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SUMMARY

Simulations of many multi-component PDE-based applications, such as petroleum reservoirs or reacting
flows, are dominated by the solution, on each time step and within each Newton step, of large sparse linear
systems. The standard solver is a preconditioned Krylov method. Along with application of the precondi-
tioner, memory-bound Sparse Matrix-Vector Multiplication (SpMV) is the most time-consuming operation
in such solvers. Multi-species models produce Jacobians with a dense block structure, where the block size
can be as large as a few dozen. Failing to exploit this dense block structure vastly underutilizes hardware
capable of delivering high performance on dense BLAS operations. This paper presents a GPU-accelerated
SpMV kernel for block-sparse matrices. Dense matrix-vector multiplications within the sparse-block struc-
ture leverage optimization techniques from the KBLAS library, a high performance library for dense BLAS
kernels. The design ideas of KBLAS can be applied to block-sparse matrices. Furthermore, a technique is
proposed to balance the workload among thread blocks when there are large variations in the lengths of
nonzero rows. Multi-GPU performance is highlighted. The proposed SpMV kernel outperforms existing
state-of-the-art implementations using matrices with real structures from different applications. Copyright
© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many simulations motivating the development of high performance linear algebra libraries on
emerging architectures have a matrix structure of sparsely distributed blocks that are densely pop-
ulated, inherited from a multi-component PDE structure. For instance, reservoir modeling, the
simulation of flow through porous media, is a nonlinear, multi-species, multi-phase problem, which
tracks many components per discretization cell. Efficient extraction of the hydrocarbons remaining
after the conventional phase, which is capable of recovering typically about 35% of the reservoir, is
one of greatest environmental challenges facing mankind. Production is often accompanied by con-
taminated water (or other fluids) injected to displace the hydrocarbons. Furthermore, the enhanced
recovery phase, ideally up to 70% of the total, has a poorer return on energy investment. Optimiz-
ing reservoir development while reducing uncertainty requires simulating many forward scenarios.
The bottleneck in these and many other applications is often the solution of large, sparse spatially
structured or unstructured linear systems within each Newton step on each implicit step of the
time integration. Because the cost of solving these systems grows superlinearly in the number of
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discrete cells due to elliptic ill-conditioning and polynomially in the block size at each cell, while
other computational costs are essentially linear, the cost of the linear solves grows to an arbitrar-
ily high percentage of the overall computational effort as the grid is refined and more components
are resolved; 80% or more is not unusual in practice in the reservoir modeling industry. The Sparse
Matrix-Vector multiplication (SpMV) is the innermost computational kernel in typical reservoir
models; therefore, overall computational efficiency directly reflects the performance of this kernel.
For contemporary petroleum reservoir simulations, the block size typically ranges from three to a
few dozen, and still larger blocks are relevant within adaptively model-refined regions of the domain.
Because of the low native arithmetic intensity of the SpMV kernel, it is essential to fully exploit the
matrix structure to hide data motion with useful computations.

We leverage optimization techniques from the KBLAS library [1] in the context of the SpMV
kernel for block-sparse matrices. We show how design ideas such as register blocking and double
buffering can be used not only for relatively large dense matrices, but also at the smaller scale rep-
resented by sparse matrices arising from PDE applications with multiple components. While these
optimizations are important for high performance dense kernel executions, they are even more crit-
ical when dealing with sparse linear algebra operations, due to irregular memory accesses and low
compute-intensity kernels. The new SpMV kernel outperforms existing state-of-the-art implemen-
tations on GPUs. A multi-GPU SpMV interface allows simulation of larger problem sizes, while
increasing the level of concurrency. The paper extends the effort previously introduced in [2] in the
following respects:

(1) Increased level of detail for the kernel design, with illustrative figures for every proposed
SpMV kernel.

(2) Instead of matrices with synthetic structure, the performance reported in this paper is based
on matrices with structures arising from real applications. We use a number of general sparse
matrices from the University of Florida Sparse Matrix Collection [3], and promote every
nonzero entry to a square block of a given size. This gives insight on the performance of the
proposed kernel on more realistic structures.

(3) We propose a modification to the SpMV kernel that achieves better performance than the
kernel proposed in [2], when there is large variation in the number of nonzero in the matrix
rows. Based on the histogram of the nonzero row lengths of these matrices, we show that
the performance of the original kernel [2] may be unacceptable and propose a modifica-
tion that enables a much better performance. The multi-GPU scaling of the new version
is also highlighted.

The rest of the paper is organized as follows. Section 2 provides a literature review for SpMV
using both CPUs and accelerators. Section 3 discusses multi-component PDE-based applications,
which are conventionally ordered into block-sparse matrices. Section 4 presents a uniform design
strategy inherited from KBLAS [1], and shows how it can be applied to an SpMV kernel. In
Section 5, we describe the design of the proposed SpMV kernels. Section 6 presents performance
results. We conclude in Section 7.

