MAGMA Batched: A Batched BLAS Approach
for Small Matrix Factorizations and Applications
on GPUs

Tingxing Dong, Azzam Haidar, Piotr Luszczek, Stanimire Tomov, Ahmad Abdelfattah and Jack Dongarra

Abstract—A particularly challenging class of problems arising in many applications, called batched problems, involves linear algebra
operations on many small-sized matrices. We proposed and designed batched BLAS (Basic Linear Algebra Subroutines), Level-2
GEMV and Level-3 GEMM, to solve them. We illustrate how to optimize batched GEMV and GEMM to assist batched advance
factorization (e.g. bi-diagonalization) and other BLAS routines (e.g. forward/back substitution) to achieve optimal performance on
GPUs. Our solutions achieved up to 2.8-3x speedups compared to CUBLAS and MKL solutions, wherever possible. We applied our
batched methodology in a real-world Hydrodynamic application by reformulating the tensor operations into batched BLAS GEMV and
GEMM operations. A 2.5x speedup and a 1.4x greenup are obtained by changing 10% of the code. We accelerated and scaled it on

Titan supercomputer to 4096 nodes.

Index Terms—GPU, Batched, Bi-diagonalization, Hydrodynamic.

1 INTRODUCTION

1.1 Background and Motivations

HE emergence of multicore and heterogeneous archi-
Ttectures requires many linear algebra algorithms to be
redesigned to take advantage of the accelerators, such as
GPUs. A particularly challenging class of problems, arising
in numerous applications, involves the use of linear algebra
operations on many small-sized matrices. The size of these
matrices is usually the same, up to a few hundred. The num-
ber of them can be thousands, even millions. Billions of 8x8
and 32x32 eigenvalue problems need to be solved in mag-
netic resonance imaging (MRI). Hydrodynamic simulations
with Finite Element Method (FEM) need to compute thou-
sands of matrix-matrix (GEMM) and matrix-vector(GEMV)
products [1]. The size of matrices increases with the order
of methods, which can range from ten to a few hundred.
GEMM in at the heart of deep neural network (DNN).
Rather than treating convolution as a problem of one large
GEMM operation, it is much more efficient to to view it as
many small GEMMs [2]. In an astrophysics ODE solver [3],
multiple zones are simulated, and each zone corresponds
to a small linear system with an LU factorization [3]. If the
matrix is symmetric and definite, the problem is reduced to
a batched Cholesky factorization [4], [5].

Compared to large matrix problems with more data
parallel computation that are well suited on GPUs, the
challenges of small matrix problems lie in: the computing
intensity (flops per memory refs) is relatively small and the
sequential operations (usually in the form of BLAS Level 2
routines) are relatively big. For large enough problems, the
panel factorization and associated CPU-GPU data transfers
can be overlapped with the GPU work [6]. For batched small

o Authors are with the Innovative Computing Laboratory, University of
Tennessee, Knoxville, TN, 37996.
E-mail: tdong; haidar; luszczek; tomov; ahmad,; dongarra@eecs.utk.edu

problems, the data movement via PCI-E cannot be hidden
by enough computation. Their operation should be carried
on GPU only.

1.2 Related Work

Small problems can be solved efficiently on a single CPU
core, e.g., using vendor supplied libraries such as MKL [7]
or ACML [8] because the CPU’s memory hierarchy would
favor a natural data reuse in cache. Batched factorizations
then can be efficiently computed for multicore CPUs by
having a single core factorize a single problem at a time
as investigated in our previous paper [9].

Getting high performance batched execution on accel-
erators remains a challenging problem. In Villa et al.’s
batched LU implementation, a single CUDA thread or a
single thread block was used to solve one linear system
[10] [11]. Their implementation targets problems of sizes up
to 128. Their work is released in CUBLAS as the batched
LU routine. Similar techniques of a warp of threads for a
single factorization, were investigated by Wainwright [12]
for LU with full pivoting of size to 32. Recently, Intel added
their first batched GEMM routine in MKL 11.3 on Xeon Phi
acclerators [13].

Batched one-sided factorizations (LU, QR, and Cholesky)
were developed in our previous papers [9] [14] [15]. The
one-sided factorizations are rich in compute-bound Level
3 BLAS operations, therefore the main efforts lie in en-
hancing Level 3 BLAS operations algorithmically. Different
from previous work, here we consider two new classes of
linear algebra algorithms and a real application. The first
algorithm is a two-sided Householder bi-diagonalization
(GEBRD). The second is the forward and backward substitu-
tion (TRSV) which is usually applied after one-sided factor-
izations in solving linear systems. Instead, the two problems
are memory-bound algorithms rich in Level 2 BLAS GEMV

operations. In this paper, we show how our batched BLAS
approach minimizes memory transactions and improves the
bandwidth in the two algorithms. We compare our solution
with other solutions on CPU and GPU, if possible, and apply
our approach in a real application. The same approach can
be applied on other two-sided factorizations: Hessenberg
reduction (GEHRD) and tri-diagonalization (SYTRD), as
well. Beside of GEMV, GEHRD and SYTRD are also rich
in the other two BLAS-2 routines TRMV (triangular matrix-
vector multiplication) and SYMV (symmetric matrix-vector
multiplication), respectively. Our main efforts focus on the
same-sized problems, that is, all the matrices are of identical
size. Variable-sized problems are also considered, though to
a lesser extent.
Our contributions can be summarized as follows.

o First, we designed batched BLAS device functions
and kernels. We examined the trade-offs between
data reuse and degrees of parallelism. Memory align-
ment and auto-tuning are adopted to optimize their
performance.

e Second, we redesigned two-sided bi-diagonalization
and linear system solves for batched execution on
GPUs based on the batched BLAS approach. To
our best knowledge, this work has not been seen
before. Together with our previous paper, we formu-
lated a batched linear algebra framework, MAGMA
batched, to solve many data-parallel, small-sized
problems/tasks.

e Third, we illustrated the batched methodology on
real-world applications and scaled it up to 4096
nodes on the Titan supercomputer at Oak Ridge
National Laboratory.

o Finally, we analyzed the power and energy consump-
tion of the application on GPUs. By improving the
bandwidth of on-chip memory with batched oper-
ations, both time and power consumption can be
lowered.

2 HOUSEHOLDER BI-DIAGONALIZATION

Singular value decomposition (SVD) is used to solve un-
derdetermined and overdetermined systems of linear equa-
tions. A high order FEM CFD simulation requires solving
SVD in a batched fashion [1]. SVD reduces the matrix to bi-
diagonal form in the first stage and then diagonalizes it us-
ing the QR algorithm in the second stage. Most efforts focus
on the more complicated first stage, bi-diagonalization(or
GEBRD for short). Previous studies show that GEBRD por-
tion takes 90% - 99% of the time if only singular values
are needed, or 30% -75% if singular vectors are additionally
required [16].

The first stage of bi-diagonalization factorizes a M x N
matrix A as A = UBV™ , where U and V are orthogonal
matrix. B is in upper diagonal form with only the diagonal
and upper superdiagonal elements being non-zero. Given a
vector u with unit length, the matrix H = I — 2uu* is a
Householder transformation (reflection). For a given vector
x, there exists a Householder transformation to zero out
all but the first element of the vector x. The classic stable
Golub-Kahan method applies a sequence of Householder
transformations from left to right to reduce a matrix into
bi-diagonal form [17]. Algorithmically, this corresponds to a

2

sequence of in-place transformations of A as follows, whose
storage is overwritten with the entries of bi-diagonal matrix
B, matrix U and V, where vectors defining the left and
right Householder reflectors are stored in matrix U and V,
respectively.

