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Abstract—This work tackles two simultaneous challenges faced

by autotuners: the ease of describing a complex, multidimensional
search space, and the speed of evaluating that space, while
applying a multitude of pruning constraints. This article presents

a declarative notation for describing a search space and a
translation system for conversion to a standard C code for

fast and multithreaded, as necessary, evaluation. The notation
is Python-based and thus simple in syntax and easy to assimilate
by the user interested in tuning rather than learning a new

programming language. A large number of dimensions and a
large number of pruning constraints may be expressed with little

effort. The system is discussed in the context of autotuning the
canonical matrix multiplication kernel for NVIDIA GPUs, where
the search space has 15 dimensions and involves application of 10

complex pruning constrains. The speed of evaluation is compared
against generators created using imperative programming style

in various scripting and compiled languages.

I. INTRODUCTION

The BEAST project follows the classic recipe for automated

software tuning. First, a computational kernel is implemented

and parameterized with a set of tunable parameters (tiling sizes,

implementation options, hardware switches), which define the

search space. Then pruning constraints are applied to trim the

search space to a manageable size. Then the variants that pass

the pruning process are compiled, run and benchmarked, and

the best performers are identified.

In the course of working on the matrix multiplication kernel,

known in the HPC community by its GEMM name in the BLAS

library, we discovered that the search space generation and

pruning process poses some serious challenges in terms of ease

of use and speed of evaluation. This led us to the development

of a declarative, Python-based language for describing the

search space, with pruning constraints, and a translation system

that converts that description to a standard C code, which can

then be compiled with a C compiler, executed at high speed,

and multithreaded for extra performance.

We decided to present the language in the context of the

GEMM kernel, which has the largest and most complex

search space, and the largest and most complex set of pruning

constraints, that we have ever encountered in the course of

our work on many different GPU kernels. Also, we discuss

the work in the context of NVIDIA CUDA, which has been

the main vehicle of our implementations so far, and also, for

simplicity, we focus specifically on the Kepler architecture,

which for many months has been the accelerator of note for

High Performance Computing. We assume that the reader has

some familiarity with CUDA and GPU architecture, as it is

difficult to include these basics due to space limitations.

II. MOTIVATION

The ultimate goal of the BEAST project is to explore the

search space without introducing any arbitrary constraints, but

only those that have sound technical justification. To start

with, we want to have a very large search space, to ensure

that best performing kernels are not missed. We also want to

apply aggressive pruning, to explore that space in the shortest

time, interactively if possible. Thus, we want to make sure that

pruning eliminates only those kernels that have absolutely no

chance of achieving good performance.

Performance engineers commonly apply arbitrary constraints

to the problem dimensions when tuning GPU kernels, for

example, using data sizes and index strides that are a power of

two, and setting upper limits of loops to powers of two. Power-

of-two sizes could be considered reasonable for all kinds of

parameters, because they correlate to hardware specs. What we

strive to accomplish in the BEAST project is to eliminate this

kind of educated guesswork based on the developer’s intuition.

In our view, it is better to replace such arbitrary decisions

with a set of derived constraints that have a direct relation

to performance. One of the best examples here is the GPU

occupancy, which is a function of multiple variables, including:

the number of threads in a block, the number of registers

required by each thread and the amount of shared memory

required by each block. Occupancy threshold is a very effective

and safe pruning constraint, as most kernels have no chance of

achieving good performance at low occupancy levels. One can

think about it as an automated occupancy calculator, which

becomes an integral part of the pruning process, alongside

other constraints.

III. BACKGROUND AND CONTRIBUTIONS

In the past, we used the BEAST methodology to tune

GEMM kernels for the NVIDIA Fermi architecture [1],

[2 ], and achieved substantial performance improvement over

cuBLAS for the double precision complex case (ZGEMM).

We also tuned GEMM kernels for the NVIDIA GTX 680

consumer card, which was the first available card with the

Kepler architecture [3], and achieved substantial performance

improvement over cuBLAS for the single precision complex



case (CGEMM). Recently, we used the BEAST approach to

study energy consumption trade-offs of the GEMM kernel [4].

We also used the BEAST system to produce kernels other

than standard BLAS. Recently, we implemented and tuned

the fastest kernels for the batched Cholesky factorization and

triangular solve for large sets of very small matrices [5] and

achieved between 3× and 5× performance improvement over

cuBLAS. Finally, we applied the methodology to a much

more exotic kernel, the alternating least square algorithm for

collaborative filtering [6] and achieved significant speedups

over CPU implementations of the same operation.

A related development is our work on visualization of

the search space pruning process. We developed a radial,

space-filling technique that allows the user to gain a better

understanding of how the pruning constraints remove candidates

from the search space [7].

Our major contributions include: (1) autotuning toolchain

for specifying, building and testing user-defined kernels for

accelerators; (2) use of familiar Python syntax for search space

specification rather than dedicated Domain Specific Language

(DSL); (3) DAG-based pruning of the search space; and (4)

performance analysis of various language backends for our

code generator.