2. RELATED WORK

Because of its importance and wide use, the literature is rich in contributions for GPU-accelerated
SpMV. Bell and Garland [4] proposed SpMV implementations for several formats, including Com-
pressed Sparse Row (CSR), ELLPACK [5], and the Coordinate (COO) format. They also proposed
HYB, which is a hybrid format that combines both the ELLPACK format and the COO format,
in an effort to reduce the padding overhead of ELLPACK. Most of these implementations (proba-
bly more optimized) are available in the cuSPARSE library [6], as are the baselines against which
most researchers compare their techniques. The four formats (CSR, ELLPACK, COO, and HYB)
are shown in Figure 1.

Perhaps the ELLPACK format [5] is the most convenient format for GPUs, because a sparse
matrixA is stored as a dense matrix (in column major format) with dimensionsm�nnzmax , wherem
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Figure 1. Representation of a block-sparse matrix by different formats.

is the number of rows of A and nnzmax is the maximum number of non-zeros found in the rows ofA
(Figure 1(b)). Another dense matrix is required to store the integer column indices of the non-zeros.
The regularity of ELLPACK format is obtained at the cost of introducing zero padding overhead,
when there is a variation in the row lengths of A. The overhead is reflected in extra memory reads
plus extra computation.

Many researchers have proposed remedies to the ELLPACK overhead. Monakov et al. [7]
proposed a sliced version of the ELLPACK format, where each slice is stored in a separate ELL-
PACK format. The slice size can be fixed or variable, and the zero padding can be even reduced by
reordering the rows according to their lengths. Vázquez et al. [8] proposed the ELLPACK-R for-
mat that adds auxiliary information to avoid the extra computation. They introduced an extra integer
array that keeps the non-zero length of each row in order to skip computing zeros. Choi et al. [9]
proposed a parameterized blocked version of the ELLPACK format that proves to be competitive
for block-sparse matrices, although it is restricted to certain block sizes, and targets mainly Fermi
generation GPUs. They also proposed an autotuning framework that uses a performance model
and matrix-dependent parameters to identify the best storage parameters for the proposed format.
Kreutzer et al. [10] proposed the packed Jagged Diagonal Storage (pJDS), which is very similar
to the sliced ELLPACK format proposed by Monakov et al. [7]. They show up to 1.3� speedup
against the ELLPACK-R SpMV with up to 70% saving in memory requirements. They also gener-
alized the sliced ELLPACK format to the SELL-C-� format [11], in an effort to provide a unified
sparse storage format across different architectures. The authors show that this format is suitable for
multicore processors as well as GPUs, including the Intel Xeon Phi. The proposed implementation
does not show a significant loss of performance when compared against hardware-specific-formats.
The SELL-C-� has been improved and optimized for GPUs by Anzt et al. [12], by introduc-
ing some zero padding to satisfy the memory constraints of the GPU architecture, hence called
the SELL-P format.

Ashari et al. [13] proposed an adaptive algorithm for SpMV using the CSR format (called ACSR),
where additional metadata are used with the standard CSR format that help achieve better GPU
utilization. ACSR groups rows with similar lengths into bins so that a bin-specific kernel is launched.
Kernels that process different bins are launched concurrently using dynamic parallelism, a feature
available on NVIDIA GPUs starting compute capability 3.5 [14]. Although the performance of
ACSR is better than other similar implementations by a small margin, its preprocessing step is much
cheaper than other formats. ACSR is mainly proposed for adaptive graph applications, where the
structure of the graph adjacency matrix changes frequently, thus making the preprocessing step a
serious bottleneck. A similar approach was proposed by Greathouse and Daga [15] for AMD GPUs.

We are mainly interested in the Blocked Sparse Row (BSR) format, which is the blocked version
of the CSR format. It was first introduced for CPU architectures by Im et al. [16, 17]. The BSR
format targets sparse matrices that are naturally blocked, as shown in Figure 2. It uses one integer
per block to store its column index, as well as an integer to denote the start of every block row.
In cases specific to structured grid problems, Godwin et al. [18] proposed a format called Column
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Figure 2. The BSR format.

Diagonal Storage (CDS), which assigns only one integer for a group of blocks located at the same
diagonal/off-diagonal. The work by Choi et al. [9] suggested GPU specific optimizations for the
BSR format that were not enough to outperform the cuSPARSE HYB kernel [4]. They concluded
that the BSR will be dominated by a reduction step that is affected by the number of blocks per
block row. This paper revisits the BSR formats and proposes some optimization techniques for a
wide range of block sizes.

While most researchers propose formats that inherit properties of the CSR or ELLPACK formats
(or both), there are some efforts that investigated enhancing the SpMV operation using the COO
format. For example Dang and Schmidt [19] investigated a sliced version of the COO format (called
SCOO), where they reported more than 50% speedup over the respective COO implementation
by cuSPARSE. Yan et al. [20] proposed a Blocked Compressed Common Coordinate (BCCOO)
format, which is a variant of the COO format that uses bit flags instead of full integers to store row
information. It also processes the matrix into vertical slices to improve the cache hit rate for the
vector access.

Among all the aforementioned sparse formats, the cuSPARSE HYB format along with the SELL-
P format usually achieve the best performance on the GPU across several matrices, as long as the
matrix structure does not change during the simulation.

