This space is reserved for the Procedia header, do not use it

Performance Tuning and Optimization Techniques of Fixed
and Variable Size Batched Cholesky Factorization on GPUs

Ahmad Abdelfattah!, Azzam Haidar!, Stanimire Tomov!, and Jack Dongarra!23

! Innovative Computing Laboratory, University of Tennessee, Knoxville, USA
2 Oak Ridge National Laboratory, Oak Ridge, USA
3 University of Manchester, Manchester, U.K.
{ahmad ,haidar,tomov,dongarra}@icl.utk.edu

Abstract

Solving a large number of relatively small linear systems has recently drawn more attention
in the HPC community, due to the importance of such computational workloads in many
scientific applications, including sparse multifrontal solvers. Modern hardware accelerators and
their architecture require a set of optimization techniques that are very different from the ones
used in solving one relatively large matrix. In order to impose concurrency on such throughput-
oriented architectures, a common practice is to batch the solution of these matrices as one task
offloaded to the underlying hardware, rather than solving them individually.

This paper presents a high performance batched Cholesky factorization on large sets of
relatively small matrices using Graphics Processing Units (GPUs), and addresses both fixed
and variable size batched problems. We investigate various algorithm designs and optimization
techniques, and show that it is essential to combine kernel design with performance tuning in
order to achieve the best possible performance. We compare our approaches against state-of-
the-art CPU solutions as well as GPU-based solutions using existing libraries, and show that,
on a K40c GPU for example, our kernels are more than 2x faster.

Keywords: Batched Computation, Cholesky Factorization, Tuning, GPUs

1 Introduction

Many scientific applications require the solution of a large number of relatively small inde-
pendent linear systems in parallel. Examples are astrophysics, quantum chemistry, metabolic
networks, CFD and resulting PDEs through direct and multifrontal solvers, high-order FEM
schemes for hydrodynamics, direct-iterative preconditioned solvers, and image and signal pro-
cessing. If we consider modern multi/many-core architectures, the amount of work associated
with each individual problem does not provide sufficient parallelism to achieve good perfor-
mance. It is advantageous, therefore, to use the independence among these problems to develop
specialized software grouping the computation into a single batched routine.

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The development of a batched numerical kernel for multicore CPUs is relatively simple,
and can be realized using existing numerical software. In most cases, individual matrices
can fit into the large CPU caches, where the computation can be performed very quickly
using optimized vendor-supplied libraries, such as as MKL or ACML. However, many-core
architectures, such as GPUs, lack the ability to store even small matrices. In addition, a key
factor for achieving high performance on a GPU is the ability to saturate all of the GPU’s
Streaming Multiprocessors (SMs) with work. Therefore, numerical GPU software originally
optimized for large problems, cannot be used to efficiently solve batched small problems. A
different design approach is needed in order to produce a high performance software on such
workloads.

This work presents a set of design and optimization techniques for the Cholesky factorization
on batches of relatively small matrices of fixed and variable sizes. We propose several design
approaches and optimizations. Our methodology is to start by progressive optimization and
tuning for fixed size problems, until a best configuration is reached. We then proceed with
the best fixed size configuration by extending its design to support variable sizes. We show
performance results against other GPU solutions that use existing numerical libraries. We also
compare against a 16-core Intel Sandy Bridge CPU running the Intel MKL library. In either
case we demonstrate that the new approaches significantly accelerate performance.

2 Related Work

Sufficiently large matrices can be factorized individually based on hybrid algorithms that use
both the CPU and the GPU [I2]. The motivation behind hybrid algorithms is that GPUs
cannot be used on panel factorizations as efficiently as on trailing matrix updates [I3]. Since
such updates are mostly GEMMs [I}, [4], many hybrid algorithms perform the panel factorization
on the CPU, while the updates are performed on the GPU. For small problems, however, hybrid
algorithms lose efficiency due to lack of parallelism, especially in the trailing matrix updates
which fail to hide the latency of both the panel factorization and CPU-GPU communication.

