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Abstract— Convex optimization solvers for embedded systems
find widespread use. This letter presents a novel technique to
reduce the run-time of decomposition of KKT matrix for the
convex optimization solver for an embedded system, by two
orders of magnitude. We use the property that although the KKT
matrix changes, some of its block sub-matrices are fixed during
the solution iterations and the associated solving instances.

Index Terms—Realtime embedded convex optimization solver,
KKT

I. INTRODUCTION

Recent convex optimization advances [1] [2] have enabled
their use as realtime solvers for embedded systems [3] [4]
[5] [6] [7] [8]. Two recent developments – CVXGEN [9]
and ECOS [10] – provide frameworks for code generation for
realtime convex optimization solvers for embedded systems.
There are also some attempts in code generation for small-
sized basic linear algebra opeations like vector-matrix mul-
tiplication [11]. CVXGEN takes a high-level description of
the optimization problem, and employs the CVX technique of
disciplined convex programming (DCP) [12] to generate a flat,
and library-free C code. The generated code can be compiled
into a high performance solver for the specific problem family
(e.g., all the matrices have the same sparsity structure). Though
CVXGEN [9] solver obtains a high performance thanks to the
generation of a flat code, to meet the strict realtime constraint
enforced on the solution time, the size of the problem had to
be limited to 100 or so variables.

In DCP a quadratic programming (QP) convex problem state-
ment is transformed into a standard form [9] [13] as,

minimize (1/2)xTQx+ qTx
subject to Gx � h and Ax = b,

(1)

where vector variable x ∈ Rn, Q ∈ Sn
+ � 0 (a square sym-

metric positive semidefinite matrix), A ∈ Rm×n, Q ∈ Rp×n,
b ∈ Rm, and h ∈ Rp. With each instance of the solve, the
solver goes through several solution iterations until it meets
a certain level of pre-determined accuracy or the maximum
number of iterations are reached. In each iteration the core
of the optimization solver, where it spends almost its entire
solution time, is the solution of a family of Karush Kuhn
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Tucker (KKT) [2] [14] linear system of equations Kx = c,
whose coefficient matrices K all have the following block
structure:

K =


Q 0 GT AT

0 S−1Z Ip 0
G Ip 0 0
A 0 0 0

 , (2)

where Ip is the identity matrix of size (p× p). S = diag(s) ∈
Rp×p and Z = diag(z) ∈ Rp×p are diagonal matrices (for
the case of QP). Vectors s ∈ Rp and z ∈ Rp, respectively,
represent the slack variables and inequality multipliers in the
KKT condition [14].

The solution to the linear system Kx = c (c ∈ Rn+m+2p)
is found through the LDLT decomposition of PKP T =
LDLT [15], where P is a permutation matrix, L a lower
triangular matrix with diagonal elements equal to one, and
D is a diagonal matrix. Using the LDLT decomposition of
K, the solution to Kx = b is found through the sequence of
forward, scaling, and back substitution.

The current generation of embedded convex optimization
solvers, while good at taking the advantage of the structure of
the problem family (e.g. sparsity), fail to take advantage of the
fact that several blocks in the KKT matrix are fixed and do not
change during the iterations of a given solve instance. In most
practical signal processing applications, such as linearizing
pre-equalizer, Kalman filtering, sliding window smoothing,
and sliding window estimation [16], only the vectors q, h or
b in (1) change from one solve instance to the next. These
vectors only contribute to the make up of c vector in Kx = c.
In the online array weight design adaptive filtering, only matrix
G in (1) changes from one solve instance to the next. In all
many cases that we have studies only the submatrix S−1Z
changes with the solution iterations for each solve instance.

This letter proposes a technique to reduce the time to solve
the family of the KKT linear systems by exploiting the fact
that several blocks in the KKT matrix K are fixed and do
not change during the solution iterations of a given problem
instance.