3. PDE-BASED APPLICATIONS WITH MULTI-COMPONENTS

Numerous applications result in sparse matrices of dense blocks, where the first nontrivial block size
is two (e.g., streamfunction and vorticity in fluid dynamics) and the block size ranges up to hundreds
in realistic contemporary applications that drive high performance computing (e.g., detailed kinetics
models of hydrocarbon-air combustion). In the applications expressed as PDEs that motivate this
work, the number of components is related to the number of fields defined over the domain. The
blocks are square because each field (e.g., density, momentum, internal energy, concentration of a
given species in a given phase in a given charge state) has its own conservation equation.

If the conservation equations were decoupled, all blocks would be diagonal and the data structures
designed for this paper would not be relevant for high performance. However, most systems of
conservation laws (Equation (1)) couple the fields defined at each point through possibly several
types of physical interdependencies.

@.��k/

@t
Cr � .�v�k/ � r � .�kr�k/ D Fk.�1; �2; � � � ; �K/; k D 1; 2; � � � ; K: (1)

In the typical convection-diffusion-reaction system shown, the convection terms couple the
momenta to all convected components. The momenta are products of density (�) and velocities (v),
and the density is a function of the mass fractions and thermodynamic state of all of the species
(�1; �2; � � � ; �K) in the system. The gradient operator acting on the density couples degrees of free-
dom across the grid points in the stencil, so the typical off-diagonal component of the off-diagonal
blocks is nonzero. The diffusion terms couple the degrees of freedom to each other because the dif-
fusion coefficients (�k) are also complex functions of the mass fractions and thermodynamic state
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at each point. Again, the gradient operator couples the degrees of freedom across the grid points in
the stencil, so that the off-diagonal blocks are best regarded as fully dense. The structure of the reac-
tion terms for the creation and consumption of each component (Fk) may lead to some exploitable
sparsity within the diagonal blocks because not all components react with all others. However, the
diagonal blocks are often factored as part of a block preconditioner to pre-scale the system and the
blocks are best regarded as full in this case.

Equation (1) is a simplified schema of systems described by first principles in, for example, [21]
for porous media applications or [22] for reacting flows. In turn, such systems may be regarded as
embedded in multiphysics applications for which computational modelers increasingly prefer fully
implicit solvers [23] for reasons of numerical efficiency, stability, and/or robustness. Past generations
of modelers lacking powerful high performance solvers have tended to employ operator splitting
to solve such systems in a series of steps that leave behind first-order temporal splitting errors
and potentially destabilizing mechanisms. Splitting also weakens temporal locality and arithmetic
intensity. Contemporary high performance solver software allows such users to more fully exploit
the inexpensive flops of a GPU and reduce expensive memory thrashing.

Often, a natural synergism is exploited in the overall Newton-Krylov solution framework, wherein
the matrix-vector products with the Jacobian are approximated by directional differences of the
conservation law residual function of which Newton attempts to find the root [24], the so-called
Jacobian-free Newton Krylov method. However, when the residual functions are highly complex,
especially when they require table lookups for constitutive properties, and when the Jacobian will be
sufficiently reused, it is preferable to remove such function calls from the inner Krylov loop by com-
puting with explicitly stored Jacobian elements, whether the elements are themselves precomputed
analytically or by residual differences. This is the context of the current contribution.

4. A UNIFORM DESIGN STRATEGY

This section introduces the main design principles of KBLAS [1] as abstract ideas, which are then
projected into the detailed design of the SpMV kernels discussed in Section 5.

4.1. Hierarchical register blocking

Matrix Block and Block Size.‡ An input matrix is always subdivided into square or rectangular
blocks. In this work, a matrix block is always square, with a size of bs�bs. Both terms matrix block
and block are equivalent and refer to the basic unit used in matrix subdivision. KBLAS uses bs as
a tuning parameter. However, in block-sparse matrices, the input matrix comes naturally blocked,
and the value of bs is predetermined by the BSR format. It might be too small to provide suffi-
cient parallelism, or too large to be processed as a single block. This is why we introduce another
terminology for the amount of work that can be processed at one time using the same group of
CUDA threads.

Working Set. A working set denotes the minimum amount of work assigned to a thread block
(TB) at a time. It is generally different from a matrix block. A working set has the dimensions
nb � w, where nb is the height. Both nb and w are controllable through tuning parameters. There
are three cases that relate the size of the working set to the size of the matrix block.

(1) Case 1: A working set is equivalent to one matrix block. Because we focus on square blocks,
this leads to nb D w D bs.

(2) Case 2: A working set spans multiple adjacent matrix blocks in the same block row. This also
leads to nb D bs, but w is multiples of bs.

(3) Case 3: A working set is part of a matrix block. This case is used when the matrix block is so
large that it can be subdivided into multiple working sets.

‡In this paper, we use block size and block dimension interchangeably.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



A. ABDELFATTAH ET AL.

KBLAS uses cases 1 and 3 for dense matrices, where bs is not bound to the number of unknowns.
In fact, bs and nb are used in a recursive blocking technique for dense matrices, and are often set
to relatively large values to saturate TBs with computation. In block sparse matrices, however, the
value of bs is predetermined by the number of components, and only nb and w can be controlled
according to any of the cases mentioned earlier.