OB % I I G
Qg1 Quo Qu3 Qyy V1 Qg Qq3 Qyy
b1 b1z w1 w [b11 bz w1 w
2 2 2 3 3
U1 a<22) a;; a§4) vr bao a(23) CL<24)
- (2) (2) @ (3) G|
V1 Gzy Qg3 A3y Vi1 V2 dgz Qg4
2 bl 2 3 3
U1 aé(l2) az(ta) ’14(14)- Lv1 V2 afm) afm)
bir bz w1 ur] (011 b1z w1 w
vi baa b2z ug vi baa b2z u2
— (4) 4| — (5)| —
U1 V2 3 a34 V1 V2 b33 a34
(4) (4) ’ (5)
U1 V2 CL43 CL44_ _2)1 V2 V3 CL44

bi1 bz w1 wr
V1 b22 b23 u2
vi v b3z bsa
vi vz vz bu

This algorithm is sequential and rich in Level 2 BLAS GEMV
routine that is applied in every step for updating the rest of
the matrix. The blocked two-phase algorithm is described
in Algorithm 1. The factorization of the panel A; proceeds
in n/nb steps of blocking size nb. One step is composed by
BLAS and LAPACK routines, with LABRD for panel factor-
ization and GEMM for trailing matrix update. The panel
factorization LABRD is still sequential. The accumulated
transformations are saved in matrix X and Y, respectively.
Once the transformations are accumulated within the panel,
they can be applied to update trailing matrix once by
Level 3 BLAS operations efficiently. The blocked algorithm
transforms half of the operations into Level 3 BLAS GEMM
(for trailing matrix update) to make it between Level 2 and
3.

— [UBV*],

fori e {1,2,3,...,n/nb} do
{Aiz = A(i—1)xnb:(n—1),(i=1) xnbzixnb }
{Azy = A(i—l)xnb:ixnb,(i—l)><nb:(n—1)}
{C’L = Aixnb:(n—l),ixnb:(n—l)}
Panel Factorize LABRD(A;), reduce A;x and A;y to bi-diagonal

form, returns matrices X, Y to update trailing matrix C;, U, V' are stored

in factorized A
Trailing Matrix Update ¢; = C; — V x Y’ — X U’ with
gemm

end for
Algorithm 1: Two-phase implementation of the House-

holder GEBRD algorithm. Without loss of generality, A
is assumed n x n. A(i : j,m : n) is the submatrix of A
consisting of i-th through j-th row and m-th through n-th
column with 0-based indexing.

3 LINEAR SYSTEM SOLVER

Solving linear systems Az = b is a fundamental problem in
linear algebra, where A is an n X n matrix, b is the input vec-
tor of size n, and x is the unknown solution vector. Solving

linear systems can fall into two broad classes of methods:
direct methods and iterative methods. Iterative methods
are less expensive in terms of flops but hard to converge.
Preconditioning is usually required to improve convergence.
Direct methods are more robust but more expensive. In
this paper, we consider direct methods of the one-sided
factorizations, Cholesky, LU, and the Householder QR.

Forward/backward substitution (TRSV) is used in solv-
ing linear systems, after matrix A is factorized into triangu-
lar matrices by one of the three one-sided factorizations. For
example, after an LU factorization, we get A = LU where
L is a lower triangular matrix with all the entries above
the main diagonal are zero and U is a upper triangular
one. Forward substitution is used to solve Lz = b, where
z = (Ux). Backward substitution is then applied on Uz = z,
and solution z is obtained finally. Although many dense
matrix algorithms have been substantially accelerated on
GPUs, mapping TRSV on GPUs is not easy due to its
inherently sequential nature. In GPU computing, execution
of threads should be independent as much as possible to
allow parallel execution. Orders among the threads in one
warp (32 threads) should be avoided since any divergence
will cause serialization execution. If one thread is in the
divergence branch, the other 31 threads in the same warp
will be idle. Unfortunately, in TRSV, computation (and thus,
threads) must be ordered because of data dependence. The
following is an example of forward substitution. Backward
substitution is similar.

annzr1 = b
a2121 + a22x2 = b

a3171 + azaT2 + az3rs = b3

121 + ap2T2 + ... + AppTy = by,

It is easy to see that x,, depends on all previous results
21,2, ..., Ln_1, due to z, = b, — ZZ';ll(anka:k). Although
the operations’ order cannot be changed, the rich multipli-
cations (ankxk) in the right hand side of the formula can
be aggregated in the form of matrix-vector multiplication
(GEMV) to improve the memory throughput by minimizing
memory transactions in a blocked algorithm. The blocked
overview of forward substitution is given in Figure 1. The
original matrix is divided into triangular blocks T4 (in red)
and rectangular blocks Az (in yellow). The solution vector X
is also divided into blocks Xi, where i = 1,2, ...,n/(jb) with
7b the blocking size. It first sequentially computes solution
X1 = {x1,22,..,2(jp) }, then applies a GEMV with A2+X1
to obtain partial results of X2 = {x(jp) 11, T(jb)+25 -+ T2(jb) }-
X2 will be updated to final results in solving T2. The DAG
shows the solving orders. GEMV routines are applied on
the rectangular blocks Ai with all previous solution blocks
X1,X2,..,Xi-1 to get partial result of Xi except the first
one. The computation of GEMV is regular and there is no
thread divergences. The triangular blocks are solved by the
sequential algorithm to update X¢ to final results. Triangular
blocks Ti lie in the critical path.

Each triangular blocks T7 can be viewed as a new TRSV
problem and further blocked recursively, which becomes a
recursive blocked algorithm. However, the performance of
TRSV will be bounded by the performance of GEMV. It is

3

easy to see that TRSV is also a Level 2 BLAS routine like
GEMV.

y

3

Fig. 1. Blocked overview of the forward substitution algorithm

4 BATCHED METHODOLOGY AND IMPLEMENTA-
TION FOR GPUs

The purpose of batched routines is to solve a set of indepen-
dent problems in parallel. When one matrix is large enough
to fully load the device with work, batched routines are not
needed; the set of independent problems can be solved in
serial as a sequence of problems. Moreover, it is preferred
to solve it in serial rather than in a batched fashion, to
better enforce locality of data and increase the cache reuse.
However, when matrices are small (for example, matrices of
size less than or equal to 512), the amount of work needed to
perform the factorization cannot saturate the device, either
the CPU or the GPU); thus, there is a need for batched
routines.

Our batched work is part of the Matrix Algebra on GPU
and Multicore Architectures (MAGMA) project, which aims
to develop a dense linear algebra library similar to LA-
PACK but for heterogeneous architectures [18]. MAGMA
has several functionalities targeting corresponding types of
problems, including dense, sparse, native and hybrid. Their
assumptions of problem size and hardware are different.
The hybrid functionality exploits both the CPU and the
GPU hardware for large problems. The native functionality
only exploits the GPU for large problems. The batched func-
tionality solving many small problems is recently integrated
as MAGMA batched. Throughout this paper, our batched
routines are named as MAGMA batched routines.

4.1 Batched BLAS Kernel Design

In a batched problem solution methodology that is based
on batched BLAS, many small dense matrices must be
factorized simultaneously, meaning that all the matrices will
be processed simultaneously by the same kernel.

4.1.1 Two-level Parallelism and Device-kernel Mode

Our batched BLAS kernels do not make any assumption
about the layout of these matrices in memory. The batched
matrices are not necessarily stored continuously in memory.
The starting addresses of every matrix is stored in an array
of pointers. The batched kernel takes the array of pointers as
input. Inside the kernel, each matrix is assigned to a unique
batch ID and processed by one device function. Device
functions are low-level and callable only by CUDA kernels
and execute only on GPUs.

The device function only sees a matrix by the batched ID
and thus still maintains the same interface as the standard
BLAS. Different from [10] where one thread is used for one
matrix factorization, each matrix problem is still parallelized
by CUDA threads in our design. Therefore, our batched
BLAS is characterized by two levels of parallelism. The first
level is the task-level parallelism among the independent
matrices that are simultaneously processed. The second
level of fine-grained data parallelism is per each matrix
to exploit the SIMT architecture through device functions.