IV. RELATED WORK

The list of prominent autotuning software projects in-

cludes packages such as Automatically Tuned Linear Algebra

Software (ATLAS) [ 8], and its predecessor, Portable High

Performance ANSI C (PHiPAC) [9] that targeted superscalar

processors with dense linear algebra kernels. Sparse matrix

computations were the main focus of Optimized Sparse

Kernel Interface (OSKI) [10], while FFT and similar trans-

forms were optimized by Fastest Fourier Transform in the

West (FFTW) [11 ] and Spiral [12]. Spiral also recently

addressed matrix-matrix multiply [13]. None of these projects

address autotuning for accelerators, and they mostly embed the

expert knowledge of tuning inside the code rather than expose

it in the form of stencils as BEAST does. DSLs also exist for

the sole purpose of autotuning parallel scientific codes [14],

[15]. A much more complete survey of recent advances in

autotuning is available elsewhere [16].

In our autotuning work and HPC code design, we follow

two particular examples of successful open source solutions

for very efficient matrix-matrix multiplication. One was done

by Volkov et al. [ 17] and the other was done by Nath et

al. [18], [19]. These efforts showed how it was possible to

discover the unknown parameters of the GPU hardware and to

autotune the kernels of interest accordingly. Sadly, the era of

autotuning based on open source software and using openly

available information has ended with the introduction of highly

optimized codes inside NVIDIA’s cuBLAS library that use

assembly instructions and binary codes not available to a regular

user [20, Section 5].

Among the science kernels that have been successfully

standardized, only in the case of dense linear algebra have

r = range( N )
fibonacci = Iterator( [ 1, 1, 2, 3, 5, 8, 13 ] )

Fig. 1. Various forms of iterator definitions in the BEAST language.

@iterator

def inner():
return range( outer )

@iterator

def outer():
if archiecture == Fermi: return range( 32 )

elif archiecture == Kepler: return range( 192 )
elif archiecture == Maxwell: return range( 256 )

ex outer = range( 100 )
ex inner = range( ex outer )

Fig. 2. Deferred iterators that show how dependent iterators are handled in
the BEAST language and their expression-based counterparts.

autotuning techniques been used to achieve reasonable perfor-

mance on new architectures. The performance of the MAGMA

library on GPU-accelerated systems is probably one of the

very few examples of leveraging standards to accelerate legacy

algorithms with moderate recoding/porting effort. But even in

the area of dense linear algebra, the autotuned library offload

model is breaking down. A number of cases can be identified

that arise in the context of hybrid environments but are not

envisioned by the existing standards and not supported by any

libraries, e.g., new matrix layouts, such as the tile layout [21],

higher precision than supported by hardware, such as the

quadruple precision [22], [23], non-IEEE arithmetic, such as

interval arithmetic [24, ch. 9], etc. Consequently, classic library

autotuning approaches (e.g. ATLAS, FFTW) are not addressing

hybrid architectures, and even if they were, the vast majority

of science kernels would be out of their scope as being too

specific to include in a general purpose software library.

A technique called light modular staging [25], [26] recently

was used [27] to port Discrete FFT from the Spiral frame-

work [12] to the Scala’s LMS system [28]. Our approach is

similar in principle in that we use code generation and embed

autotuning DSL (Domain Specific Language) inside the Python

code. Note that we have been doing this before in the context

of the HPC Challenge benchmark [29].

V. ITERATORS

The following parameter iterators exist in the BEAST

language:

• Expression iterators

• Deferred iterators

• Closure iterators (generator-based)

@iterator

def primes():
yield 1

yield 2

n = 3

old primes = list()
while n <= MAX:

for i in old primes:

if n % i == 0:
break

else:

yield n

old primes.append(n)
n += 2

Fig. 3. Closure iterator that generates prime numbers smaller than or equal
to MAX with MAX>= 3.



Expression iterators are defined through Python expressions,

most notably the range() builtin as shown in Figure 1. The

figure shows that the builtin function was overloaded and

accepts not only integers but also other iterators, which

is the basic tool for nesting of iterators and making them

depend upon each other. We cover the intricacies of iterators’

dependence analysis and use in Section X-A. Additional forms

of syntax for expression-based definition of iterators are shown

in Figure 1. The expression syntax extends beyond defining

new iterators and also covers the use of iterator values in

intermediary expressions, which is described in Section VIII.

Finally, expressions involving iterators are the primary way of

defining constraints as described in Section VI.

Deferred iterators may be considered an extension of expres-

sion iterators that allow the developer to use a much broader

set of Python’s constructs in order to achieve more advanced

semantics. This primarily includes operators that cannot be

overloaded in a generic way such as the boolean operators.

Also permitted are the if-elif-else statements that cannot be

achieved through Python’s ternary operator. This extended

syntax possibilities are shown in Figures 2. Another advantage

of deferred iterators is that the order of definitions of iterators is

relaxed. This avoids the requirement that expression iterators

need to be defined in the order that puts the independent

iterators first, the iterators that depend on those second, and

so on. Figure 2 shows two deferred iterators: outer and inner.