In most cases, a TB processes one working set at a time. However, in some cases, a TB is allowed
to process multiple working sets concurrently. A working set should fit into a fast memory level,
such as shared memory or registers. Since we focus on the SpMV kernel, which lacks data reuse
of the matrix, there is no need to incorporate shared memory in storing working sets. Our strat-
egy proposes that a working set should be stored in the register file of a streaming multiprocessor
(SM). This ensures the fastest data access when computation is carried out. In addition, excluding
shared memory from storing working sets reduces chances of synchronization points, and eliminates
unnecessary shared load/store instructions.

Thread Arrays and Thread Groups. A working set is processed by a thread array. In general,
a TB consists of one or more thread arrays. A thread array is always structured as a 2D thread
configuration whose height must be equal to the height of the working set. A thread array, therefore,
has nb �Ntg threads, where Ntg is called the number of thread groups. Ntg is a tuning parameter.

As shown in Figure 3, a working set is subdivided into vertical slices. Each vertical slice is
assigned to one thread group. Because each thread group has nb threads, it is recommended to
choose a value of nb that is equivalent to one or more warps. However, the strategy supports any
value for nb. Therefore, we use the term thread group instead of the term warp, because the former
is more generic.

If the TB is designed to process one working set at a time, then the TB consist of one thread array.
If it is designed to process multiple working sets concurrently, then the TB consists of multiple
independent thread arrays, each of which consists of nb�Ntg threads. The number of thread arrays
inside a TB is denoted as Nta. It is exposed as a tuning parameter in some cases when bs is very
small. Otherwise, the value of Nta is 1.

Elements per Thread (ept). Going a level further, within a vertical slice of the working set, each
thread is responsible of a single row of the vertical slice. Eventually, each thread stores, in registers,
a small segment of a single row of the matrix. The number of registers required per thread to store
such segment is called elements per thread (ept). In fact, ept is a crucial design parameter that affects
the kernel performance. Figure 3 shows the hierarchical register blocking of a 16�16 working set
among 4 thread groups. The value of ept is 4. Apparently, the width of the working set w is equal to
Ntg � ept .

Figure 3. Hierarchical register blocking.
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4.2. Double buffering

The proposed design strategy incorporates a double buffering scheme in order to hide the compu-
tation with data prefetching. This means that each TB requires a storage large enough to fit at least
two working sets. Considering Figure 3, each thread needs two independent buffers, each one is
ept in length (eptD 4 in the figure). It is necessary to ensure that the register pressure does not result
into register spilling into the DRAM. This can be achieved through careful choices of the size of the
working set, as well as ept. All computation on a working set is done on the register level, except
for a final reduction step that is performed on shared memory among thread groups.

4.3. Instruction level parallelism (ILP)

In order to reduce chances of stalling thread execution, each thread group should execute instruc-
tions that are as independent from each other as possible. According to the register blocking
technique shown in Figure 3, ILP can be achieved by choosing ept > 1, so that a compute step is
not close to its respective load step in the instruction stream of the thread group, leading to less
instruction dependency. In most cases, ept is larger than 1.

4.4. Warp latency hiding

The CUDA runtime can switch execution to other warps on the same SM, if the current warp
gets stalled. It is then possible to reduce the latency of a warp stall by increasing the number of
warps within a TB. Tuning parameters such as nb, Ntg , and Nta are usually set to ensure multiple
warps per TB.

4.5. Computation-driven TB mapping

TBs are programmed to process working sets whose partial results can be accumulated to each other,
which is the case for working sets that belong to the same block row. This enables accumulation to
happen at the register level as TBs move from one working set to another. It also minimizes the role
of shared memory to a final reduction step among thread groups before writing the final result to
the global DRAM.

4.6. Collaboration among TBs

KBLAS uses multiple TBs per block row or block column in order to achieve better occupancy for
relatively small dense matrices [1]. The original SpMV design proposed by the authors [2] uses one
TB per block row. While our results show good performance results for most matrices, we study
some cases where the performance drops significantly due to huge variations in the row lengths. In
Section 5, we extend the original SpMV design to allow multiple TBs to work on the same block
row, which leads to more balanced workload among TBs.

5. IMPLEMENTATION DETAILS

This section discusses how the design concepts of KBLAS [1], which are described in Section 4,
can be applied to the proposed SpMV kernel. The routine name BSRMV is used to denote an SpMV
operation on block-sparse matrices using the BSR format.

5.1. Dividing block size range

From a user’s point of view, one API is provided to perform the operation. However, it is not possible
to have one CUDA kernel that can efficiently handle all block sizes. We introduce three different
kernels to divide the spectrum of the block size. While the three kernels inherit the design strategy
described in Section 4, they differ in the way they restrict some properties of the uniform strategy
while relaxing others, according to the targeted block size. Based on experiments performed on a
Kepler GPU, the proposed kernels are assigned the following ranges of the block size bs:

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



A. ABDELFATTAH ET AL.

� Kernel 1 (K1): can process small values of bs, strictly 2 through 5.
� Kernel 2 (K2): can process medium blocks starting from 5 up to 45.
� Kernel 3 (K3): is assigned for large blocks starting from 45 and beyond.