The device function is templated with CUDA C++. The
settings (thread blocks size, tile size, see Section 5.2) are
stored in C++ template parameters. Figure 2 shows that the
same GEMYV device function can be called by multiple ker-
nels, standard /batched GEMV and LABRD, TRSV kernels.
(Standard GEMV targets a large matrix instead of many
small ones.) We use auto-tuning techniques (see Section 5.2)
to find the best setting for each type of kernel. Only one
copy of device function is maintained, and optimization of
the GEMV device function other than setting will propagate
to upper kernels.

Multiple device functions can be called in one kernel.
The usage of device functions allows multiple BLAS rou-
tines to be merged easily in one kernel without demod-
ulizing the BLAS-based structure of LAPACK algorithm.
Because device functions preserve the BLAS-like interface,
the BLAS-based structure can be gracefully maintained.
Multiple device functions can load data from the same
shared memory to improve data reuse. In order to do it,
we propose a big-tile setting which will be described in next
section.

vbatched_G
_kernel

batched| setting

big-tile setting //vbatched setting
e

(fat/tall matrices)

batched_LABRD
_kernel(s)

batched setting GEMV_devIce

(square matrix) ~.magma standard

standard
GEMV_kernel

big-tilg setting

batched_TRSV
_kernel

Fig. 2. The same GEMV device function is called by various kernels.
The setting information is stored in C++ template parameters. vbatched
is for batched matrix computation of variable sizes. See Section 5.3

4.1.2 Data Reuse and Degrees of Parallelism

As an important feature in CUDA programming, the fre-
quent accessed data is loaded in shared memory to perform
computation as much as possible before copying back to
the GPU main memory. However, shared memory is private
per thread block. In standard one large matrix problem, the
matrix is divided into tiles with each tile loaded in shared
memory. Different thread block accesses the tiles in an
order determined by the algorithm. Synchronization of the

4

computation of the tiles is accomplished by ending and re-
launching kernels. When one kernel exits, the data in shared
memory has to be copied back to the GPU main memory
as the shared memory will be flushed. Therefore, the data
dependency is resolved by synchronization of these kernels
in the GPU main memory (device memory). However, in
small-sized batched problems, too many kernel launchings
should be avoided, especially for panel factorization where
each routine has a small workload and a high probability of
data reuse in shared memory.

In our batched design, each matrix is assigned with one
thread block. The synchronization of all threads computa-
tion is accomplished by barriers inside per thread block.
We call this setting big-tile setting. The naming is from this
observation: if the tile is big enough that the whole matrix is
inside the tile, it reduces to the point that one thread block
accesses the whole matrix.

However, compared to the big-tile setting, the classic
setting with multiple thread blocks processing one matrix
has a higher degree of parallelism as different parts of the
matrix are processed simultaneously, especially for large
square matrices. Thus, overall there is a trade-off. Big-tile
setting allows data to be reused through shared memory
readily but suffers a lower degree of parallelism. The classic
setting has a higher degree of parallelism but may lose
the data reuse benefits. The optimal setting depends on
many factors, including the algorithm type and matrix size,
and is often selected by practical tuning. Our experience
shows that for the panel factorization, the big-tile setting
has advantage. While for the big trailing matrix update with
GEMM computation, the classic setting is preferred.

4.2 Batched Bi-diagonalization Implementations on
GPUs

One approach to the batched problems is to consider that
the entire matrix is small enough to fit into shared memory.
However, the implementation of such a technique is com-
plicated for the small problems considered as it depends
on the hardware, the precision, and the algorithm. The
current size of the shared memory is 48 KB per streaming
multiprocessor (SMX) for the high-end NVIDIA K40 (Ke-
pler) GPUs, which is a low limit for the amount of batched
problems data that can fit at once. Completely saturating
the shared memory per SMX can decrease the memory-
bound routines” performance since only one thread-block
will be mapped to that SMX at a time. Due to a limited
parallelism in a small panel’s factorization, the number of
threads used in the thread block will be limited, resulting in
low occupancy, and subsequently poor core utilization. The
advantages of multiple blocks residing on the same SMX is
that the scheduler can swap out a thread block waiting for
data from memory and push in the next block that is ready
to execute [20]. This process is similar to pipelining in CPU
to hide the device memory access and latency.

We found that redesigning the algorithm to use a small
amount of shared memory per kernel (less than 10KB) not
only provides an acceptable data reuse but also allows many
thread-blocks to be executed by the same SMX concurrently,
thus taking better advantage of its resources. See Figure 3.

For good performance of Level 3 BLAS in trailing matrix
update, panel width nb is increased. Yet, increasing nb in-

creases tension as the panel is a sequential operation because
a larger panel width results in larger Amdahl’s sequential
fraction. The best panel size is usually a trade-off product
by balancing the two factors and is obtained by tuning. We
discovered empirically that the best value of nb for one-
sided factorizations is 32, and 16 or 8 for two-sided bi-
diagonalization. A smaller nb for two-sided is better because
the panel operations (mainly GEMV operations) in two-
sided factorization are more significant than that in one-
sided.

Factored part of A" Factored part of A" Factared part of A"

Factored part of A" Factored part of A'
0

Factored part of A"
0

Trailing o | Trailing | Taiing o | Traiting » | Traing
1 [T b G 1 [T

.'-EE

P o # # P
N '3 N 4 R v

SM-0 SM-1 SM-N
[ropmor]| |[_resmer]
7 7 oo e
]| BT
I B |

| Global Memory |

Fig. 3. Multiple factorizations reside on one streaming-multiprocessor to
allow the scheduler to swap to hide the memory latency.

GEBRD panel: Provides the batched equivalent of LA-
PACK’s LABRD routine to reduce the first nb rows and
columns of a m by n matrix A to upper or lower real
bidiagonal form by a Householder transformation, and
returns the matrices X and Y that later are required to
apply the transformation to the unreduced trailing matrix.
It consists of nb steps where each step calls two routines
generating Householder reflectors (LARFG), one for column
and one for row Householder reflector, and a set of GEMV
and scaling SCAL routines. The LARFG involves a norm
computation followed by a SCAL that uses the results of the
norm computation in addition to some underflow /overflow
checking. The norm computation is a sum reduce and thus
a synchronization step. To accelerate it, we implemented
a two-layer tree reduction where for sizes larger than 32,
all 32 threads of a warp progress to do a tree reduction
to reduce to 32 elements. The last 32 elements are reduced
to one by only one thread. The Householder reflectors are
frequently accessed and are loaded in shared memory. A set
of GEMV routines are called to update the rest of panel
and matrices X and Y. Since there are nb steps, these
routines are called nb times; thus, one can expect that the
performance depends on the performances of Level 2 and
Level 1 BLAS operations. Hence, it is a slow, memory-bound
algorithm.

Trailing matrix updates: For Householder GEBRD, the
update is achieved by two GEMM routines with the re-
turned matrices X and Y from panel factorization. The first
one is a GEMM with a non-transpose matrix and a transpose
matrix (A = A -V =Y’), followed by another GEMM
with a non-transpose matrix and a non-transpose matrix
(A= A— X «U'). The update is directly applied on trailing
matrix A. However, for small matrices it might be difficult to
extract performance from very small Level 3 BLAS kernels.

5 AUTO-TUNING

The efforts of maximizing BLAS, especially GEMM, perfor-
mance generally fall into two directions: writing assembly
code and the source level code tuning. The vendor libraries
(e.g. Intel MKL, AMD ACML, NVIDIA CUBLAS) supply
their own routines on their hardware. To achieve perfor-
mance, the GEMM routine is implemented in assembly
code, like the CUBLAS GEMM on Kepler GPUs. The assem-
bly code usually delivers high performance. A disadvantage
is that it is highly architectural specific. The vendors main-
tain the performance portability across different generations
of their architectures [21].