II. ALGORITHMS

We consider two cases: A) change in the KKT matrix that
only persists during a single solution iteration in one instance
of the solve, and B) change that persists across all solution
iterations in one instance of the solve.
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A. Variable S−1Z

Between the solution iterations, it is often that the blocks Q, A,
and G are fixed, and only the diagonal block S−1Z changes. In
order to take advantage of this feature we solve an equivalent,
implicitly-reordered, linear system, K̂x̂ = b̂, i.e.,

Q AT 0 GT

A 0 0 0
0 0 S−1Z Ip
G 0 Ip 0




x1

x4

x2

x3

 =


c1
c4
c2
c3

 . (3)

We emphasize that the matrix is not explicitly reordered, but
we factorize and solve the linear system in the order given
in (3) as follows:

a) Initial off-line setup: As part of our setup phase, we
partially factorize the matrix such that K̂ = L̂D̂L̂T , where

L̂ =


L1,1 0 0 0
L2,1 L2,2 0 0
0 0 Ip 0

L4,1 L4,2 0 Ip

 , D̂ =


D11 0 0 0
0 D22 0 0
0 0 S−1Z Ip
0 0 Ip C


(4)

We compute this partial LDLT factorization as follows:

1) We compute the LDLT factorization of Q such that

Q = L1,1D1,1L
T
1,1.

2) We compute the off-diagonal blocks in the first block
column of L̂, i.e.,

L2,1 := A(D1,1L
T
1,1)

−1 and L4,1 := G(D1,1L
T
1,1)

−1.

3) We compute the LDLT factorization of the second diag-
onal block to obtain L2,2 and D2,2,

K̃2,2 = L2,2D2,2L
T
2,2,

where K̃2,2 := −(L2,1D1,1L
T
2,1).

4) We compute the off-diagonal block in the second block
column of L̂, i.e.,

L4,2 := K̃4,2(D2,2L
T
2,2)

−1,

where K̃4,2 := −(L4,1D1,1L
T
2,1).

5) We compute the last block of D̂,

C := −(L4,1D1,1L
T
4,1)− (L4,2D2,2L

T
4,2).

b) On-line Factorization: At each step of the convex op-
timization solution, we can cheaply factorize the last two
diagonal blocks of D̂ with the new S−1Z, i.e.,

D3,3 := S−1Z
L4,3 := D−1

3,3 = Z−1S,

L4,4 and D4,4 are computed from the LDLT factorization of
the last diagonal block as,

C̃ = L4,4D4,4L
T
4,4,

where C̃ := C − (Z−1S). Since both Z and S are diagonal,
the most computationally expensive part of the on-line fac-
torization is the LDLT factorization of C̃. In other words, in
the on-line factorization stage we only factorize a matrix of
dimension S, and this algorithm allows us to solve the realtime
convex optimization where p, instead of n + m + 2p, is the
largest dimension of the matrix that must be factorized within
the realtime constraint.

In this letter, we only consider the QP problem, i.e., diago-
nal S−1Z. However, the algorithm can be trivially extended to
a more general case such as the second order cone program-
ming (SOCP) [2], where S−1Z is of the form S−1/2ZS−1/2.

B. Variable G

For the case that the submatrix G changes between the solve
instances, but stays fixed during the solution iterations of one
instance of the solve, we introduce an intermediate off-line
update step, where we only recompute the steps that use G.

a) Initial off-line setup:

1) We compute the LDLT factorization of Q such that

Q = L1,1D1,1L
T
1,1.

2) We compute the off-diagonal blocks in the first block
column of L̂, i.e.,

L2,1 := A(D1,1L
T
1,1)

−1.

3) We compute the LDLT factorization of the second diag-
onal block to obtain L2,2 and D2,2,

K̃2,2 = L2,2D2,2L
T
2,2,

where K̃2,2 := −(L2,1D1,1L2,1).

4) We partially compute the off-diagonal block in the second
block column of L̂, i.e.,

H := −D1,1L
T
2,1(D2,2L2,2)

−1.

b) Off-line update: To solve each convex optimization prob-
lem with a new submatrix G, we complete the off-line
factorization as follows:

1) We compute the off-diagonal blocks in the first block
column of L̂, i.e.,

L4,1 := G(D1,1L
T
1,1)

−1.

2) We compute the off-diagonal block in the second block
column of L̂, i.e.,

L4,2 := L4,1H.

3) We compute the last block of D̂,

C := −(L4,1D1,1L
T
4,1)− (L4,2D2,2L

T
4,2).
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c) On-line Factorization: Finally, with each solution iteration
with the new diagonal submatrix S−1Z, we can cheaply
complete the factorization as in Section II-A.