We point out that both K2 or K3 can be used for block sizes 5�5 and up. However, K2 reaches
a hardware contraint (in terms of number of threads and register pressure) if bs is too large. This
is where K3 should take over, as it is designed for large block sizes. In any kernel, all accesses to
the input vector x are directed to the read-only data cache on the GPU. The memory references
to x are often a limiting factors to performance. It is a common practice, found in many previous
contributions, to direct accesses to x through a separate cache, in order to increase the chances
of data reuse.

5.2. Small blocks (K1)

Kernel K1 builds upon the fact that a single GPU warp can read one or more blocks in one mem-
ory transaction. Given that NVIDIA GPUs use a fixed warp size of 32, this kernel cannot be
applied to blocks larger than 5�5. The grid design of K1 consists of 1D array of TBs. Each TB
is assigned Nbrowstb consecutive block rows, leading to a grid configuration (Bx , 1), where

Bx D
l

#block rows of the matrix
Nbrowstb

m
As we point out later on, Nbrowstb is a function of two tuning

parameters.
Kernel K1 uses a working set that spans multiple adjacent blocks in the same block row. This

implies that nb D bs, and w is multiples of bs. Each TB consists ofNta independent thread arrays,
whereNta is greater than 1. Each thread array is strictly a warp that is truncated to be fully divisible

by bs2. The truncated warp is restructured to a nb �Ntg configuration, where Ntg D
j
32
bs2

k
� bs.

The value of ept is strictly 1. Each truncated warp processes Nbrowsta consecutive block rows,
where Nbrowsta is a tuning parameter. This implies that Nbrowstb D Nbrowsta � Nta. A
TB is launched with a (Tx , Ty) configuration, where Tx D 32, and Ty D Nta. Figure 4 shows
the hierarchy of the overall kernel design. Truncated warps within the same TB are completely
independent of each other. Therefore, the design of K1 does not require any synchronization points,
even if reduction through shared memory is needed. As an example, consider the case when bs D 3,
as shown in Figure 5. Only 27 threads remain active, and the truncated warp is able to read three
blocks at one memory transaction.

The double buffering technique is incorporated, although its effectiveness is dependent on the
length of the block row. Let nn´bwarp D

j
32
bs2

k
denote the number of blocks that a warp can read

at one memory request. If a block row contains more than nn´bwarp blocks, then there is an oppor-
tunity to prefetch more data while the current nn´bwarp blocks are being processed. Latency hiding
among warps can be controlled through tuning the value ofNta andNbrowsta. Both parameters are
independent. There are no restrictions on these values except hardware restrictions (e.g., maximum
number of threads per TB).

5.3. Medium blocks (K2)

Kernel K2 has the same high level design of K1 shown in Figure 4, but the low level details differ.
A working set is equivalent to one block. This implies nb D w D bs. A TB consists of Nta thread
arrays. In contrast to K1, K2 does not restrict a thread array to a warp. A thread array alternatively
consists of any nb � Ntg configuration, provided that Ntg 6 nb. Each thread array can process
Nbrowsta consecutive block rows, where Nbrowsta > 1. A TB is launched with a (Tx , Ty)
configuration, where Tx D nb � Ntg , and Ty D Nta. Every thread array is restructured into Ntg
thread groups, each one having nb threads.

Figure 6 shows an example when bs D nb D 7 and Ntg D 4. This leads to Tx D 28. The
register blocking strategy within a 7 � 7 block is a variation over the hierarchical register blocking
technique mentioned in Section 4.1. However, the value of ept is not homogeneous across all
thread groups. We extend the register blocking technique to allow thread groups to process vertical

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
DOI: 10.1002/cpe



PERFORMANCE OPTIMIZATION OF SPMV FOR MULTI-COMPONENT PDE APPLICATIONS

Figure 4. K1 structure (also applies to K2).

Figure 5. Thread mapping of a truncated warp over three 3�3 blocks.

slices not necessary equal in width. In general, given a block size bs, and a number of thread groups
Ntg 6 bs, we define the following quantities:

eptmax D

�
bs

Ntg

�
(2a)

threshold D .Ntg � .bs mod Ntg// mod Ntg (2b)

We apply these two equations on Figure 6. Each thread group keeps at maximum eptmax D 2

registers per block. This also includes thread group 0 in the figure. In general, only thread groups >
threshold use eptmax registers. Other thread groups use eptmax-1 registers. According to Figure 6,
threshold is equal to 1. The double buffering technique (Section 4.2) is applied on the level of one
block. So another 7�7 block is prefetched while the current one is being computed.

We emphasize that K2 allows multiple warps to be involved in the computation of a single block.
For example, a 17�17 block can be processed using 68 active threads (from three warps). Threads
are restructured into 4 thread groups, meaning that bs D bs D nb D 17, and Ntg D 4. In this case
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Figure 6. Example of K2 register blocking on a 7�7 block.