Another direction is to explore the source level code
auto-tuning to achieve optimal performance. Different from
assembly code, source code auto-tuning relies on the com-
pilers to allocate registers and schedule instructions. The
advantage is source code is architecturally independent and
is easy to maintain. Our effort focuses on source code auto-
tuning.

5.1 Batched Level 3 BLAS GEMM

Linear algebra routines’ performance highly reply on the
Level 3 BLAS GEMM. The trailing matrix update of bi-
diagonalization is GEMM operations. Our batched GEMM
is modified from the standard MAGMA GEMM [22]. The
template parameters of our batched GEMM include the
number of threads, the size of shared memory, and the data
tile size. Therefore, the search space size is DIM-X * DIM-Y *
BLK-M * BLK-N * BLK-K. The search space is big but can be
powerfully pruned by constraints. The derived constraints
of the search space include correctness as well as hard-
ware constraints and soft constraints. Hardware constraints
stem from the realities of the accelerator architecture, like
registers and shared memory size. Based on these metrics,
invalid kernels violating the hardware requirement (like
exceeding 48KB shared memory) will be discarded. The
constraints may be soft in terms of performance. We require
at least 512 threads per GPU SM to ensure a reasonable
occupancy.

Figure 4 shows our batched DGEMM (denoted as the
MAGMA batched) performance against other solutions after
auto-tuning. The number of matrices is 400. The best CPU
solution is to parallelize with 16 OpenMP threads on a 16-
core Sandy Bridge CPU. Its performance is stable around
100 Gflop/s. In the non-batched GPU solution, it is solved
by a loop over the 400 matrices by calling Standard GEMM
routine, where the GPU sequentially processes each matrix
and relies on the multi-threading per matrix to achieve
performance. The non-batched curve linearly grows below
size 320 and catches up with CUBLAS batched GEMM
around size 448. Our MAGMA batched GEMM outperforms
other solutions. It is 75 Gflop /s or 30% faster than CUBLAS
on average and more than 3x faster than the CPU solution.

Note that batches of small matrices cannot achieve the

same FLOPS as one large matrix. One n? matrix performs

n® operations, but k? small (%)2 matrices only perform

3
kJQ(%)3 = % operations with the same input size [23].

TABLE 1
Parameter searching space: DIM-X and DIM-Y denote the number of
threads per thread block. BLK-M(N,K) denotes the data tile size. Tiling
in the reduction dimension of GEMV transpose (GEMVT) and GEMV
non-transpose (GEMVN) is not applicable. GEMV does not have a third
dimension BLK-K.

Name DIM-X | DIM-Y | BLK-M BLK-N BLK-K
GEMM v v v v v
GEMVN v v V(x) n/a n/a
GEMVT v v n/a V(o) n/a
50 Batched DGEMM batchCount=400, K=32
«— GPU:MAGMA_Batched
400+{ — GPU:Standard
~—— GPU:CUBLAS_Batched
350r{ —— CPU:16 OMP Threads

A

A

o

Fig. 4. Performance of our batched DGEMM (K=32) vs. other solutions
on CPUs or GPUs.

5.2 Different Batched Level 2 BLAS GEMV instances
Tuning

In matrix-vector multiplication using a non-transpose ma-
trix (GEMVN), a reduction is performed per row. Each
thread is assigned to a row and a warp of threads is as-
signed to a column. Each thread iterates row-wise in a loop
and naturally owns the reduction result. Since matrices are
stored in column-major format, the data access by the warp
is in a coalescing manner in GEMVN. However, in GEMV
using a transpose matrix (GEMVT), the reduction has to be
performed on each column. Assigning a thread to a column
will make the reduction easy but lead to memory access
in a striding way. To overcome the non-coalescing problem
in GEMVT, a two-dimension thread block configuration is
adopted.

Threads in x-dimension are assigned per row. These
threads access row-wise to avoid the memory non-
coalescing penalty. A loop of these threads over the column
is required in order to do the column reduction in GEMVT.
Partial results owned by each thread are accumulated in
every step of the loop. At the final stage, a tree reduction
among the threads is performed to obtain the final result,
similar to MPI_REDUCE.

Threads in y-dimension are assigned per column. A
outside loop is required to finish all the columns. Threads in
x-dimension ensure the data access is in a coalescing pattern.
Threads in y-dimension preserve the degree of parallelism,
especially for the wide matrix (or called fat matrix, with both
terms being interchangeable throughout this paper) where
the parallelism is more critical to performance.

For the GEMVN, if there is only thread in y-dimension,

6

the result will be accumulated naturally in one thread
falling back to the previous case; otherwise, a final reduction
among threads in y-dimension is demanded.

The matrices can be in different shapes, like wide with
row m >> column n, or tall with m << column n or square
with m = n. There are 13 GEMV instances in one step
of BRD panel factorization (see Table 2). The overall BRD
performance highly relies on efficient implementations and
tuning of these GEMV instances. By auto-tuning, the four
precisions, complex/real and double/single, are automati-
cally tackled.

TABLE 2
Different GEMV instances needs to be optimized

Number of calls | Wide matrix | Tall matrix | Square
GEMVN 1 6 1
GEMVT 2 2 1

dgemv batched fat16

20 T T T T T T T T T T T T T T T

Performance bound
lagma id5:8 16 10000
agma id6:8 32 10000 -----e-
lagma id4:8 8 10000
lagma id7:8 64 10000

lagma id12:16 16 10000
0 L L i i i i i i i ; C > ! .

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
matrix size

Fig. 5. Tuning results of batched DGEMVT in a wide matrix instance with
row M = 16 but different columns. It is a big-tile setting with BLK-N as
oo, where we put 10000 as a big number.

5.3 Batched Problems of Variable Matrix Size

Applications like Geographic Information System (GIS)
need to calculate a set of matrices. For each GIS object, an
independent matrix is associated with it. The matrix size
may be different since the geometric shape of objects varies.
The batched problem with variable matrix size is another
class of problems. The use of device function makes the
implementation of variable batched algorithms easy in our
two-level parallelism design of batched BLAS (see Section
4.1).

We consider a variable-sized batched GEMV as an exam-
ple to explain our implementation. Different from uniform-
sized problem, each matrix has different metadata, like sizes
and leading dimension. Inside each kernel, each matrix is
assigned a unique batch ID and called by a device function.
Each device function only takes care of one matrix and its
associated metadata.

The main challenge of variable-sized problem is that the
optimal setting for one matrix size may not to be optimal for
another. In CUDA, when a kernel is launched, the number
of threads per thread block is fixed if without using dynamic

parallelism, indicating the same setting for every matrix. We
pick up one setting optimal for the most ranges of sizes.
Yet, some matrices are not running at the optimal speed,
especially if the size distribution is in a worst case of random
distribution. Figure 6 describes two batched problems with
uniform size and random size, respectively. The matrices
are square and the number of them is 1000. For uniform
curve, M in x-axis denotes the matrix size, which is the
same for all 1000 matrices. For random curve, M refers
to the maximum size of the 1000 matrices. For example,
M = 256 on the x-axis indicates 1000 random matrices
with their row/column ranging from 1 to 256. The value
of y-axis denotes the 1000 uniform/random size matrices’
overall performance in Gflop/s. The uniform curve grows
fast below size 128 and levels off in performance beyond
128. Below size 192, there is an obvious gap between the
two curves since small matrices in the random problem are
not running at the speed of biggest size M. Above 192, the
gap becomes smaller and the random curve also levels off,
as more matrices run at the speed of bigger size.

10 Batched ZGEMV No Transpose batchCount=1000

]
80 e et S
B and Ve

Gflop/s
2
\
\\

40
7
7/
/
20
/

/
/ ~—— Uniform Size
/ ~—— Random Size

64 128 192 256 320 384 448 512

Fig. 6. Performance of batched GEMV in double complex precision with
uniform size and random size, respectively.

