-
sibly, before all the work has been done. The PLASMA_Sequence_Wait function
can be used to wait for completion of asynchronous routines.

Actual parallel routines are called by the tile asynchronous routines. The tile
synchronous routines call the asynchronous routines and wait for completion. The
LAPACK interface routines call the tile synchronous routines, and also translate the
matrix between the LAPACK layout and the tile layout.

The top level routines call the parallel routines where the actual algorithm is
implemented. The parallel routines are prefixed with plasma_p. PLASMA may
contain two versions of each routine, one with static multithreading and one with
superscalar scheduling. The parallel Cholesky routine with static multithreading is
plasma_pdpotrf. The parallel Cholesky routine with superscalar scheduling is
plasma_pdpotrf_quark. Which one is called at runtime depends on the user’s
preference. The static one is called by default. It is possible that a routine has only one
of the implementations, in which case the user’s preference is ignored and the only
available implementation is called. Threads are managed such that switching between
static and dynamic scheduling at runtime is seamless to the user.

The parallel routines are composed of calls to a set of basic building blocks
collected in the core_blas sublibrary. Some core_blas routines are sim-
ple wrappers for LAPACK and BLAS routines. E.g., core_dpotrf calls serial
LAPACKE_dpotrf_work and returns, core_dgemm calls serial cblas_dgemm
and returns. Other core_blas calls are more complex and call a combination of
LAPACK and BLAS routines or loop over a set of LAPACK and BLAS routines.
Some of the more complex core_blas routines are the routines for applying a set
of Householder reflections in the tile QR factorization, e.g., CORE_dtsmqr.

4.2 Cholesky Factorization

The Cholesky decomposition, or Cholesky factorization, is a decomposition of a Her-
mitian, positive-definite matrix into the product of a lower triangular matrix and its
conjugate transpose. When it is applicable, the Cholesky decomposition is roughly
twice as efficient as the LU decomposition for solving systems of linear equations.
Because of its amenability to the tasking model, the Cholesky factorization has been
a target of numerous multicore implementations [11,24,27,28,33].

The Cholesky factorization is one of the most straightforward algorithms in
PLASMA. Figure 3 shows PLASMA’s superscalar implementation of the Cholesky
factorization. This is the right looking algorithm implemented by four loops with three
levels of nesting. First, the dpotrf task factors a diagonal block. Then, a sequence
of dtrsm tasks updates a column of tiles below the diagonal block. Finally, a large
sequence of dsyrk and dgemm tasks updates all the tiles to the right (the trailing
submatrix). The figure was simplified from the original PLASMA code by assuming
that the matrix is evenly divisible by the tile size nb, and removing all the calculations
related to the handling of corner cases.
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Fig. 3 QUARKbasedCholesky implementation in PLASMA.Handling of corner cases removed for clarity

All calls for queuing the tasks basically take identical parameters as their corre-
sponding LAPACK and BLAS calls. In addition, each task takes a QUARK handle
and a reference to task flags. The dpotrf task is also passed a sequence handle and
a request handle. This is for the purpose of error handling. In case of an error, the
work is canceled and the reference to the offending request is returned in the sequence
handle.

Queuing a task requires passing three parameters for every parameter that would
normally be passed to a regular function: size of the argument, pointer to the argument
and the type of access. Therefore, to simplify the bodies of the parallel functions, the
queuing calls are encapsulated in a set of QUARK_CORE_ functions. Figure 4 shows
the function for queuing the dpotrf task.

When queuing the task, a pointer is passed to the function that will actually be
called when the scheduler executes the task. In Fig. 4, the second argument of the
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Fig. 4 QUARK function for queuing the dpotrf task (complete function)

Fig. 5 QUARK function executing the dpotrf task (complete function)

QUARK_Insert_Task call is the CORE_dpotrf_quark function pointer. Fig-
ure 5 shows the body of that function.

The CORE_dpotrf_quark function retrieves the arguments by using the
quark_unpack_args_7macro andpasses them to theLAPACKE_dpotrf_work
function, which is the C interface to the LAPACK dpotrf function. This function
also takes care of error handling through the info parameter.
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Figure 6 shows the OpenMP implementation of the Cholesky factorization. Here,
there is no need for any wrappers since the OpenMP compiler and runtime pro-
vide that functionality. Tasks are queued directly by calls to LAPACKE and CBLAS
routines, preceded by #pragma omp task depend annotations, and the entire
code is enclosed by #pragma omp parallel and #pragma omp master.
The depend clauses provide dependency information (in,out,inout) and sizes for all
parameters for which dependencies have to be tracked.