Figure 7. Structure of the K3 kernel.

eptmax D 5 and threshold D 3. There are chances to achieve ILP per thread as eptmax gets bigger.
In addition, latency hiding opportunities increase within the same block as more warps are involved
in computation.

5.4. Large blocks (K3)

Kernel K3 is designed to target large values of bs, including extreme cases when bs can be order of
hundreds, for example. Neither K1 nor K2 can handle such cases because the hardware constraints
might lead to excessive register pressure, running out of shared memory, or even launching a number
of threads beyond the capacity of the SM. The matrix block is too large to be processed using a
single thread array, or even a single TB. Kernel K3 is designed to handle such cases. It is the only
kernel that incorporates multiple TBs to process a matrix block. Each square block of the sparse
matrix represents multiple working sets. Similarly, a working set has the dimensions nb �w, where
nb 6 bs. The width of the working set w is equal to Ntg � ept , which are discussed shortly in
this section. The grid is configured as a 2D array of size (Bx , By), where Bx is computed similarly

to the past two kernels, and By=
l
bs
nb

m
. All TBs that have the same bx value behave like a mini-

grid around every matrix block. Figure 7 shows the structure of the K3 grid, with an example where
By D 3. Every three TBs sharing the same bx value process the same block row. The mini-grid is
designed similarly to a dense GEMV kernel.
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A TB consists of one thread array, which means that Nta is equal to 1. A thread array consists
of nb � Ntg threads. The number of thread groups Ntg is a tuning parameter. Each thread group
processes a vertical slice of the working set. The width of each vertical slice is equal to ept, which
is exposed as a tuning parameter. The width of the working set is, therefore, equal to ept � Ntg . A
TB is launched with a (Tx , Ty) configuration, where Tx D nb, and Ty D Ntg .

5.5. Load balancing

The original design of the SpMV kernel [2] uses exactly one TB to compute the product of a block
of rows with the input vector. A TB completely traverses all the rows assigned to it. This property
might lead to load imbalance among thread blocks, if there are large variations among the row
lengths of the input matrix. The performance results section 6 highlights some examples of this type
of matrix.

We propose a solution to this problem, and improve the performance of the SpMV kernel for
such matrix structures. The solution is to restructure the matrix, by breaking down relatively long
rows into multiple independent rows. Given a maximum limit � of any row length, the new matrix
have rows whose lengths cannot exceed �. Choosing a relatively low value of � (e.g., 16 or 32), the
workload among most TBs is acceptably balanced. A consequence of the restructuring is that the
output of the SpMV operation is not the final output y. Figure 8 shows an example for balanced
BSR layout, with � D 3.

In order to represent the new matrix, the row pointer array RowPtr is replaced by a new one
that reflects the new structure. Neither the array of non-zeros nor the array of column indices needs
to be touched. However, it is necessary to have an auxiliary array, which we call Segment Pointer
(segPtr), in order to retrieve the output vector y from Oy. The length of the segPtr array is equal
to the number of block rows of the original matrix + 1. It stores, for each block row in the original
matrix, an integer that points to the first entry in Oy that holds a partial result for such block row. For
example, the corresponding segPtr array for Oy in Figure 8 is {0, 2, 3, 4, 8, 10, 11, 14}. A reduction
operation is required to sum together all the elements in Oy that belong to the same entry in y. We
developed a reduction kernel that produces y given Oy and the segPtr array. The computation time
of the reduction kernel is essentially negligible with respect to the SpMV operation.

Figure 8. Balanced BSR layout (� D 3) and the required postprocessing reduction step. (a) Matrix layout,
(b) New matrix layout, and (c) Reduction on the output vector.
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Table I. Tuning parameters for the BSRMV kernel.

bs working set block row assigned to Tuning parameters Restrictions

small multiple blocks warp Nta, Nbrowsta None
medium one block thread array Nta, Ntg , Nbrowsta Ntg 6 bs
large part of a block 1 or more TBs nb, Ntg , ept Ntg � ept 6 nb 6 bs

5.6. Multi-GPU kernels

The methodology for multi-GPU execution is a simple extension. Block rows of the matrix, prefer-
ably reordered according to their lengths, will be distributed among GPUs in a 1D cyclic manner.
The RowPtr array of the BSR format has to be locally updated so that each GPU ends up having
a submatrix that is described using the BSR format. Using this methodology, the single GPU kernel
can be used on each submatrix. Since each GPU will compute the final result of certain segments of
the output vector, a post-processing step is required to collect these segments and put them in place
to produce the final vector.

However, this distribution, which has been used in [2], does not work well for all matrices, unless
the row lengths are balanced, as proposed in Section 5.5. We will show the multi-GPU performance
before and after incorporating the balanced BSR format for the input matrix. After the matrix is
distributed among GPUs, the multi-GPU SpMV has the following steps:

(1) Each GPU does a local BSRMV operation.
(2) Each GPU sends its local result into a reference GPU (e.g., GPU 0).
(3) GPU 0 launches a shuffle kernel to reverse back the 1D cyclic distribution of Oy.
(4) If balanced BSR layout is used, the reduction kernel mentioned in Section 5.5 is launched.