6 PERFORMANCE

We conducted our experiments on a multicore system with
two 8-cores socket Intel Xeon E5-2670 (Sandy Bridge) pro-
cessors with each running at 2.6 GHz. Each socket has a
shared 20 MB L3 cache, and each core has a private 256 KB
L2 and a 64 KB L1 cache. The system is equipped with 64
GB of memory and the theoretical peak in double precision
is 20.8 Gflop/s per core, i.e., 332.8 Glop/s in total for the
two sockets. It is also equipped with an NVIDIA K40c GPU
with 11.6 GB GDDR memory per card running at 825 MHz.
The theoretical peak in double precision is 1,430 Gflop/s.
The GPU is connected to the CPU via PCle I/O hubs with 6
GB/s bandwidth.

In our testings, we assume the data already resided in the
processor’s memory. Unless explicitly noted, the memory
transfer time between processors is not considered. We
believe this is a reasonable assumption since the matrices
are usually generated and processed on the same processor.

7

For example, in the high order FEMs, each zone assembles
one matrix on the GPU. The conjugation is performed
immediately, followed by a batched GEMM. All the data
is generated and computed on the GPU.

6.1 Performance of Forward/Backward Substitution

Different solutions of batched forward substitutions (solving
Az = b, where A is triangular, and b is a vector) in
double precision (DTRSV) is shown in Figures 8. Back-
ward substitution has the similar behavior. The solution
of inverting matrix A and then solving it with a GEMV
routine (r = A~1'b [24]) proves to be the slowest because
inverting matrix is expensive. An implementation using
CUBLAS TRSM routine (solving Ax = B, where B is a
matrix) is to call dtrsmBatched. By setting the number of
column 1, the right-hand side matrix B is reduced to a
vector, and the TRSM routine is reduced to TRSV. The per-
formance of CUBLAS dtrsmBatched levels off at 12 Gflop/s
beyond size 320. Our two implementations, one-level block-
ing and recursive blocking, scale with the size and reaches
30 Gflop/s and 34 Gflop/s, respectively. Recursive blocking
is comparable or better than one-level blocking most of the
time in performance. In the blocking algorithm, the solution
vector z is loaded in shared memory. The required shared
memory is proportional to the size of z. The blocked curve
shakes down after size 512 because over shared memory
usage decreases the occupancy of GPU SMX. The recursive
algorithm blocks the shared memory usage of = to a fixed
size 256. Beyond 256, x is recursively blocked and solved. It
overcomes the shaky problem and continues to scale beyond
size 512.

Batched DTRSV batchCount=1000,Forward

— MAGMA_DTRSV_REC_BLOCKING
— MAGMA_DTRSV_BLOCKING

~— DTRSV(Inverse) 7
=—s CUBLAS_DTRSM(N=1)
~—— CPU:16 OMP Threads A Nt

35

30

A~

Gflop/s
N

1 - e ot
/ i e e e
A e s apapeseet
P pos

64 128 192 256 320 384 448 5|\142 576 640 704 768 832 896 960

Fig. 7. Performance in Gflops/s of different solutions of batched DTRSV
(forward substitution) for different matrix sizes

6.2 Performance of Bi-diagonalization

The total time of bi-diagonalization (GEBRD) includes the
time spending on GEMV and GEMM. The total floating
point counts of GEBRD is 8n®/3 [?] assuming the matrix
is of size n by n. The performance of GEBRD (in flop/s) can
be calculated by the following equation:

8n3/3
(GEBRDyery)

_ an3/3
 (GEMVyery)

4n3/3
(GEM Mpery)

Batched DTRSV batchCount=1000,Backward

— MAGMA_DTRSV_REC_BLOCKING
— MAGMA_DTRSV_BLOCKING

~— DTRSV(Inverse)

=—s CUBLAS_DTRSM(N=1)

~—— CPU:16 OMP Threads /\\/

an

Gflop/s
N

1 as .
Yy et e I O =

S N SRS PO

s P

A
~ 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960
M

Fig. 8. Performance in Gflops/s of different solutions of batched DTRSV
(backward substitution) for different matrix sizes

By reforming it, we get

2 % (GEMViyeys) % (GEM Mgy 5)
(GEMVpers) + (GEM Mperg)

From Figure 4 and 10, by averaging all size, the GEMM
is 7x faster than GEMYV. Therefore, we obtain

(GEBRDpert) =

T(GEMVpers)
4

Since the performance of GEMV at size 512 on K40c
is around 40 Gflop/s, the GEBRD will be bounded by 70
Gflop/s according to the equation.

Figure 12 demonstrates the performance improvement
progress of our implementation. The non-blocked version
rich in Level 2 BLAS operations does not scale any more
after size 256. The first non-optimized blocked version fol-
lows the LAPACK’s two-phase implementation as depicted
in Algorithm 1 in which the trailing matrix is updated with
Level 3 BLAS operations. Additional memory allocation
overhead has to be introduced in order to use the array of
pointers interfaces in the blocked algorithm. Below size 224,
the performance of version 1 is even slower than the on-
blocked due to the overhead. Beyond 224, it starts to grow
steadily because of GEMM performance.

The main issue of the first blocked version is that GEMV
routines are not optimized for all the instances in Table
2. By tuning these GEMV routines as described in Sec-
tion 5.2, the performance is doubled in version 2. These
GEMV routines are called in the form of device functions
in the panel factorization kernel. The column/row vector
of Householder reflectors and the to-be-updated column in
matrices X and Y are repeatedly accessed at each step. We
load them into fast on-chip shared memory. In order to reuse
and synchronize data in shared memory, one matrix can not
span multiple thread blocks. Therefore, we adopt the big-tile
setting to call these GEMV device functions.

As discussed in Section 4.1.2, there is a trade-off between
data reuse (with big-tile setting) and the degree of paral-
lelism (with classic setting). As demonstrated in Figure 9,
the classic setting is 5Gflop/s faster than big-tile setting for
square matrix at size 512 without considering any shared

(GEBRD,e,) ~

8

memory effect. Yet, the classic setting can not fully take
advantage of shared memory due to spanning thread blocks.
By taking into account of shared memory, we found there is
a switch over at size 128 for square matrix computation. We
adopt classic setting beyond size 128 and big-tile for size
less than 128. The big-tile setting is still adopted for other
wide/tall instances no matter the size is because the data
caching proves to be more important. By this switch-over,
the performance of version 3 boosts to 50 Gflop/s from 40
Gflops in version 2 at size 512 after we adopt this technique.

S0 Batched DGEMV Transpose batchCount=1000

0 prry Sadd su
4 / | i
‘Wﬂw_ﬂ%ﬂ* il
W Vi [
30
i
2
l
1

FRTY
o

%

Gflop/s

— classic-setting
— bigtile-setting

64 128 192 256 320 384 448 512

Fig. 9. Performance of batched DGEMVT kernels of square matrix with
two settings. The matrices and vectors are loaded from device memory.
In GEBRD, the GEMV (in the form device functions) may read/write data
from shared memory in the big-tile setting. Each matrix is processed by
multiple thread blocks in classic-setting but only one thread block in big-
tile setting.

By profiling the GEMV time in GEBRD step by step, we
find it does not match the optimal performance obtained in
our auto-tuning. In Figure 10, the blue curves depicts the
performance of GEMV transpose of double precision with
every matrix being aligned in memory. However, when the
algorithm iterates the sub-matrix as in GEBRD factorization,
the starting address may not be aligned (green curve). The
performance curve fluctuates because when the starting
address of the sub-matrix is aligned in memory, the peak
performance is reached; otherwise, it drops drastically. The
fluctuation is more serious for bigger matrices since most
threads are mis-aligned as more threads are used in large
size.

To overcome the fluctuation issue, we adopt a padding
technique. The starting thread always reads from the recent
upper aligned address. It introduces extra data reading.
The extra reading is up to 15 elements per row because
16 threads fit in an aligned 128-byte segment as a double
element is of 8 byte. Although more data is read, it is
coalescing that the 128-byte segment can be fetched by only
one transaction. Overall the number of memory transactions
is reduced as shown in Figure 11. Since the transactions de-
creases, the bandwidth is improved accordingly. By padding
the corresponding elements in the multiplied vector as
zeros, extra results are computed but finally discarded in the
writing stage. Figure 10 show that our padding technique
enables the GEMYV in the GEBRD algorithm to run at a speed
close to the aligned address’ speed.