There are some efforts that proposed batched computations on the GPU. Villa et al. [I0],
[T1] proposed batched LU factorization for matrices up to size 128. Wainwright [14] proposed
a design based on using a single CUDA warp to perform LU with full pivoting on matrices of
size up to 32. Dong et al. [3] proposed three different implementations for batched Cholesky
factorization, where the performance was compared against a multicore CPU and the hybrid
MAGMA [2] algorithm. Kurzak et al. [§] proposed an implementation and a tuning frame-
work for batched Cholesky factorization for small matrices (<100) in single precision. Batched
QR factorization has also been accelerated using GPUs [6], where several-fold speedup is ob-
tained against a competitive design by CUBLAS. Haidar et al. proposed common optimization
techniques, based on batched BLAS kernels, that can be used for all one-sided factorizations
(LU, QR, and Cholesky) using NVIDIA GPUs [5] [7]. All the aforementioned efforts focus on
batches with fixed sizes. This work improves the performance of the fixed size batched Cholesky
factorization proposed in [5], and also addresses variable size batched problems.

3 Algorithmic Designs for Fixed Sizes
Recursive Multi-level Blocking. In a previous study [5], the fixed-size batched routine for

a batch of m x m matrices was designed with two levels of blocking — the classical blocking
of nb elementary factorization steps that allows one to take advantage of the Level-3 BLAS

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

(as in LAPACK), and a recursive blocking for the nb elementary factorization steps (known as
panel factorization) in order to minimize its cost. To increase the parallelism and to have more
compute intensive tasks, the algorithm is a right looking, which means a panel factorization is
followed by a large trailing matrix update to the right of the panel. This design, presented in
Algorithm [1] has been proved efficient as it takes advantage of large BLLAS-3 operations like
the TRSM and SYRK.

Recently, we performed a detailed performance study based on the collection and analysis
of machine counters. Counter readings were taken using performance tools (NVIDIA’s CUPTI
and PAPI CUDA component [9]). While previously the algorithm was blocked with outer loops
running on the CPU, calling the computational kernels on the GPU, we discovered that for
small matrices a layer of fusing and blocking operations has to be added (or moved from the
CPU) to the GPU kernels. The purpose of this optimization is to minimize the load/store to
the main memory, increase the data reuse at the thread-block level, and decrease the number of
register /shared memory required per thread-block to allow more thread-blocks to be executed
by the same SM. To accomplish this for the panel factorization, we discovered that blocking at
the kernel level should follow a left-looking Cholesky factorization, with a blocking size b, as
shown in Algorithm [2] which is known to minimize data writes (in this case from GPU shared
memory to GPU main memory).

Algorithm 1: The right looking fashion.
for i < 0 to m Step nb do
// Panel factorize Ajmiitnb
POTF2 Ai:iJrnb,i:iJrnb;
TRSM A;nbim iitnb = Aitnbim,izitnb X Ai_:il-i-nb,i:i+nb;
// Update trailing matrix Ajinb:m,itnb:m

_ T .
SYRK Ai+nb:m,i+nb:m - Ai+nb:m,i+nb:m - Ai+nb:m,i:i+nb X Ai—i—’nb:7n,i:i+nb’
end

Algorithm 2: The left looking fashion.
for : < 0 to m Step ib do
if (i > 0) then
// Update current panel Ajm iitib
SYRK Ajiitib,izitib = Aiiitib,izitib — Asiitib,0: X AZHZ-I,,O:Z-;

GEMM A ibim,iitivp = Aigivim,isitib — Aigibim,0: X A;l:i+ib,0:i;
end
// Panel factorize Ajmiitib
POTF2 A;.itib,izitib;
TRSM Ai+ib:m,i:i+ib = Ai-‘rib:m,i:i-‘rib X Ai_:ilJrib’i;iJrib?
end

Kernel Fusion and Optimization. When the kernel’s working data is small, the computation
associated with it becomes memory bound. Thus, fusing the four kernels of one iteration of
Algorithm [2| (into one GPU kernel), will minimize the memory traffic, increase the data reuse
from shared memory, and reduce the overhead of launching multiple kernels. Using a left-
looking Cholesky algorithm, the update writes a panel of size mxib in the fast shared memory
instead in the main memory, and so the merged POTF2 routines can reuse the panel from the

3

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

shared memory. Note that m and ib control the amount of the required shared memory; they
are critical for the overall performance, and thus can be used to (auto)tune the implementation.
The value of m is controlled by the level of recursion, while ib is defined at the kernel level.