5.7. Tuning parameters

Table I summarizes the tuning parameters of the three proposed kernels. It also shows the granularity
level used to process a block row, which is the major difference among the three kernels. As the
block size gets bigger, we move from a single warp to a general thread array, and eventually to one
or more TBs. It also shows how a working set evolves from multiple blocks, to a single block, and
finally to a sub-block.

In order to tune the three kernels according to each GPU model, we adopt a simple brute-force
approach. This is feasible in our case because the search space for the tuning parameters of each
kernel is relatively small. Thanks to the restrictions mentioned in Table I, and to our experience with
KBLAS [1], we are able to rule out combinations that either violate hardware-specific limitations
or are unlikely to produce high performance. Eventually, it was feasible to try out all the remaining
combinations for each kernel in a reasonable time.

6. PERFORMANCE RESULTS

6.1. System setup

All experiments are conducted on a machine equipped with two 8-core Intel Sandy Bridge CPUs
(Intel Xeon E5-2670, running at 2.6 GHz), and 3 Kepler generation GPUs (Tesla K40c, running at
745 MHz, with ECC on). We use CUDA Toolkit 7.0. For economy of space, performance results
are shown for double precision arithmetic. No surprises are attached to other precisions or com-
plex formats. From now on, the proposed SpMV kernels will be referred to as KSPARSE and
balanced KSPARSE.

6.2. Matrix test suite

To show performance results on matrices from real applications, we conducted two types of per-
formance tests. The first one uses matrices from The University of Florida (UFL) Sparse Matrix
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Table II. Properties of the selected matrices from real applications.

Name Size Non-zeros Description

airfoil_2d 14,214 259,688 Computational fluid dynamics
bauru5727 40,366 145,019 Eigenvalue/model reduction problem
cage10 11,397 150,645 Directed weighted graph
cavity21 4,562 131,735 Subsequent computational fluid dynamics
coater2 9,540 207,308 Computational fluid dynamics
hvdc1 24,842 158,426 Power network problem
lhr07 7,337 154,660 Chemical process simulation
rajat22 39,899 195,429 Circuit simulation
shermanACb 18,510 145,149 2D/3D problem

spe5Ref_dpdp 2,058,000 113,464,400 Oil reservoir simulation

Figure 9. Structures of the selected matrices from real applications.

Collection [3]. Such matrices are not necessarily block-sparse; however, we are interested in their
structures, as inherited from spatial discretization. In this regard, performance tests for a certain
block size bs replaces each non-zero of the matrix by a bs�bs square block. Such approach enables
us to test the performance of the proposed kernels against a wide range of sparsity patterns. The sec-
ond test uses a real block-sparse matrix used in reservoir simulation. The matrix is originally based
on the SPE5 benchmark [25], and has a dense block structure of size 7�7. Table II shows some
properties of the selected matrices. All matrices are square and non-symmetric. Figure 9 shows the
structures of these matrices. Not all of these matrices are relevant to simulations involving PDEs,
but they are included for generality of applicability.

6.3. Performance on matrices from The UFL sparse matrix collection

Figures 10–18 show the double precision performance of the SpMV operation for the aforemen-
tioned matrices (one figure per matrix). We show the performance of the following libraries:

� cuSPARSE using the BSR format [6].
� cuSPARSE using the HYB format [6] [4].
� MAGMA using the SELL-P format [12].
� KSPARSE using BSR format [2].
� Balanced KSPARSE using BSR plus the load balancing technique, with � D 16. The

performance of this kernel includes the reduction kernel that produces the final output vector.
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Figure 10. Performance of DBSRMV for the airfoil_2d matrix.

Figure 11. Performance of DBSRMV for the bauru5727 matrix.

Figure 12. Performance of DBSRMV for the cage10 matrix.

The performance graphs for seven of these matrices matrices share a common behavior. The
proposed KSPARSE kernel outperforms all others after a block size around seven. The balanced
version of KSPARSE scores no clear advantage over the unbalanced kernel, which means that the
structure of such matrices provides an acceptable balanced workload, and that there is no need to
restructure the matrix, because it leads to an extra overhead in terms of the reduction kernel. Table III
shows speedups against cuSPARSE-BSR, cuSPARSE-HYB, and MAGMA-SELLP. We point out
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Figure 13. Performance of DBSRMV for the cavity21 matrix.

Figure 14. Performance of DBSRMV for the coater2 matrix.

Figure 15. Performance of DBSRMV for the hvdc1 matrix.

that KSPARSE is at least 3� faster than cuSPARSE using the same sparse storage format, thanks to
the optimization techniques discussed in Sections 4 and 5.

Now, we highlight two matrices that show the importance of the balanced KSPARSE kernel. The
performance graphs for matrices rajat22 and shermanACb are shown in Figures 17 and 18, respec-
tively. The performance of the balanced KSPARSE kernel is up to 6.18� faster than KSPARSE for
the rajat22 matrix, and up to 15� faster for the shermanACb matrix. The reason behind such huge
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Figure 16. Performance of DBSRMV for the lhr07 matrix.