Batched DGEMV Transpose batchCount=1000

40 g ﬂ'}) 5.4 W
35 r{AJAtFVJ“?FH\\HHh
A

% et ALl A
25 !
SD20 ’

15

1

j — aligned
5 — mis-aligned
~— pad
0 64 128 192 256 320 384 448 512

Fig. 10. Performance of batched DGEMV (transpose) in three situations:
aligned, mis-aligned, and pad.

Memory Bandwidth and Transactions (10°6)

600
(30)
500 & Pad
200 (49) K Mis-aligned
<
o 300
e (71)
200 (58) (92)
(64)
100
0 “ [— [
L1 L2 Device Mem

Fig. 11. Number of transactions (on top of the bar, in millions) and
bandwidth of L1, L2 cache and device memory (in GB/s) before and
after padding optimization. Memory transactions in L2 is low compared
to other memory types because the L2 cache is designed to be shared
by all SMXs; while each matrix is processed by one SMX independently,
the reuse of L2 cache is very low. Data is collected by CUDA Profiler.

By padding the corresponding elements in the mul-
tiplied vector as zeros, extra results were computed but
finally discarded in the writing stage. By padding, version
4 reaches 56 Gflop/s at size 512 which is 80% of the upper
bound of the performance. Overall, we find the GEMV takes
90% of the total time, GEMM takes 10% at size 512, though
both take half of the floating-point operations.

7 APPLICATION

BLAST is a software package simulating hydrodynamics
problems [25]. The BLAST C++ code uses high-order Finite
Element Method (FEM) in a moving Lagrangian frame to
solve the Euler equations of compressible hydrodynamics.
It supports 2D (triangles, quads) and 3D (tets, hexes) un-
structured curvilinear meshes.

On a semi-discrete level, the conservation laws of La-
grangian hydrodynamics can be written as [25]:

d
Momentum Conservation: Mvd—‘t, =-F-1, 1)
d
Energy Conservation: £ = MglFT v, (2)
d
Equation of Motion: X v, 3)

a:

MAGMA DGEBRD,BatchCount = 1000

CPU
non-blocked
blocked v1
blocked v2
blocked v3
blocked v4 —
40 g

60

50

PIT1TI

Gflop/s

30

’ ' e
: P S e
7 o -
Y/ /‘/‘ —
1 0 *

S S S
%2 128 224 320 416 512

Fig. 12. Performance progresses of different versions of batched DGE-
BRD on a K40c GPU.

where v, e, and x are the unknown velocity, specific inter-
nal energy, and grid position, respectively. The kinematic
mass matrix My is the density weighted inner product of
continuous kinematic basis functions and is therefore global,
symmetric, and sparse.

We solve the linear system of (1) by using a pre-
conditioned conjugate gradient (PCG) iterative method at
each time step. We solve the linear system of (2) by pre-
computing the inverse of each local dense matrix at the
beginning of a simulation and applying it at each time step
using sparse linear algebra routines.

F, called the generalized force, depends on the hydro-
dynamic state (v, e, x), and needs to be evaluated at every
time step. F is a tensor of rank-3 and can be assembled from
the generalized corner force matrices {F .} computed in every
zone (or element) of the computational mesh. Evaluating F,
is a locally FLOP-intensive process based on transforming
each zone back to the reference element where we apply a
quadrature rule with points {{x} and weights {ay }:

F.)i; = : Vi) ¢
(F.):; /M)w i) 6

Y ad (@) TN @) V(G 65(@) (@) @)
k

where, J, is the Jacobian matrix, and the hat symbol
indicates the quantity is on the reference zone. Each zone
computes a component of the corner forces associated with
it independently. A local corner force matrix F, can be
written in a compact GEMM form

F.=A.BT,
with

(Az)ik = awd (k) = T2 (@) Vi(Gk) [T=(Gk), (5)

and
(B)jk = 6;(dk) - (6)
Therefore, in the CPU code, F is constructed by a loop over

zones (for each z) in the domain with each zone is associated
with a GEMM problem for F.

Finite element zones are defined by a parametric map-
ping ®, from a reference zone. The Jacobian matrix J,
is non-singular. Its determinant |J,| represents the local
volume. The stress tensor 5(gk) requires evaluation at each
time step and is rich in FLOPs at each quadrature point (see
[25] for more details).

A finite element solution is specified by the order of the
kinematic and thermodynamic bases, Q;-Qr—1 with k > 1.
By increasing the order of the finite element method, &k, we
can arbitrarily increase the floating point intensity of the
corner force kernel of (4) as well as the overall algorithm
of (1) - (3). The corner force computation only takes 10%
amount of the code but takes more than 60% of the running
time.

7.1 CUDA Implementation

Our implementation has two layers of parallelism: (1) MPI-
based parallel domain-partitioning and communication be-
tween CPUs; (2) CUDA based parallel corner force calcula-
tion on GPUs inside each MPI task.

We redesigned the corner force CPU code into CUDA
code. The key observation is the rich rank-3 tensor opera-
tions in the right hand side can be translated into batched
matrix operations. A tensor is a 3-dimensional array. A
matrix stores two dimension (not necessary the first two di-
mensions), while the batch number (not necessary the third
dimension in the array) can be viewed the last dimension.
For example, F can be viewed as batched F,. The number
of batches is number of zones. Therefore, in the GPU code,
F can be computed by a batched GEMM given A, and B
are ready.

We identify three important properties of batched prob-
lem. First, to allow parallel execution, these matrices must
be independent. Otherwise, they still have to be solved
with a loop. Second, the size of them should be small. If
the matrix is big enough to saturate the GPU, the batched
launching will fall back to sequential launching (see Fig-
ure 4, the cuBLAS batched GEMM merges with standard
GEMM at size 512). Third, the batch number should be large
to allow a higher degrees of parallelism to hide the memory
latency.

The challenge is to recognize batched matrices to satisfy
these properties in a 3-dimension tensor in A, (see Eq 5).
For example, a batched GEMM is involved in computing
(k). The number of batch is number of points which
is much bigger than zones. Moreover, there are different
choices to organize the matrix products because the matrix
multiplications are associative, which further complicates
the implementation. For example, A% B*C can be organized
as either A * (B * C) or (A * B) % C. Although they are the
same mathematically, they might be drastically different in
performance. In our optimal implementation, we designed
six batched kernels 1-6. Kernel 4-8 are characterized by
batched DGEMM or DGEMYV routines as shown in Table
3 . Depending on the order of the methods, most matrices
are with size ranging from 2 to 126.

In our CUDA code development, we also developed a
base implementation. The base implementation is a simple
kernel only exploring the task level parallelism (each matrix
problem is considered as a task) but each matrix problem

10

is still sequentially solved by one thread. In addition to the
task level parallelism, the optimal solution explore the fine-
grained data parallelism per matrix with multi-threading.
The related optimization techniques of configuring thread
blocks and shared memory are similar to those in Section
5.1 and 5.2.

TABLE 3
Optimal Implementations of the BLAST code on GPUs. Kernel 9 is a
set of kernels instead of one single kernel.