4.3 SPD Matrix Inversion

Given the Cholesky factorization of a matrix, it is straightforward to compute the
inverse of the matrix. This operation has applications in statistics, where it is used
to form the inverse covariance matrix, also known as the concentration matrix or
precision matrix. The elements of the precision matrix have an interpretation in terms
of partial correlations and partial variances.

In order to explicitly form the inverse, the factorization (A = LLT ) is followed
by computing the inversion of the triangular factor L , which is straightforward, and

multiplication of the inverted triangular factor by its transpose (A−1 = L−1T L−1).
In PLASMA, it can be done by invoking the pdpotrf function followed by the
pdtrtri function and the pdlauum function. This case has been a subject of exten-
sive studies, because dynamic scheduling leads to extremely efficient pipelining of the
three operations [1,10,32].

The QUARK implementations of pdtrtri and pdlauum are similar to the
QUARK implementation of pdpotrf from Fig. 6, and rely on two wrapper func-
tions for each core_blas call (QUARK_CORE_... and CORE_..._quark).
QUARK implementations are omitted here. Instead, Figs. 7 and 8 show their OpenMP
implementations. As in the case of pdpotrf, the OpenMP implementations are
very straightforward, the only differences from serial code being the #pragma
omp task depend annotations and enclosure of the code with #pragma omp
parallel and #pragma omp master.

4.4 LU Decomposition

LU decomposition, or LU factorization, factors a matrix as the product of a lower tri-
angular matrix and an upper triangular matrix and usually also includes a permutation
matrix as well. The LU decomposition can be viewed as the matrix form of Gaussian
elimination. It is usually used to solve square systems of linear equations and is also
a key step when inverting a matrix or computing the determinant of a matrix.

The main difficulty in efficiently implementing the LU factorization is introduced
by partial (row) pivoting, necessary to preserve the algorithm’s stability. Because of the
row pivoting, the panel factorization (factorization of a block of columns) cannot be
tiled, and the panel has to be dealt with as a whole, which handicaps cache efficiency.
In recent years, this problem has been addressed by algorithms that try to achieve good
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Fig. 6 OpenMP based Cholesky implementation in PLASMA. Handling of corner cases removed for
clarity

level of cache residency for this operation [12,16]. Many alternative approaches have
also been developed [14], but this article focuses on the classic formulations.

Figure 9 shows a pseudo-code of the recursive implementation. Even though the
panel factorization is a lower order term—O(N 2)—from the computational complex-
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Fig. 7 OpenMP based implementation of the pdtrtri routine in PLASMA. Handling of corner cases
removed for clarity

ity perspective [5], it still poses a problem in the parallel setting from the theoretical [4]
and practical standpoints [13]. To be more precise, the combined panel factorizations’
complexity for the entire matrix is O(N 2N B), where N is the panel height (and
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Fig. 8 OpenMP based implementation of the pdlauum routine in PLASMA. Handling of corner cases
removed for clarity

matrix dimension) and N B is the panel width. For good performance of BLAS calls,
the panel width is commonly increased. This creates tension if the panel is a sequen-
tial operation because a larger panel width results in larger Amdahl’s fraction [20]. It
can be determined experimentally that this is a major obstacle to proper scalability of
implementation of tile LU factorization with partial pivoting—a result consistent with
related efforts that do not involve tile LU [13].
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Fig. 9 Pseudo-code for the recursive panel factorization

Aside from gaining a high level formulation, free of low level tuning parameters,
this recursive formulation avoids a higher level tuning parameter commonly called
algorithmic blocking. There is already the panel width—a tunable value used to merge
multiple panel columns and process them together. Non-recursive panel factorizations
could potentially establish another level of tuning called inner-blocking [2,3]. This is
avoided in the recursive implementation.