Figure 17. Performance of DBSRMV for the rajat22 matrix.

Figure 18. Performance of DBSRMV for the shermanACb matrix.

speedups can be explained by inspecting the histograms of the row lengths of these two matrices.
Figure 19 shows such histogram for the shermanACb matrix, which is also similar in behavior to
the histogram of the rajat22 matrix (not shown). Both matrices have very large number of short
rows, and very few number of extremely long rows. Such structures create a high load imbalance for
the original KSPARSE kernel [2], due to the fact that it assigns an entire row to the same group of
threads. By using the balanced KSPARSE kernel, we can maintain a balanced workload regardless
of the matrix structure. With respect to cuSPARSE-BSR, cuSPARSE-HYB and MAGMA-SELLP,
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Table III. Speedup of KSPARSE against other implementations.

Matrix / speedup against cuSPARSE-BSR cuSPARSE-HYB MAGMA-SELLP

airfoil_2d (Figure 10) 3.17� 1.77� 1.55�
bauru5727 (Figure 11) 3.54� 2.31� 1.61�
cage10 (Figure 12) 3.23� 1.93� 1.54�
cavity21 (Figure 13) 3.09� 2.48� 1.54�
coater2 (Figure 14) 3.16� 2.44� 1.55�
hvdc1 (Figure 15) 3.45� 1.92� 1.55�
lhr07 (Figure 16) 3.16� 23.13� 2.05�

Figure 19. Row lengths histogram of the shermanACb matrix.

Figure 20. Multi-GPU scaling for the coater2 and shermanACb matrices.

the balanced KSPARSE kernel scores speedups up to 8.86�, 2.26�, and 3.11� for the rajat22
matrix, and up to 30.25�, 2.38�, and 10.50� for the shermanACb matrix, respectively.

Considering multi-GPU performance, we highlight only two matrices, coater2 as an example of
matrices with relatively balanced row lengths, and shermanACb as an example of matrices with
huge variations in row lengths. Figure 20 shows the relative speedup for such matrices. The results
include the communication time needed to send all local results to the reference GPU, the time of
the shuffle kernel, and the time of the reduction step if balanced KSPARSE is used.

Considering the coater2 matrix (Figure 20(a)), inter-GPU communication causes performance
across multiple GPUs to drop below unity for small block sizes. The amount of computation in
such case is not enough to saturate the GPU with enough work. As the block size gets larger, this
effect consistently diminishes. The balanced KSPARSE kernel does not scale as good as the original
one, since the single GPU performance of the balanced version is not better than the unbalanced
kernel. However, the gap between the two kernels shrinks as the overhead of the reduction kernel
gets smaller.

On the other hand, Figure 20(b) shows the impact of the balanced kernel on the multi-GPU
performance. The performance of the original kernel on 3 GPUs is under 50% speedup with respect
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Figure 21. Single GPU performance for the spe5Ref_dpdp matrix.

to the single GPU performance. This is due to the 1D cyclic distribution of block rows, without
consideration of their variation in length. The balanced kernel achieves much better scaling on 2
and 3 GPUs. The multi-GPU performance of the balanced kernel has three sources of overhead,
(i) communication among GPUs, which is more costly than the original kernel because Oy is longer
than y, (ii) the shuffle kernel to put all entries of Oy in the right place, and (iii) the postprocessing
reduction kernel.

6.4. Performance on matrices from reservoir simulation

Figure 21 shows the single GPU performance on the spe5Ref_dpdp matrix. KSPARSE is 2.4�
faster than cuSPARSE-BSR, 1.13� faster thank cuSPARSE-HYB, and 1.27� faster than MAGMA-
SELLP. The balanced KSPARSE kernel does not score performance gain against KSPARSE, which
means that the row lengths are balanced to some extent, which can be seen from Figure 9. In addi-
tion, we conducted a multi-GPU performance experiment, where the 2-GPU performance is 1.93�
faster than the single GPU test. Similarly, a speedup of 2.83� was achieved on a 3-GPU run.

7. CONCLUSION AND FUTURE WORK

This paper introduces a high performance SpMV kernel for block-sparse matrices and shows how
the design ideas of the KBLAS library, which target dense matrices, can still be applied on a smaller
scale to relatively small square blocks in sparse matrices. The paper also presents a new technique
to alleviate load imbalance due to large variations in the row lengths of some matrices. Both single
and multi-GPU performances of the proposed kernels are highlighted on matrices with realistic
structures. In most test cases, the proposed design achieves many-fold speedups against state-of-
the-art SpMV kernels.

Future directions include the integration of the proposed kernel into sparse iterative solvers, in
order to solve real systems arising from multi-component applications, and enhancing the per-
formance of some auxiliary kernels (shuffle and reduce) for small block sizes. Another direction
of interest is to try GPU-specific features, like dynamic parallelism, in order to assign work
dynamically based on the length of each block row of the matrix.
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