No. Kernel Type Purpose
1 custom kernel SVD,Eigen,Ajugate
2 custom kernel EoS, 5(qx)
3 batched GEMM Vi (G), I (Gi)
4 batched GEMM 5(q)
5 batched GEMM Auxiliary
6 batched GEMM Auxiliary
7 batched GEMM A.BT
8 batched GEMVN —-F-1
10 | batched GEMVT FT.v
9 CUDA_PCG Solve linear system(1)
11 SpMV Solve linear system(2)

We profile the bandwidth of the base and optimized ker-
nels on a K20c GPU. Figure 13 shows the bandwidth of all
the three level memory, from on-chip memory L1/Shared,
off-chip L2 to device memory. All the optimized kernels ex-
ceeded the base implementation in bandwidth of L1/Shared
and device memory except kernel 3 which instead achieved
very high bandwidth in L1/shared memory. The four op-
timized batched kernels (kernel 3-6) achieved much higher
bandwidth in L1/Shared memory as they exploited shared
memory a lot. Because on-chip memory is much faster
than off-chip memory, the bandwidth of on-chip memory
is more critical to performance. Again, batched kernels do
not achieve high bandwidth in L2 cache compared to non-
batched Kernel 1 and 2 as discussed in Section ??.

1000} HlL1/Shared| |
e

800+ Il Dsvice
©» 600+
i)
O]

400+

200+

kernel 1 kernel 2 kernel 3 kernel 4 kernel 5/6 Base

Fig. 13. Memory bandwidth of base and optimized kernels. The theoret-
ical peak bandwidth of device memory of K20 is 208GB/s.

Kernel 8 and 10 are batched DGEMV. An implementa-
tion involving CUBLAS is to put cublasDgemv in streams,
as recommended in the User Guide [23] since there is no
batched DGEMV routine in CUBLAS. However, the per-
formance is very poor, as shown in Table 4. Our kernel is
90x faster than that of cublasDgemv, achieving 50 % of
theoretical peak performance of batched DGEMV on C2050.
The theoretical peak performance of DGEMYV is one fourth
of bandwidth because it reads a 64-bit (8-byte) element and
only performs two operations (one multiplication and one
adding).

We also developed a custom conjugate gradient solver
(kernel 9) to solve Equation (1) as {My } is a sparse matrix.
It is with a diagonal preconditioner (PCG) [26]. It is con-
structed with CUSPARSE SpMV and cublasDdot [27]. The
CUDA-PCG solver is outside of corner force. Kernel 11 is a
sparse matrix-vector multiplication routine in CUSPARSE.

TABLE 4
Custom kernel 8 and streamed cublasDgemv implement batched
DGEMV on one C2050. In this test case, each small matrix is 81 by 8
and each vector is 8. The number of matrices is 4096.

theoretical
35.5

streamed cublasDgemv | kernel 8
Gflop/s 0.2 18

7.2 Single Node Performance and Scalability

In our test, the CPU is a Intel 8-core Sandy Bridge E5-2670
and the GPU is a K20c GPU. We consider a Q2-Q)1 and a (Q4-
Q3 method. Only corner force component is accelerated on
GPU (noted as core speedup). The other parts are still per-
formed on the CPU. Table ?? shows the speedup achieved
by the CPU-GPU over the CPU only. The core speedups are
5x and 3x for the Q2-Q)1 and Q4-Q)3 method, respectively.
However, the overall speedups are 1.9x and 2.5x, because
the corner force take a more significant portion in Q4-Q3
methods.

We tested our code on the ORNL Titan supercomputer,
which has 16 AMD CPU cores and one K20m GPU per node.
We scaled it up to 4096 computing nodes. Eight nodes is
the base line. For a 3D problem, one more refinement level
increases the domain size 8 x. We achieved weak scaling by
fixing the domain size 512 for each computing node and
increasing 8x more nodes for every refinement step. From
8 nodes to 512 nodes, the curve is almost flat in Figure 14.
From 512 nodes to 4096 nodes, 5-cycle time increases from
1.05 to 1.83 seconds. The limiting factor is the MPI global
reduction to find the minimum time step after the corner
force computation and MPI communication in MFEM (Step
5 in Section 7).

Weaking Scaling on ORNL Titan

Time(s)

8 64 512 4096
Computing Nodes

Fig. 14. Weak scaling of the BLAST code on the Titan supercomputer.
The time is of 5 cycles of steps.

8 CONCLUSIONS AND FUTURE WORK

GPU Improvements have been observed extensively on
large dense and sparse linear algebra problems which have
more data parallelism. Small problems taking advantage
of CPU cache reuse can be implemented relatively easily

11

for multicore CPUs. On the other hand, the development
of small problems on GPUs is not straightforward. We
demonstrated that with a batched approach, small problems
can have an advantage over CPUs, as well.

For batched linear algebra problems, we designed
batched BLAS CUDA kernels. We propose one-matrix-
visible device functions as the underlying components of
batched kernels. The use of device functions allows the data
to be easily reused through shared memory, which is critical
to panel factorizations performance in advance routines,
but without demodulizing the BLAS-based structure. The
device functions are CUDA C++ templated. Auto-tuning
is used to help find the optimal setting for different types
of kernels. Since device function only sees one matrix, the
variable sized batched problem is easily extended from
uniform sized problems.

We consider a batched two-sided bi-diagonalization
and a batched triangular solve problem based on the
batched BLAS approach. They are optimized for coalescing
and alignment to improve the GPU memory throughput.
Other solutions of batched triangular solves are also ex-
amined. Our best implementation achieves 3x speedups
compared to optimal MKL implementations on two Intel
Sandy Bridge CPU. Compared with NVIDIA CUBLAS rou-
tines, our triangular solve achieves up to 2.8x speedups.
For a memory-bound Householder bi-diagonalization, we
achieve 56Gflop/s, 80% of the theoretical performance
bounded by GEMV on a K40c GPU. Our methodology ap-
plies to other two-sided factorizations as well, for example,
Hessenberg reduction using Level 2 BLAS GEMV and tri-
diagonalization using Level 2 BLAS SYMV.

Furthermore, we redesigned a real world hydrodynamic
application with the batched methodology onto CPU-GPU
systems. The tensor operations are translated into batched
BLAS GEMV and GEMM operations. By changing less 10%
of the code, we see 1.9 to 2.5x speedups compared to CPU
only code. Compared to a base implementation, our optimal
implementation is twice faster and lowers the power by
10% by efficiently utilizing the on-ship GPU memory. Weak
scaling is achieved up to 4096 computing nodes on the
ORNL Titan Supercomputer.

We released and maintained this new functionality
through the MAGMA batched on NVIDIA GPU accelera-
tors. The batched is a GPU-only implementation rather than
hybrid solution. When there is only a single matrix size,
our batched solution is reduced to a GPU native solution.
The native solution can have a performance advantage
over hybrid one where the host CPU is much weaker than
the accelerator. In mobile devices featuring ARM CPUs
with discrete GPUs, the total GPU implementations have
significant advantages in both energy consumption and
performance [33].

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation,
the Department of Energy, and NVIDIA.

REFERENCES

[1] T.Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra,
“A step towards energy efficient computing: Redesigning a hy-

(2]

(3]

(4]

(5]
6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

drodynamic application on CPU-GPU,” in IEEE 28th International
Parallel Distributed Processing Symposium (IPDPS), 2014.
“Accelerate machine learning with the cudnn
deep neural network library,” 2015, at
http://devblogs.nvidia.com/parallelforall /accelerate-machine-
learning-cudnn-deep-neural-network-library /.

O. Messer,]. Harris, S. Parete-Koon, and M. Chertkow, “Multi-
core and accelerator development for a leadership-class stellar
astrophysics code,” in Proceedings of "PARA 2012: State-of-the-Art
in Scientific and Parallel Computing.”, 2012.

J. Molero, E. Garzon, 1. Garcia, E. Quintana-Orti, and A. Plaza,
“Poster: A batched Cholesky solver for local RX anomaly detection
on GPUs,” 2013, PUMPS.

N. Corporation, https:/ /devtalk.nvidia.com/default/topic/527289/

help-with-gpu-cholesky-factorization-/.
S. Tomov, R. Nath, and]. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in Proc. of the IEEE
IPDPS’10, Atlanta, GA, April 19-23 2014.

“Intel Math Kernel Library,” 2014, available at
http:/ /software.intel.com/intel-mkl/.