The former does not depend on any external variables and

will become the outer loop in the generated code. The latter

depends on the former and needs to become the inner loop

in the generated code. However, the order of definitions of

these iterators in the code can be arbitrary. This is not the

case for the two expression iterators in the figure: ex outer

and ex inner; they have to be defined in the order shown

in the figure or otherwise will cause either NameError or

UnboundLocalError exception because the iterator variable is

used before definition.

Closure iterators are based on Python’s generators and allow

the user to define the most complex iterators as required by

the search space. Figure 3 shows an example of a closure

iterator that iterates over prime numbers smaller than or equal

to MAX. The new values are generated with the Python yield

statement. The return statement or reaching the end of the

function terminates the iteration just as is the case in any

standard Python code. The closure iterators may be thought of

as inheriting the functionality available in expression iterators

and deferred iterators with addition of ability to hold on to

the internal state between executions of the yield statement.

In the figure, this is represented by the old primes list of

previously generated primes. One example of when such a

prime number generator would be useful is autotuning an FFT

implementation for hard-to-optimize problem sizes [30].

With the iterators described so far, it is possible to express

virtually any iteration behavior and in that sense we consider

the BEAST language to be functionally complete. The re-

maining issue is the object-oriented interface promoted by the

dim = range( WARP SIZE, MAX THREADS+1, WARP SIZE )

blk m = range( dim m, MAX M+1, dim m )

Fig. 4. Global lexical scope in the BEAST language.

@iterator

def blk n a(blk m, blk k):

x = blk k

if trans a != 0:

x = blk m

return range(x, 0, -1)

Fig. 5. Local lexical scope in the BEAST language.

Python’s standard library and the wider Python community.

Such interfaces are generally considered more Pythonic and,

consequently, we reserve the possibility to develop them in the

future.

VI. ITERATOR CONSTRAINTS

Iterator constraints prune the search space define by the

iterator(s); sometime by as much as 99% [14]. Constraints’

code executes during the iteration and evaluates (or is cast) to a

boolean value. In other words, the True/False value indicates

whether a particular tuple of iterator values should/shouldn’t

be considered in the tuning process. The constraints allow

the user to express conditions known to yield good results

from the performance engineering standpoint. Because these

conditions might involve an interplay between not just one but

multiple iterators, and because the conditions could involve

non-trivial expressions/statements, sometimes they might be

the only means of defining a non-affine search space for the

autotuning.

In a similar fashion to the iterators, the iterator constraints

come in two types as expression and deferred constraints. The

former constraints allow for very casual definition of simple

conditions that prune the search space and often drastically

reduce the execution time of the autotuner. Due to the fact that

the syntax is limited to Python expressions, certain semantics

are not available and require the latter type of constraints. The

deferred constraints require a Python function definition with

the appropriate annotation, which obviously requires more
typing and could be prone to errors much more so than

simple definitions of expression constraints. But the deferred

constraints offer additional functionality that is harder or even

impossible to achieve otherwise. Additionally, the deferred

constraints can be specified in any order. In particular, the use

of a deferred constraint can precede its definition.

VII. ITERATOR TYPES AND THEIR LEXICAL SCOPES

A. Lexical Scopes

The language for defining autotuning parameter space is

meant for convenience, and, as such, it needs to provide

flexibility of programming patterns and expressiveness to

@iterator

def fibonacci():

k = n = 1

while n <= MAX:

yield n

n, k = n+k, n

Fig. 6. Closure lexical scope in the BEAST language.



deal with more complicated iteration spaces that call for

better structuring of code. Consequently, the BEAST language

supports three main iterator types and corresponding lexical

scopes:

• global scope,

• local scope, and

• closure scope

The global scope allows the user to conveniently define

parameter iterators that can be used throughout all the available

scopes. In essence, they are Python global variables as shown

in Figure 4. In addition to the standard Python semantics, the

the BEAST language offers overloaded standard functions and

operators that allow for streamlined creation and manipulation

of iterators – see Section VIII. The global scope is useful

for expressing code that is free of side-effects. If, however,

extended semantics are needed (e.g., for stateful iterators) or

the code needs better structure and organization for clarity,

then the other two scopes should be used.

Local scopes are mainly used to control the visibility of

names. Creating a local scope hides variables from the global

scope and allows for better code organization. This is done with

Python’s function and annotation syntax as shown in Figure 5.

While the local scope may serve as an organizational tool to

provide a structured definition of iterators with clear syntax, it

lacks the ability to attach a state to the iteration process. This

kind of functionality requires the third kind of lexical scope

that uses closures.

Closure scopes are used for iterators with stateful behavior

that is not possible otherwise with side-effect free constructs.

They also enable control of visibility because they create a

local name space just as was the case for local scopes. From the

Python syntax standpoint, closure scopes are simply generators

with the BEAST-defined annotation. The presence of the yield

keyword in the function code marks the closure scope and the

explicit return keyword marks the end of iteration. The lack

of return will create a closure that will stop iteration when

the end of the function is reached. In such a situation, Python

implicitly executes return None statement. Figure 6 shows a

sample iterator based on a closure scope – the code generates

Fibonacci numbers up to and including MAX.