III. EXPERIMENTS

All our experiments were conducted on MacBook Pror, using
just one core of 2.7 GHz Intelr CoreTM i7. Our codes were
compiled using gcc of Appler LLVM version 5.1 with
the optimization flag -Os. For our experiments, we linked
our codes to BLAS and LAPACK provided in the Apple’s
Accelerate Framework [17], but on any other embedded sys-
tem, it could be statically linked to open-source reference
implementations of BLAS [18] and LAPACK [19]. The test
problem that we used for this study is the largest size standard
convex optimization problem in (1) that CVXGEN can handle.
The KKT matrix is of dimension 131, and the respective
dimensions of the submatrices Q, Z, G, and A are 95 × 95,
12× 12, 95× 12, and 95× 12.

A. Results with variable S−1Z

Table I presents the run times of several techniques for
factorizing the KKT matrix K when only the submatrix S−1Z
changes. It also shows the run times for the solve of the
linear system Kx = c through the forward and backward
substitutions. The performance results shown are for the case
where the submatrix Q is dense.

For this particular test matrix, the LAPACK’s solvers were
faster than the CVXGEN generated solver even though they
ignore any structure of the KKT matrix and perform dynamic
pivoting to ensure the numerical stability of the factorization.
The CVXGEN generated solver uses regularization [9] that
avoids the small diagonal entries through small shifts during
the factorization, and is typically less stable but more efficient
than the dynamic pivoting.

Our off-line factorization that takes advantage of the structure
was slower than “dsytrf” of LAPACK. This is because
our implementation is based on LAPACK that does not
provide flexible enough interface to take full advantage of
the symmetry in the KKT matrix. For example, LAPACK
does not provide a subroutine to solve only with the lower-
triangular matrix L of the LDLT factorization. Hence, we
compute the non-symmetric LDU factorization of the KKT
matrix, K̂ = L̂D̂Û , where L̂ and D̂ have the same block
structures as those in (4), and Û has the same structure as that
of L̂T . For this, at Step 2 of initial off-line setup in Section
II-A, we compute,

L2,1 := AU−1
1,1 and L4,1 := GU−1

1,1 ,

where U1,1 = Q, and in addition, we let L1,1 = I , L2,2 = I ,
D1,1 = In, D2,2 = Im, and U1,2 = AT and U1,4 = GT . We
use the LDLT factorization of Q to apply U−1

1,1 .

Then at Steps 3 and 4, we compute,

L4,2 := −(L4,1U1,2)(U2,2)
−1 and U2,4 := L−1

2,2(L2,1U1,4),

TABLE I
RUN TIMES FOR FACOTORIZING AND SOLVING THE KKT LINEAR SYSTEM

WITH VARIABLE S−1Z AND DENSE Q (IN SECONDS).
Here unroll is the generated solver from CVXGEN, dgetrf and dsytrf
are the LAPACK’s unsymmetric and symmetric solvers applied on the KKT
matrix, and dsgesv is the LAPACK’s mixed-precision solver, where the
matrix is factorized in the single precision, and the iterative refinements are
used to compute the solution in double precision.

Technique Factor Solve

unroll 5.25 · 10−4 1.70 · 10−5

dgetrf 3.03 · 10−4 2.20 · 10−5

dsytrf 1.78 · 10−4 1.90 · 10−5

dsgesv 2.71 · 10−4 (2 iters)
fixed Q,A,G: initial off-line setup

total 1.85 · 10−4

. step 1 7.40 · 10−5

. step 2 3.90 · 10−5 + 4.00× 10−5

. step 3 1.10 · 10−5 + 3.00× 10−6

. step 4 3.00 · 10−6 + 3.00× 10−6

. step 5 3.00 · 10−6 + 2.00× 10−6

on-line factor and solve 4.00 · 10−6 2.30 · 10−5

where U2,2 := −(L2,1U1,2). Finally, at Step 5 we compute
C := −(L4,1U1,4)− (L4,2U2,4).

Though our particular implementation of the solver does not
exploit the symmetry in the KKT matrix, by taking advantage
of the fixed submatrices, it significantly reduces the on-line
factorization time, with speedups of about 131.3× and 44.5×,
respectively, over the CVXGEN generated solver, and the
LAPACK’s dsytrf solver.