We developed an optimized and customized fused kernel that first performs the update
(SYRK and GEMM operations), and keeps the updated panel in shared memory to be used by
the factorization step. The cost of the left looking algorithm is dominated by the update step
(SYRK and GEMM). The panel C, illustrated in Figure |1} is updated as C = C — A x BT. In
order to decrease its cost, we implemented a double buffering scheme that performs the update
in steps of Ib, as described in Algorithm [3] We mention that we prefix the data array by “r” and
“s” to specify register and shared memory, respectively. We prefetch data from A into register
array rAk while a multiplication is being performed between register array rAkk and the array
sB stored in shared memory. Since the matrix B is the shaded portion of A, our kernel avoids
reading it from the global memory and transposes it in place to the shared memory sB. Once
the update is finished, the factorization (POTF2 and TRSM) is performed as one operation on
the panel C|, held in shared memory.

Algorithm 3: The fused kernel corre-
spond to one iteration of Algorithm

rAk < A(i:m,O:Ib); rC « 07

for k + 0 to m-i Step Ib do

rAkk <— rAk;

SB < rAK(;.ip,k:k+1b) inplace transpose;
barrier();

A1 < A(im k+b:kt2p) Prefetching;
rC < rC + rAkkxsB multiplying;
barrier();

end

sC <+ rA1 - rC;

factorize sC;

Figure 1: left-looking Cholesky factor-
ization

Loop-inclusive vs. Loop-exclusive Kernels. In order to develop Algorithm [2| a first step
is to decide whether the main loop is on the CPU or on the GPU (inside the kernel). In this
context, we developed loop-inclusive and loop-exclusive kernels. The loop-inclusive kernel is
launched once from the CPU side, meaning that the loop iteration over ib of Algorithm [2] are
unrolled inside the kernel. The motivation behind the loop-inclusive approach is to maximize
the reuse of data, not only in the computation of a single iteration, but also among iterations.
For example, the loop-inclusive technique can reuse the factorized panel of iteration i —1 (which
is in shared memory) to update the panel of iteration ¢, which means replacing the load from
slow memory of the last blue block of A (illustrated in Figure [1) by directly accessing it from
fast shared memory. It is beneficial to minimize the loads from slow memory, even if they are
for small amounts of data (the economy here is to avoid loading the previous panel, which is of
size m — i x ib). However, the disadvantage of such a design is that when the kernel is launched
from the CPU, it should be configured based on the tallest sub-panel (i.e., based on the size m).
This means that the amount of shared memory required will be m x ib and the threads used will
be fixed for all iterations of Algorithm [2l The analysis of the occupancy and the throughput
of the computation of such design encourages us to develop the loop-exclusive version. The
loop-exclusive kernel executes one iteration of Algorithm [2] at each launch. This will signify
that we will have to re-load the previous panel from main memory, but our goal is to optimize
the resources for each factorization step in terms of required shared memory and registers (e.g.,

4

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

the thread/shared memory configurations will be based on m —). The prefetching technique of
our fused kernel overlaps the cost of re-loading the previous panel. The only extra cost is that
the CPU launches kernels as many times as the number of factorization steps. Nevertheless,
our experiments show that this cost is marginal. The results, summarized in Figure [2| prove
that the loop-exclusive approach tends to help the CUDA runtime increase the throughput of
the factorized matrices during execution by increasing the occupancy at the SMs’ level.
Performance Autotuning. The autotuning process of the developed kernels has one tuning
parameter to consider (ib). Since the range of values for ib is intended to be small, we con-
ducted a brute-force sweep of all possible values of ib up to 32. The fact that we have one
tuning parameter makes it feasible, in terms of autotuning overhead, to conduct a brute-force
experiment, after which the ib value corresponding to the best performance is used. In gen-
eral, we can define different best-performing values of ib with different GPUs. The autotuning
experiment is offline and needs to be conducted once per GPU model/architecture.