VIII. OPERATING ON ITERATORS AND THEIR

CONSTRAINTS

In Figures 2 and 4 we showed the basic operation (aside

from initial construction) on iterators: casting of the iterator to

an integer. This is accomplished through overloaded functions

from Python’s standard library. This feature is more general

as the iterator variables can be used in arbitrary expressions

because their Python implementation overloads the operator

method such as add . In addition, we added as a matter of

convenience the ability to overload some operators that do not

allow for overloading such as the ternary operator. The standard

operators overloaded for the iterators include arithmetic, binary,

logical, and relational iterators. The relational operators prove

especially useful for defining constraints as we discuss below.

When overloading Python’s builtins and standard classes,

we faced a choice of implementing various type-dispatch

variants [31, p.125-141][32]. We opted for simplicity and

similarity to the semantics of existing languages that the users

would be familiar with. Therefore, we use single dispatch

throughout our implementation.

An iterator algebra is a functionality that is unique to iterators,

and it enables more structured definition of iteration spaces.

The user has the flexibility to define the iterators in a way

that corresponds closely to the search space, hardware features

and software tools, rather than being limited by the syntax

(loop nesting, etc.) of the generated code. Consequently, the

set-algebra operations, union, intersection, etc., can be used to

combine the iterators for expressive search space definition.

A. Operations on Iterator Constraints

Just as the iterators themselves, the constraints are instances

of standard Python classes and the comments made above

about overloading apply here as well. In particular, the logical

operators are well suited for creating complex expressions that

correspond to the desired limitations imposed on the search

space by the user. The complexity of these logical expressions

has an interesting consequence on the performance of the

generated code and may limit the options of the optimizing

stage to reduce the number of iterations and the running time

of the autotuner. In that context, the short-circuiting property

of the logical operators becomes an important optimization

tool.

IX. THE MODEL AUTOTUNING PROBLEM: GEMM

A. The GEMM Kernel

Figure 7 shows the tiling of the GEMM kernel. Each thread

block computes a part of the C matrix in registers, by streaming

thin stripes of the A andB matrices through the shared memory.

• dim m × dim n defines the shape of the thread grid for

computing C .

• blk m × blk n defines the area ofC that the thread block

is responsible for.
• blk m × blk k defines the size of the stripe of A in

shared memory.

• blk k × blk n defines the size of the stripe of B in shared

memory.
• dim m a × dim n a defines the shape of the thread grid

for reading A from device memory to shared memory.

• dim m b × dim n b defines the shape of the thread grid

for reading B from device memory to shared memory.

The implementation is also parameterized to handle all cases

of transpositions (either A or B transposed, or none, or both)

and all four standard LAPACK precisions (single-real, single-

complex, double-real, double-complex). We used this basic

structure extensively in the past for our autotuning efforts,

including tuning for the Fermi architecture [1], [2], the Kepler

architecture [3], and tuning for energy [4].
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Fig. 7. Tiling of the GEMM kernel: C ← αA × B + βC.

B. The Device Parameters

An important part of the search space and pruning process

is the device information. Some of the device information

can be queried by using the cudaGetDeviceProperties

function. Figure 8 shows the device parameters that can be

retrieved that way. The values are for Tesla K40c.

Some of the device information cannot be queried, but is
available in NVIDIA documentation and tied to the compute

capability of the device. These parameters are stored in a table

and retrieved using the major number and the minor number

of the compute capability, as shown in Figure 9

C. The Autotuning Settings

The autotuning process is carried out separately for each

precision and each case of transposition. Therefore, the
precision and the input transpose configuration are part of

the definition of the search space. Here, we are using the

common case of double precision real arithmetic, with both A

and B not transposed. Figure 10 shows the settings.

D. The Search Space

The search space is defined by 15 iterators shown in Fig-

ure 11. This is a large number of dimensions and demonstrates

the hardship of defining the space as a set of nested loops. The

max threads per block = 1024

max threads dim x = 1024

max threads dim y = 1024

max shared mem per block = 49152

warp size = 32

max regs per block = 65536

max threads per multi processor = 2048

cudamajor = 3

cudaminor = 5

max registers per multi processor = 65536

max shmem per multi processor = 49152

float size = 4

Fig. 8. Device information coming form a device query that is specific to
Tesla K40c.

MaxBlocksPerMultiProcessor = [

[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

[ 8, 8, 8, 8, -1, -1, -1, -1, -1, -1],

[ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8],

[16, -1, -1, -1, -1, 16, -1, -1, -1, -1] ]

MaxWarpsPerMultiProcessor = [

[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],

[24, 24, 32, 32, -1, -1, -1, -1, -1, -1],

[48, 48, 48, 48, 48, 48, 48, 48, 48, 48],

[64, -1, -1, -1, -1, 64, -1, -1, -1, -1] ]

MaxRegistersPerThread = [

[ -1, -1, -1, -1, -1, - 1, -1, -1, -1, -1],

[128, 128, 128, 128, -1, -1, -1, -1, -1, -1],

[ 63, 63, 63, 63, 63, 63, 63, 63, 63, 63],

[ 63, -1, -1, -1, -1, 255, -1, -1, -1, -1] ]

max blocks per multi processor =

MaxBlocksPerMultiProcessor[cudamajor][cudaminor]

max warps per multi processor =

MaxWarpsPerMultiProcessor[cudamajor][cudaminor]

max registers per thread =

MaxRegistersPerThread[cudamajor][cudaminor]

Fig. 9. Device information coming from a compute capability lookup.

precision = "double" ; trans a = 0

arithmetic = "real" ; trans b = 0

Fig. 10. Global settings.

search space for the GEMM kernel is defined by the following

iterators:

• dim m is the vertical dimension of the thread grid for

computing C .
• dim n is the horizontal dimension of the thread grid for

computing C .
• blk m is the vertical size of the block’s tile of C.