The challenging part of the parallelization is the fact that the recursive formulation
suffers from inherent sequential control flow that is characteristic of the column-
oriented implementation employed by LAPACK and ScaLAPACK. As a first step
then, 1D data partitioning is applied because it has proven successful before [13]. The
data partitioning is used for the recursion-stopping case: effectively a single column
factorization. The recursive formulation of the LU algorithm poses another problem,
namely the use of Level 3 BLAS call for triangular solve—xTRSM() and LAPACK’s
auxiliary routine for swapping xLASWP(). Both of these calls do not readily lend
themselves to the 1D partitioning scheme due to two main reasons: (1) each call to
these functions occurs with a variable matrix size, and (2) 1D partitioning makes the
calls dependent upon each other and thus creating synchronization overhead. The latter
problem is fairly easy to see as the pivoting requires data accesses across the entire
column and memory locations may be considered random and known only at runtime.
Each pivot element swap would then require coordination between the threads that
process the column. The former issue is more subtle in that the overlapping regions of
thematrix create amemory hazard that may be at timesmasked by the synchronization
effects occurring in other portions of the factorization. To deal with both issues at once,
the 1D partitioning across the rows and not across the columns as before. This removes
the need for extra synchronization and allows for parallel execution, albeit a limited
one due to the narrow size of the panel.

The Schur’s complement update is commonly implemented by a call to a Level 3
BLAS kernel xGEMM() and this is also a new function that is not present in the panel
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factorizations from LAPACK and ScaLAPACK. Parallelizing this call is much easier
than all the other new components of the panel factorization. The chosen solution is to
reuse the across-columns 1D partitioning to simplify the management of overlapping
memory references and to again reduce resulting synchronization points.

To summarize the observations made throughout the preceding text, the data parti-
tioning among the threads is of paramount importance. Unlike the PCA method [13],
there are no extra data copies to eliminate memory effects that are detrimental to
performance such as TLB misses, false sharing, etc. Instead, the choice of recur-
sive formulation allows Level 3 BLAS to perform architecture-specific optimizations
behind the scenes. Not surprisingly, this was also the goal of the original recursive
algorithm and its sequential implementation [22]. What is left to do is the introduction
of parallelism that is commonly missing from Level 3 BLASwhen narrow rectangular
matrices are involved.

Instead of low levelmemory optimizations, the focus is on avoiding synchronization
points and allow the computation to proceed asynchronously and independently as long
as possible until it is absolutely necessary to perform communication between threads.
One design decision that stands out in this respect is the fixed partitioning scheme.
Regardless of the current column height (within the panel being factored), the same
amount of rows is assigned to each thread except for the first thread.

5 Results and Discussion

5.1 Hardware / Software

The experiments were run on a machine containing 2 sockets with 10 Intel Haswell
cores on each socket (Xeon E5-2650 v3 2.30 GHz) for a total of 20 cores. The GCC-
5.1.0 compiler suitewas used for compilation andGCC libgompprovided theOpenMP
4.0 implementation. Intel’s MKL math library (2016.0.109) was used for optimized
BLAS operations.

5.2 Cholesky Factorization

Figure 10 shows the execution trace of the OpenMP implementation of the Cholesky
factorization, and Fig. 11 shows performance in Gflop/s for matrices of size up to
20, 000×20, 000 in comparison to theQUARK implementation and themultithreaded
implementation in the Intel MKL library.

In this trace, different colored tiles represent different types of tasks (dtrsm,
dgemm, etc) in the tile Cholesky factorization, with a row of tiles representing the
time based execution of tasks on a computational thread. The execution produces a
very well compacted trace. There are no visible gaps at the beginning, which indicates
no overhead from scheduling. Idle space shows up at the end, when the algorithms
runs out of parallel work and the critical path starts dominating the execution, which
is a natural and expected behavior for this type of workload.

The quality of scheduling is also reflected in the performance. The OpenMP imple-
mentation outperforms the QUARK implementation, and also outperforms the MKL
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Fig. 10 Execution trace of the OpenMP implementation of the Cholesky factorization. Tiles are of size
224× 224 elements. The matrix is of size 16× 16 tiles. The system consists of 20 Intel Haswell cores
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Fig. 11 Performance of OpenMP, QUARK andMKL implementations of the Cholesky factorization using
a system with 20 Intel Haswell cores. The peak double precision performance is 736 GFlops

implementation. This is not only an indicator of low scheduling overheads, but also
of striking a good balance between data locality and dynamic work balancing.