“ACML - AMD Core Math Library,” 2014, avail-
able at http://developer.amd.com/tools-and-sdks/cpu-

development/amd-core-math-library-acml.

A. Haidar, T. T. Dong, S. Tomov, P. Luszczek, and]J. Dongarra,
“A framework for batched and gpu-resident factorization algo-
rithms applied to block householder transformations,” in High
Performance Computing - 30th International Conference, ISC High
Performance 2015, Frankfurt, Germany, July 12-16, 2015, Proceedings,
2015, pp. 31-47.

V. Oreste, M. Fatica, N. A. Gawande, and A. Tumeo,
“Power/performance trade-offs of small batched LU based solvers
on GPUs,” in 19th International Conference on Parallel Processing,
Euro-Par 2013, ser. Lecture Notes in Computer Science, vol. 8097,
Aachen, Germany, August 26-30 2013, pp. 813-825.

V. Oreste, N. A. Gawande, and A. Tumeo, “Accelerating sub-
surface transport simulation on heterogeneous clusters,” in IEEE
International Conference on Cluster Computing (CLUSTER 2013),
Indianapolis, Indiana, September, 23-27 2013.

L. Wainwright, “Optimized LU-decomposition with full
pivot for small batched matrices,” April, 2013,
gTC'13 - ID S3069. [Online]. Available: http://on-
demand.gputechconf.com/gtc/2013/presentations/S3069-LU-
Decomposition-Small-Batched-Matrices.pdf

“Introducing batch gemm operations,” 2015, at
https:/ /software.intel.com/en-us/articles/introducing-batch-
gemm-operations.

T. Dong, A. Haidar, S. Tomov, and J. Dongarra, “A fast batched
cholesky factorization on a GPU,” in 43rd International Conference
on Parallel Processing, ICPP 2014, Minneapolis, MN, USA, September
9-12, 2014, 2014, pp. 432-440.

T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov, and J. Don-
garra, “LU Factorization of Small Matrices: Accelerating Batched
DGETRF on the GPU,” in 16th IEEE International Conference on High
Performance and Communications (HPCC 2014), August 2014.

H. Ltaief, P. Luszczek, and]. J. Dongarra, “High performance
bidiagonal reduction using tile algorithms on homogeneous
multicore architectures,” ACM Transactions on Mathematical
Software, vol. 39, no. 3, pp. 16:1-16:22, May 2013. [Online].
Available: http:/ /dx.doi.org/10.1145/2450153.2450154

G. Golub and W. Kahan, “Calculating the singular values
and pseudo-inverse of a matrix,” 1965. [Online]. Available:
http:/ /www.jstor.org/stable /2949777

“Matrix algebra on GPU and multicore architectures (MAGMA),”
2014, available at http:/ /icl.cs.utk.edu/magma/.

“Available at http://developer.download.nvidia.com/assets/
cuda/files/ CUDADownloads/TechBrief-Dynamic-Parallelism-
in-CUDA.pdf,” 2014.

B. Rymut and B. Kwolek, “Real-time multiview human body
tracking using gpu-accelerated pso,” in Int. Conf. on Parallel Pro-
cessing and Applied Mathematics (PPAM 2013), ser. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer-Verlag, 2014.

Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “Augem: Automatically
generate high performance dense linear algebra kernels on
x86 cpus,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
"13. New York, NY, USA: ACM, 2013, pp. 25:1-25:12. [Online].
Available: http://doi.acm.org/10.1145/2503210.2503219

[22]

[23]
[24]

[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]

12

R. Nath, S. Tomov, and J. Dongarra, “An improved magma gemm
for fermi graphics processing units,” Int. |. High Perform. Comput.
Appl., vol. 24, no. 4, pp. 511-515, Nov. 2010. [Online]. Available:
http:/ /dx.doi.org/10.1177 /1094342010385729

“CUBLAS,” 2015, at http://docs.nvidia.com/cuda/cublas/.

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and
J. Dongarra, “From cuda to opencl: Towards a performance-
portable solution for multi-platform gpu programming,” Parallel
Comput., vol. 38, no. 8, pp. 391-407, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2011.10.002

V. Dobrev, T. V. Kolev, and R. N. Rieben, “High-order curvilinear
finite element methods for lagrangian hydrodynamics,” SIAM
J. Scientific Computing, vol. 34, no. 5, 2012. [Online]. Available:
http://dx.doi.org/10.1137 /120864672

M. Naumov, “Incomplete-lu and cholesky preconditioned iterative
methods using cusparse and cublas,” 2011.

“Cusparse,” 2014, at http://docs.nvidia.com/cuda/cusparse/.
“Intel® 64 and IA-32 architectures software de-
veloper’s manual,” July 20 2014, available at

http:/ /download.intel.com/products/processor/manual/.

E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann, “Power-management architecture of the in-
tel microarchitecture code-named sandy bridge,” IEEE Micro,
vol. 32, no. 2, pp. 20-27, March/April 2012, iSSN: 0272-1732,
http://dx.doi.org/10.1109/MM.2012.1210.1109/MM.2012.12.

“Available at https:/ /developer.nvidia.com/nvidia-management-
library-nvml,” 2014.
“Cuda programming guide v5.0,”

http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

J. Choi and R. W. Vuduc, “How much (execution) time
and energy does my algorithm cost?” ACM Crossroads,
vol. 19, no. 3, 49-51, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2425676.2425691

A. Haidar, S. Tomov, P. Luszczek, and]. Dongarra, “Magma
embedded: Towards a dense linear algebra library for energy
efficient extreme computing,” 2015 IEEE High Performance Extreme
Computing Conference (HPEC 2015), 2015.

Tingxing Dong Tingxing Dong obtained a PhD degree in computer
science at the Innovative Computing Laboratory (ICL) at the University
of Tennessee, Knoxville (UTK) in 2015. He received a master degree
in computer science from university of Chinese academy of science
in 2010. His research interests include linear algebra problems and
computational fluid dynamics implementations on hybrid architectures.
He is now a Senior Software Engineer in AMD, Austin, TX.

Azzam Haidar received a Ph.D. in 2008 from CERFACS, France. He
is Research Scientist at the Innovative Computing Laboratory (ICL) at
the University of Tennessee, Knoxville (UTK). His research interests
focus on the development and implementation of parallel linear alge-
bra routines for scalable multi-core architectures, for largescale dense
and sparse problems, as well as approaches that combine direct and
iterative algorithms to solve large linear systems as well as eigenvalue
problems.

Piotr Luszczek is a Research Director at the University of Tennessee.
His research interests are in large-scale parallel algorithms, numerical
analysis, and highperformance computing. He has been involved in
the development and maintenance of widely used software libraries
for numerical linear algebra. In addition, he specializes in computer
benchmarking of supercomputers using codes based on linear algebra,
signal processing and PDE solvers.

Stanimire Tomov received a Ph.D. in Mathematics from Texas A M Uni-
versity in 2002. He is a Research Director in ICL and Adjunct Assistant
Professor in the EECS at UTK. His research interests are in parallel
algorithms, numerical analysis, and high-performance scientific comput-
ing (HPC). Currently, his work is concentrated on the development of
numerical linear algebra software for emerging architectures for HPC.

Jack Dongarra holds appointments at the University of Tennessee,
Oak Ridge National Laboratory, and the University of Manchester. He
specializes in numerical algorithms in linear algebra, parallel computing,
use of advanced computer architectures, programming methodology
and tools for parallel computers. His contributions to the HPC field
have received numerous recognitions including the IEEE Sid Fernbach
Award (2004), the first IEEE Medal of Excellence in Scalable Com-
puting (2008), the first SIAM Special Interest Group on Supercomput-
ing?s award for Career Achievement (2010) and the IEEE IPDPS 2011
Charles Babbage Award. He is a fellow of the AAAS, ACM, IEEE and
SIAM and a member of the National Academy of Engineering.

13