• blk n is the horizontal size of the block’s tile of C .
• blk k is the width of a stripe of A and the height of a

stripe of B.
• dim vec defines the size of the vector type used in the

implementation. Our implementation permits the use of

standard types (float, double , cuFloatComplex,

cuDoubleComplex ), built-in vector types (double2,

float4), and a custom type (cuFloatComplex2).

• vec mul defines if actual matrix multiplication is per-

formed using vector types, i.e., if A and B in shared

memory are accessed using vector types. While A and B

can be read from device memory to shared memory using

vector operations, they may be read from shared memory

to registers using non-vector operations. This will happen,

e.g., in the case of dim vec= 4 and vec mul= 0.

• dim m a is the vertical dimension of the thread grid for

reading A.
• dim n a is the horizontal dimension of the thread grid

for reading A.

• dim m b is the vertical dimension of the thread grid for

reading B.
• dim n b is the horizontal dimension of the thread grid

for reading B.

• tex a defines if texture reads are used for reading A.

• tex b defines if texture reads are used for reading B.
• shmem l1 defines the shared memory versus L1 cache

preference, as set by cudaFuncSetCacheConfig.

• shmem banks defines the 4-byte versus 8-

byte shared memory bank size, as set by



dim m = range(1, max threads dim x+1)

dim n = range(1, max threads dim y+1)

@iterator

def blk m(dim m):

return range(dim m, max threads dim x+1, dim m)

@iterator

def blk n(dim n):

return range(dim n, max threads dim y+1, dim n)

blk k = range(1, min(max threads dim x, max threads dim y)+1)

@iterator

def dim vec(arithmetic, precision):

if arithmetic == "double":

if precision == "real":
return range (1, 3)

else:

return 1
else:

if precision == "real":
return range(1, 5, 3)

else:

return range(1, 3)

@iterator

def vec mul(dim vec):

if dim vec == 1:

return 0
else:

return range(0, 2)

@iterator

def dim m a(blk m, blk k):

if trans a == 0:

return range(1, blk m/dim vec+1)

else:

return range(1, blk k/dim vec+1)

@iterator

def dim n a(blk m, blk k):

if trans a == 0:

return range(1, blk k+1)

else:

return range(1, blk m+1)

@iterator

def dim m b(blk k, blk n):

if trans b == 0:

return range(1, blk k/dim vec+1)

else:

return range(1, blk n/dim vec+1)

@iterator

def dim n b(blk k, blk n):

if trans b == 0:

return range(1, blk n+1)

else:

return range(1, blk k+1)

tex a = range(0, 2)

tex b = range(0, 2)
shmem l1 = range(0, 2)
shmem banks = range(0, 2)

Fig. 11. Iterators defining the search space for the GEMM implementation.

cudaDeviceGetSharedMemConfig.

E. The Pruning Constraints

We can distinguish three classes of pruning constraints:

hard, soft, and correctness – all described in the sub-sections

that follow. They rely on a set of derived variables shown in

Figure 12. These derived variables are:

• threads per block is the number of threads in a block.
• thr m is the vertical dimension of the local array used

by a single thread to store C (intended for registers).

• thr n is the horizontal dimension of the local array used

by a single thread to store C (intended for registers).
• regs per thread is the number of 32-bit registers required

by a single thread to store C .

• regs per block is the number of 32-bit registers required

by the block to store C .

threads per block = dim m * dim n

thr m = blk m / dim m

thr n = blk n / dim n

regs per thread = thr m * thr n

if precision == "double":

regs per thread = regs per thread * 2

if arithmetic == "complex":
regs per thread = regs per thread * 2

regs per block = regs per thread * threads per block

shmem per block = blk k * (blk m + blk n) * float size

if precision == "double":

shmem per block = shmem per block * 2

if arithmetic == "complex":
shmem per block = shmem per block * 2

max blocks by regs = max registers per multi processor / regs per block

max blocks by regs = \
min(max blocks by regs, max blocks per multi processor)

max threads by regs = max blocks by regs * threads per block

max blocks by shmem =

max shmem per multi processor / shmem per block

max blocks by shmem =

min(max blocks by shmem, max blocks per multi processor)

max threads by shmem = max blocks by shmem * threads per block

loads per thread = (thr m + thr n) * blk k / dim vec

loads per block = loads per thread * threads per block

if arithmetic == "complex":

loads per block = loads per block * 2

fmas per thread = thr m * thr n * blk k

fmas per block = fmas per thread * threads per block

if arithmetic == "complex":
fmas per block = fmas per block * 4

Fig. 12. Derived variables.