Table II shows the similar results, where the submatrix Q
is considered to be diagonal. As the baseline performance
to compare against, we used the CVXGEN ordering shown
in (2), and formed the Schur complement consisting of the
last two diagonal blocks. Since Q is diagonal, the Schur
complement can be computed with the combination of simple
diagonal scaling and the matrix-matrix multiply “dgemm”
from BLAS. Then, we used different LAPACK solvers on the
Schur complement. Since the submatrix Q does not have to be
factorized, the performance improvement obtained by taking
advantage of the fixed submatrices Q, A, and G is smaller than
those in Table I. However, we still obtained the speedup of
about 6.5× over our baseline implementation using dsytrf.

B. Results with variable G

Table III shows the performance of the off-line update when
only the submatrix G changes between the instances of the
solve. Just like in Section III-A, our implementation of the
initial off-line setup and off-line update compute the LDU fac-
torization. Overall, even with these extra operations required
for the non-symmetric factorization, we see that taking the
advantage of the structure reduces the time of the initial off-
line setup in Table I by a factor of about 2.6×.

IV. FUTURE WORK

As a next logical step we will consider integration of the
proposed solver into a code generation platform such as
CVXGEN or ECOS. We also plan to modify and tune the
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TABLE II
RUN TIMES FOR FACTORIZING AND SOLVING THE KKT SYSTEM WITH

DIAGONAL Q (IN SECONDS).
On the first three rows dgemm is used to form the Schur complement of last
two diagonal blocks of the KKT matrix in (2). Next LAPACKS’s dgetri,
dgetrf, or dsytrf is used to solve the dense Schur complement system.

Technique Factor Solve
dgetri on Schur comp

total 3.40 · 10−5 1.80 · 10−6

dgemm 1.70 · 10−5

dgetrf 5.00 · 10−6

dgetri 7.00 · 10−6

dgetrf on Schur comp
total 2.50 · 10−5 3.00 · 10−6

dgemm 1.50 · 10−5

dgetrf 5.00 · 10−6

dsytrf on Schur comp
total 2.60 · 10−5 5.00 · 10−6

dgemm 1.50 · 10−5

dsytrf 6.00 · 10−6

fixed Q,A,G: initial off-line setup
total 3.90 · 10−5

. step 1 0.00

. step 2 1.00 · 10−6 + 1.00× 10−6

. step 3 1.30 · 10−5 + 4.00× 10−6

. step 4 5.00 · 10−6 + 5.00× 10−6

. step 5 5.00 · 10−6 + 1.00× 10−6

on-line factor and solve 4.00 · 10−6 6.00 · 10−6

TABLE III
RUN TIMES (IN SECONDS) WITH VARIABLE G AND DENSE Q

Technique Factor
initial off-line setup

total 1.21 · 10−4

. step 1 7.40 · 10−5

. step 2 3.70 · 10−5

. step 3 1.00 · 10−5 + 2.00× 10−6

. step 4 −−
off-line update

total 7.00 · 10−5

. step 1 4.35 · 10−5

. step 2 1.10 · 10−5 + 3.00× 10−6

. step 3 5.00 · 10−6 + 1.00× 10−6

LAPACK subroutines for specializing them to factorize the
KKT matrix.

Here, we only considered diagonal S−1Z where the KKT
duality gap condition requires S−1Z = 0 [14]. We typically
choose a value of ||S−1Z||2 ≤ 10−6 as a the stopping
criterion. With the small change in the numerical values of the
diagonal elements of S−1Z, there is a possibility to update the
block matrices L4,4 and D4,4 in situ in parallel, with no need
for re-factorization.

Further, simplification to the decomposition can be made con-
sidering some special properties of some of the submatrices.
For example in some applications we have Q = H−TH where
H is a trapezoidal matrix.

V. CONCLUSION

In this letter a reordering technique for the decomposition
of KKT matrix for the convex optimization solver for an
embedded system that reduces the run time by two orders
of magnitude was proposed. This technique takes advantage

of the fact that many block matrices in the KKT matrix do
not change during the iterations of one instance of the solve.
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