Figure [2] shows the tuning results for both the loop-inclusive and the loop-exclusive kernels
for different values of ib and for different values of m. We plot the performance for ib of
values up to 10, since we observe consistent drop in performance after this value. As expected,
we observe a relatively low performance for the loop-inclusive kernels except for matrices of
size below 100. The main reasons behind this behavior are as described above: (1) Thread
divergence, as the number of threads in a thread block (TB) is configured based on the size m,
but when the factorization progresses the working area is m — ¢, meaning more threads become
idle; (2) Similarly, the size of the allocated shared memory and registers used is defined based
on m, and thus becomes unused as the factorization progress; and (3) Low SM occupancy, as
the used resources limit the number of TBs that can be scheduled on the same SM. On the
other hand, the loop-ezxclusive approach launches the kernels with the exact number of threads
required at each iteration of the factorization, and thus optimizes allocation of shared memory
and registers, allowing more TBs to be scheduled on the same SM. Figure [2| shows that for
the same ib the loop-exclusive technique is always better than the loop-inclusive. The best
configuration was obtained with the loop-exclusive approach for ib = 8 and for any value of m.

500 e = excld) — exc(8) — exc(i0) —] X0@) — exc@) — oxol8) — exc(10) —
inc(2) -- inc(4) -- inc(8) -- inc(10) - - 250 {{inc (2) -- inc(4) -- inc(8) -- inc(10) - -
” » 2001
B a
o o
53 o 150+
100 +
50 |
‘ ‘ ‘ ‘ ‘ 0
0 100 200 300 400 500
Values of m Values of m
(a) Single precision (b) Double precision

Figure 2: Performance tuning of loop-inclusive(inc) and loop-ezclusive(exc) kernels on a K40c
GPU, batchCount = 3000. The value of ib is shown between brackets.

TB-level Concurrency. The aforementioned batched design associates one matrix to a TB.
When matrices are very small (e.g., less than 32), and for single precision in particular, we
observe that the launching cost (which is about 5-6 us) is comparable to the computational
cost of the kernel. Thereby, for very small matrices, we propose an additional optimization,

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

Be=1—+—
g g
s s
S kel
O [0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Values of m Values of m
(a) Single precision (b) Double precision

Figure 3: Impact of toc on performance, batchCount = 10,000, on a K40c GPU.

which is to schedule multiple matrices per TB. We define tbc to be the number of matrices
scheduled per TB. Figure [3| shows the impact of this technique. In single precision, speedups
are about 1.5x to 2x. For example, for 10x 10 matrices using tbc=2,4,8, we achieve speedups of
1.74x, 2.00x, and 2.46x, respectively. However, in double precision, speedups of 10% to 30%
are observed for very small sizes (e.g., less than 32). Considering the same example for 10x10
matrices, increasing tbc can achieve only 34% speedup at its best. Note that this optimization
is applied only in the case of matrices with fixed sizes, and cannot be used for variable size
batched computations discussed below.

4 Algorithmic Designs for Variable Sizes

The batched designs for matrices with fixed sizes, as proposed above, are characterized by two
levels of parallelism. The first level is the task-level parallelism among the independent
matrices that are associated with a TB and simultaneously processed. The second level — fine-
grained data parallelism — is per each matrix to exploit the SIMT architecture through the
customized and optimized device kernels that we developed. Thus, at the TB level, every kernel
has only a view of one matrix. From this point of view, the design of batched computation
for matrices of variable sizes can be handled at the kernel level. The goal is to reuse the same
optimized and autotuned kernel infrastructure for the fixed size matrices. To accomplish this
at the kernel level, each matrix has a unique ID, its own sizes, and is associated with one
TB independently from the other matrices. This design allows us to easily handle batches with
matrices of variable sizes. The implementation and the optimizations are not straightforward, as
many other difficulties must be resolved. First, the main loop is unrolled outside the kernel and
thus it should be based on the maximum m among the matrices in the batch (denoted max m),
meaning that at some iteration, many matrices are already factorized and no computation
is needed. Second, the thread configuration and the shared memory allocation are specified
outside the kernel at the higher level, and they are related to the size max m —¢ of the main
loop iteration, thus many TB will have extra threads and extra shared memory to deal with.
This requires a sophisticated mechanism to minimize the unused resources and also to control
whether a TB will have data to work on it or not, as well as to avoid read/write data out of
the matrix bounds. We propose two design conceps in order to support batches of variable
sizes: Early Termination Mechanisms (ETMs), and a Greedy/Lazy Scheduling. From now on,
variable size batched kernels are abbreviated as vbatched kernels.