• shmem per block is the size of shared memory in bytes,

required by the block to store a stripe of A and of B.
• max blocks by regs is the maximum number of blocks

that can be placed in a single multiprocessor, taking into

account the number of registers required by a single block.

• max blocks by shmem is the maximum number of

blocks that can be placed in a single multiprocessor, taking
into account the amount of shared memory required by a

single block.
• loads per block is the number of load instructions from

shared memory to registers, executed by each block, in
order to process one stripe of A and B.

• fmas per block is the number of fused multiply add
(FMA) instructions, executed by each block, in order to

process one stripe of A and B.

Hard constraints are closely tied to hardware parameters.

The objective of the hard constraints is to eliminate kernels

that would fail to compile due to exceeding hardware limits,

or that would compile, but fail to launch. At the same time,
some of the hard constraints are only a guideline and may

eliminate kernels that would successfully run or permit kernels

that would fail. The four hard constraints shown in Figure 13

are generally applicable to any kernel.

The hard constraints used here are as follows:

• over max threads prevents exceeding the maximum

number of threads per block. This is an exact limit.

• over max regs per thread prevents exceeding the max-

imum number of registers per thread. This only means

the theoretical demand for registers, not the actual register

usage, since the actual usage is up to the compiler.

• over max regs per block prevents exceeding the maxi-

mum number of registers per block. As with the previous

one, this limit is also only theoretical.



@condition

def over max threads(threads per block):

return threads per block >max threads per block

@condition

def over max regs per thread(regs per thread):

return regs per thread> max registers per thread

@condition

def over max regs per block(regs per block):

return regs per block >max regs per block

@condition

def over max shmem(shmem per block):

return shmem per block >max shared mem per block

Fig. 13. Hard constraints that are applicable to any kernel.

• over max shmem per block prevents exceeding the

size of shared memory per block. This is an exact limit.

Soft constraints shown in Figure 14 are meant to eliminate

kernels that are correct, but guaranteed to perform poorly.
Similarly to the hard constraints, the soft constraints are also

fairly generic and, in principle, applicable to any kernel.

min threads per multi processor = 256

min fmas per load = 2

@condition

def low occupancy regs(max threads by regs):

return max threads by regs < min threads per multi processor

@condition

def low occupancy shmem(max threads by shmem):

return max threads by shmem < min threads per multi processor

@condition

def low fmas(loads per block, fmas per block):

return fmas per block / loads per block <min fmas per load

@condition

def partial warps(threads per block):

return threads per block % warp size != 0

Fig. 14. Soft constraints, applicable to any kernel.

Here, we first define two variables:

• min threads per multiprocessor defines the lowest de-

sired level of occupancy.
• min fmas per load defines the lowest desired number

of FMA instructions per each load instruction from shared

memory to registers.

Then we form the following constraints:

• low occupancy regs rejects kernels with maximum possi-

ble occupancy lower than desired, due to lack of registers.

• low occupancy shmem rejects kernels with maximum

possible occupancy lower than desired, due to lack of

shared memory.

• low fmas rejects kernels with less than desired number of

FMA instructions per every load instruction from shared

memory to registers.

• partial warps rejects kernels that use a number of threads

that is not divisible by the warp size.

Finally, the correctness constraints reject kernels that violate

assumptions inherent in kernel’s algorithmic formulation, such

as divisibility of sizes. The particular set of such constraints

for GEMM kernels is shown in Figure 15. Violating these

constraints produces numerically incorrect results. Clearly, this

set of constraints is kernel-specific.

• cant reshape a1 rejects cases where reading A (from

device memory to shared memory) would require a

different number of threads than computing C .

@condition

def cant reshape a1(dim m a, dim n a, threads per block):

return (dim m a * dim n a != threads per block)

@condition

def cant reshape b1(dim m b, dim n b, threads per block):

return (dim m b * dim n b != threads per block)

@condition

def cant reshape a2(blk m, blk k, dim m a, dim n a):

return (trans a == 0 and \
((blk m % (dim m a*dim vec) != 0 ) or (blk k % dim n a != 0))) \
or \
(trans a != 0 and \ ((blk k % (dim m a*dim vec) != 0 ) or \
(blk m % dim n a != 0)))

@condition

def cant reshape b2(blk k, blk n, dim m b, dim n b):

return (trans b == 0 and \
((blk k % (dim m b*dim vec) != 0) or (blk n % dim n b != 0))) \
or \
(trans b != 0 and ((blk n % (dim m b*dim vec) != 0) or \
(blk k % dim n b != 0)))

Fig. 15. Correctness constraints.

• cant reshape b1 rejects cases where reading B would
require a different number of threads than computing C .

• cant reshape a2 rejects cases where the dimensions of
a stripe of A (in shared memory) are not evenly divisible

by the dimensions of the thread grid.
• cant reshape b2 rejects cases where the dimensions of

a stripe of B are not evenly divisible by the dimensions

of the thread grid.