5.3 SPD Matrix Inversion

Figure 12 shows the execution trace of the SPD matrix inversion. The upper part
shows the execution in the case when each stage is enclosed in its own #pragma
omp parallel section (reflecting a synchronization between stages), while the
lower part shows the execution in the case when all the stages are enclosed in a single
#pragma omp parallel section.
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Fig. 12 Execution trace of the OpenMP implementation of the SPD matrix inversion. Tiles are of size
224 × 224 elements. The matrix is of size 13 × 13 tiles. The system consists of 20 Intel Haswell cores.
The upper part shows execution with artificial synchronizations between the steps (dpotrf, dtrtri,
dlauum). The bottom part shows natural execution without synchronizations
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Fig. 13 Performance of OpenMP, QUARK and MKL implementations of the Cholesky inversion using a
system with 20 Intel Haswell cores. The peak double precision performance is 736 GFlops

The latter case where the stages are merged shows the huge benefits of applying
dataflow scheduling across the multiple dependent stages of multi-part algorithm.
While in the former case each stage incurs its own load imbalance, in the latter case
the load imbalance is amortized across multiple stages. This is due to the fact that the
critical path of the combined task graphs is significantly shorter than the sum of the
individual critical paths.

This benefitmanifest itself in the big performance advantage overMKL,which does
not apply dataflow scheduling across stages (Fig. 13). This task merging behavior is
common to all superscalar schedulers, and QUARK exploits the same effect almost
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Fig. 14 Execution traces of LU factorization.TopOpenMPwith single-threaded panel factorization.Middle
OpenMP with multithreaded panel factorization. Bottom QUARK with multithreaded panel factorization.
Tiles are of size 288 × 288 elements. The matrix is of size 15 × 15 tiles. The system consists of 20 Intel
Haswell cores
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Fig. 15 Performance of OpenMP, QUARK and MKL implementations of the LU factorization using a
system with 20 Intel Haswell cores. The peak double precision performance is 736 GFlops

equally well. Nevertheless, the GNUOpenMP implementation manages to deliver the
highest speed, again.

5.4 LU Factorization

The LU factorization presents a little tougher case. The key to fast execution is fast
panel factorization. Figure 14 shows three traces for the LU factorization. The top one
is an OpenMP implementation with serial panel factorization, the middle one is an
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OpenMP implementation with multithreaded panel factorization, and the bottom one
is a QUARK implementation with multithreaded panel factorization.

Thefirst one suffers from the inability to hide the slow, serial panel factorization. The
panel tasks are scheduled early on, but simply takemore time than the other operations.
The second case addresses the problem by multithreading the panel factorization, but
suffers from a new problem of not scheduling all the multithreaded panel tasks to
execute early. The scheduler is not aware of the need for prioritizing the panels and
there is no way to inform it. QUARK addresses this problem by supporting task
priorities, and the third case shows how prioritizing the panel tasks overlaps them
with trailing matrix updates, only to produce inferior performance due to poor data
locality and a deteriorating schedule towards the end.

With the same tile size, OpenMP consistently produces higher performance than
QUARK. Extensive tuning of the tile size allows QUARK to achieve similar per-
formance to OpenMP, while both of them achieve lower performance than MKL
(Fig. 15). Fortunately, task priorities are already included in the OpenMP 4.5 standard
(Nov 2015), and will almost certainly allow for closing the performance gap to MKL,
which is currently roughly 15 %.

6 Conclusions

At this point, there are no major roadblocks for porting the PLASMA library to the
OpenMP standard. Most routines, such as linear solvers and least squares solvers, can
be translated in a straightforward fashion, while some routines, such as singular value
solvers and eigenvalue solvers, may require some effort. Even though OpenMP does
not provide an exact match for all of QUARK’s functionality, at this point the benefits
of the transition outweigh the costs of making the accommodations. This transition
will create a very clean solution, based purely on OpenMP standards and standard
dense linear algebra components, such as BLAS and LAPACK. This will dramatically
improve the library from the software engineering standpoint, by providing excellent
portability and substantially improving maintainability. The results of this work also
indicate that the move will also improve performance.

7 Future Directions

The Intel Xeon Phi co-processor has been overlooked as a target for PLASMA. It
has been labeled as an accelerator, programmed in the offload mode, and targeted by
MAGMA. However, starting with the Knights Landing, and continuing to the Knights
Hill and onwards, the Phiwill be a self-hostedmulticore processor, withOpenMP as its
preferred programming paradigm. Under such circumstances, PLASMA is extremely
well positioned to harvest the Phi’s power through innovations in algorithms, schedul-
ing and data layout.

Interesting opportunities for the PLASMA project may also be created by the pene-
tration of the servermarket bymulticore ARMprocessors, which have already reached
the level of 48-cores per chip, 96-cores per board, as well as proliferation of tile mul-
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tiprocessor architectures, such as Tilera’s TILE64, Adapteva’s Parallella, and similar
designs.
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