X. THEORETICAL FRAMEWORK FOR CODE GENERATION

A. Dependency DAG Example

The BEAST language can used to express a set of iterators

that define the search space, and a set of constraints that prune

the parameter space. Examples of iterators are the range of

block sizes to test, and the range of thread block dimensions to

examine. These ranges may be inter-related, in that, for code

correctness, the value of one range depends on the value of

other ranges. For instance, in tuning the matrix multiplication

(GEMM) GPU kernel, the thread-block dimension must evenly

divide the block size (NB). The dependencies among iterators

and constraints can be represented by a directed acyclic graph

(DAG). An example DAG is given in Figure 16. Loops defining

the iterators may be reordered as long as the order (level sets)

in the DAG is respected. These concepts are formalized below.

dim_m dim_n

blk_k

fetch_a fetch_b

blk_m blk_nmax_threadspartial_warps

blk_m_div blk_n_divmax_regs_thread max_regs_block low_regs max_shmem low_shmem

output

Fig. 16. Graph of dependencies between iterators (blue circles) and constraints

(red octagons).

B. Graph Model of Iterators and Conditions

The iterators/constraints and their dependencies may be

modeled by a DAG G with vertices V and edges E :G = (V , E) .

The set of vertices consists of all the iterators/constraints

defined by the user: V = I ∪C. The dependencies are the edges
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Fig. 17. Performance of simple loops from BEAST autotuner in Python for
108 total iterations.

E = V ×V in the graph. For any two vertices v,w ∈ V , there is

an edge e = (v,w) ∈ E if and only if iterator/constraintv is used

to express the value of the iterator/constraint w . Note that the

transitive closure of G is not a strict superset of G . For example,

an empty set of edges occurs when iterators/constraints are

not expressed in terms of each other but only in terms of

hardware and algorithmic parameters. The dependence relation

between the iterators/constraints induces a weak order within

the set of vertices that can be used to correctly and efficiently

generate loop nests for the exploration of the autotuning search

space. Formally, v  w (v succeeds w ) if (v,w) ∈ E (v

and w are connected) or there exists a path between v and

w: ∃u ∈V | v  u ∧ u  w . The level sets of vertices are

defined as L = {L i | ∀v,w ∈Liv  w ∧ v ⊀ w} and can be

generated with a greedy traversal of the graph G. The level

sets L of iterators/constraints represent subset of vertices that

are unordered with respect to each other and are used to create

independent sets of loop nests. Within each level, the loops may

be interchanged according to external rules or requirements, for

example, to facilitate loop fusion or introduce parallelization

(through multithreading or multiprocessing) that can be very

beneficial at the outermost loop nests, close to level 0: L0.

XI. PERFORMANCE COMPARISON

A. Hardware and Software Used in Tests

We ran all of our performance tests on Intel Xeon Sandy

Bridge E5-2650 v3 2.3 GHz. In order to provide the per-

formance base for tested environments, we present only

sequential runs as not all tested environments allow for

multithreading to the same extent (see further discussion

below). All C and Fortran codes were compiled with the

GNU gcc/gfortran compiler suite version 4.4.7-16 and

flags: -O2 -march=native -mtune=native. For Java

tests, we used the latest Oracle Java version 1.8.0 update 60

with HotSpot JIT Server. We used Python version 2.7.10 and

ran the tested codes with maximum optimization flag: -OO.

Also, Lua 5.1.4 was used.

B. Python Performance for Search Space Pruning

The majority of tools and utilities for the BEAST project

are written in Python, which has been of growing importance

in the HPC field over the past years [33]. Hence, we start with

the Python language and present in Figure 17 performance

of various depths of loop nests (between 1 and 4) across

syntactic variants of the implementation. The quantity of merit

for the figure is iterations per second and we are interested in

maximizing this value. The number of total iterations is 108

and they are either performed by a single loop, two loops of

length
j√

108
k

each, three (
j

3
√
108

k

), or four (length
j

4
√

108
k

)

loop nests. The innermost body of the loop performs integer

arithmetic on local variables – there are no memory accesses

through mutable containers such as lists or dictionaries. It is

clear from the figure that the syntax of the loop matters and

the while construct is about 30% slower than the range and

xrange syntax. The explanation is that Python’s access to

variables is through associative array lookup (there is one array

per lexical scope) and this, combined with standard handling of

loop variables (increments and comparisons) causes the while

variant to execute the slowest. When using the range builtin

function, the loop overhead is hidden because it is handled
inside the interpreter that is written in C and this results in

a performance increase. There is still a visible slowdown for

a single loop nest with the range construct – this has to do

with instantiating in memory a list of 108 integers that define

the iteration space. This overhead disappears with xrange,

which was designed to remove this exact memory overhead

and the figure clearly shows that it outperforms the other two

solutions. Despite the optimizations, the rate of execution for
loop iterations is still too low considering the fact that modern

processors can execute in excess of 1000 MIPS. As a point of

reference, we generated the autotuning code for the BEAST

matrix-matrix multiply kernel and it took 66948 seconds (over

18.5 hours), which is unacceptable for productive autotuning.

As a possible solution, multi-threading can be considered.

However, we cannot effectively use multi-threading, on par

with other languages. This is due to Python’s Global Interpreter

Lock (GIL) that prevents simultaneous execution of threads

inside Python’s Virtual Machine. Also, multi-processing in
Python is available as a builtin module but involves kernel-

level calls and use of Unix shared memory. It also performs
data copies that are not required in a multi-threading scenario.

We simply assume that with sufficient effort, any system would

benefit equally from multi-threading but the BEAST language

system just makes that feature transparent to the user. Finally,

it would be hard to breach the performance gap of two orders

of magnitude that exists for autotuning search between Python

and compiled languages as is shown below.

C. Lua Performance for Search Space Pruning

Our earlier work with BEAST autotuning [4] relied on

the Lua language for specification of the search space. Con-

sequently, we show in Figure 18 performance of Lua code

that is equivalent to Python tests reported in Figure 17. We

see a significant difference in performance between various

syntactic variants: using while is about 10% slower than the

repeat-until variant which is about 30% slower than the

for variant. We also see a significant improvement, 5-fold in
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Fig. 18. Performance of simple loops from BEAST autotuner in Lua for 108

total iterations.
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Fig. 19. Performance of simple loops from BEAST autotuner in C, Java,
and Fortran for 231 − 1 total iterations.

fact, over the Python-based iteration. This is still quite a large

performance gap from the native performance of the hardware.

D. Compiled Languages’ Speed for Search Space Pruning

Clearly, the prior experiments indicate that there is a sub-

stantial overhead in using scripting or weakly typed languages

for synthetic loop nest benchmarks. Additionally, GEMM –

a practical case of autotuning – cannot be handled by these

languages in a reasonable time frame. This is one of the reasons

why we developed the the BEAST language for specifying

autotuners and added a code generation to automatically

produce fast code to enumerate and prune the search space. We

now turn to compiled and strongly typed languages: C, Java,

and Fortran as the backends for the BEAST code generator. We

start with the same experiment as was performed for Python

and Lua. Figure 19 shows the performance for C, Java, and

Fortran. We had to increase the total iteration count from 108

to the largest signed 32-bit integer, 231− 1, to amortize the loop

setup and tear-down overheads. Also, functions were made

static where possible to increase the compiler’s potential for

optimization. Java turns out to be the slowest and Fortran the

fastest, albeit by a negligibly small margin. Also, the single loop

nest turned out to be the worst performing variant. Analysis

of the generated assembly code reveals that for more than one

loop nest, the compiler generates a better instruction mix that

gets higher execution rate per cycle and uses the registers more

efficiently. As the ultimate test of the improvement over the

Python-based iteration, we ran the BEAST autotuning space

TABLE I
PERFORMANCE LEVELS ACHIEVED WITH THE BEAST AUTOTUNER.

Kernel name and type Improvement

GEMM [4] 80% of peak
Batched factorizations (small size) [5] up to 1000%
Batched factorizations (medium size) [34], [35], [36] up to 300%

sweep with the generated C for BEAST matrix-multiply kernel

and it finished in 264 seconds. This is over a 250-fold speedup

which allows much more productive autotuning [4].

E. Application Use Cases

The the BEAST language was also used to develop a

number of highly tuned implementations of basic numerical

kernels. Table I summarizes the performance improvements

that we achieved so far. The GEMM [4] study aimed at not
only high performance but at the same time optimal energy
consumption. The ability of the BEAST framework to explore

the parameter space allowed us to draw conclusions about trade-

offs necessary to optimize two objective functions at once. The
batch factorizations of a large number of very small matrices

is essential in some machine learning tasks and the BEAST
implementation was able to deliver superior performance level

against any other code currently available [5]. Finally, large
counts of mid-sized matrices are common throughout various

disciplines of science. For a large range of sizes, our autotuned
kernels delivered performance that was up to 3 times faster

than any competing implementation [34], [ 35], [36]. The code

for these kernels is either already available inside the MAGMA

library or will be released pending final testing as part of,

again, MAGMA or the BEAST software release.

XII. CONCLUSIONS AND SOFTWARE RELEASE

We showed how the BEAST language makes it easy to

describe a complex, multidimensional search space and apply

pruning constraints. As our experiments showed, this greatly

increases the speed of evaluating the search space. Our notation

is declarative rather than prescriptive and we showed how it

allows us to apply a variety of aggressive optimizations and

generate standard C code for fast and multithreaded evaluation.

Unlike other approaches that use kernel code annotations or

DSLs, our notation is Python-based and thus instantly familiar

to the users: benchmarking engineers or scientists interested in

autotuning. We presented autotuning of an important kernel for

NVIDIA GPUs with 15 search dimensions and the speed of

evaluation is orders of magnitude faster compared to imperative

generators in various scripting and compiled languages. Modern

accelerators, especially Xeon Phi, offer opportunity to further

improve the evaluation speed by utilizing their man-core design

and we intend to target them in the future. Also, the plan

is to incorporate statistical search methods to address the

multidimensional search space growth.

The software described here, the the BEAST language and

the accompanying framework, will be released as part of the

BEAST software release in 2016. It will be available on the



project website1 and distributed under a permissive, three-clause

BSD license.
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