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

Early Termination Mechanisms (ETMs). In a vbatched kernel, we have many different
sizes that are known only at the kernel level. As mentioned above, the CPU uses the maximal
size max_m —i of iteration “i” to configure and launch the kernel. As a result, some threads, or
even full TBs, may have no computation to perform. The ETM is a technique that we developed
to identify at the kernel level the threads and the TBs with no computational work in order to
be terminated. In the ETM we compute the local sizes corresponding to the current iteration,
the local parameters of a TB, and decide whether the TB is idle, as well as adjust the TB’s sizes
to avoid out of matrix bound accesses. In general, there are two types of ETMs that we present.
The first one is called ETM-classic. This mechanism terminates only TBs with no work. For
example, assume two matrices of sizes 16 and 32 are being factorized with ib=8. Then, the main
loop consists of four iterations, where at each iteration the CPU launches a kernel. The thread
configurations of the four launches are (32,1, 1), (24,1,1), (16,1,1), and (8, 1,1), respectively.
The 16 x16 matrix is factorized during the first two launches. The TBs assigned to this matrix
in the remaining launches are idle and so terminated using the ETM-classic. Note also that
the extra threads in the first two launches are not used for this matrix. The second type of
ETMs is called ETM-aggressive. This mechanism terminates not only idle TBs, but also idle
threads in live TBs, in an effort to maximize the amount of released resources during kernel
execution. For the same example, the ETM-aggressive still terminates the TBs assigned to the
smaller matrix in the third and fourth launches, but it will also terminate threads 16 through
31 in the first launch, as well as threads 8 through 23 in the second launch.

Greedy vs. Lazy Scheduling. Since the CPU launches kernels as many times as it is required
by the largest matrix, there is flexibility in determining when to start the factorization of the
smaller matrices. We present two different techniques for scheduling the factorization. These
techniques control when a factorization should start for every matrix in the batch. The first
one is called greedy scheduling, where the factorization begins on all the matrices at the first
iteration. Once a matrix is fully factorized, the TB assigned to it in the following iterations
becomes idle and is terminated using the ETM techniques. With greedy scheduling, completion
of factorization on individual matrices occurs at different iterations. There are two drawbacks
of such a technique, as shown in Figure |4l First, the kernel is configured based on the largest
size, meaning a working TB on a matrix with size less than the maximal will have idle threads
at every launch of its life. The ETM-aggressive overcomes this problem and guarantees to
terminate these threads as illustrated by the performance difference in Figure The second
issue is that the shared memory allocated is always based on the maximal iteration size, and
thus many TBs will have unused shared memory. There is no dynamic mechanism to free it,
and thus such scheduling may result in low occupancy. Even though we can resolve the first
issue using the ETM-aggressive, there is still a need to fix the second issue. For that we propose
the so called lazy scheduling. Here individual factorizations start at different iterations, such
that they all finish at the last iteration. At each iteration, lazy scheduling allows matrices with
local sizes within the range max m —i to max.m —i 4+ nb to be computed. This technique can
be viewed as sorting the matrices from the largest to the smallest one, where the smallest are
at the bottom right corner of the working area. The benefit here is that a TB is considered
alive only when the iteration size reaches its local size. As result, the shared memory allocated
will be closest to the optimal for all the matrices across the batch, and the configuration of the
number of threads within a TB will be the minimal amount possible +=nb. This is the reason
why the lazy scheduling has proved efficient and better designed than the greedy scheduling, as
shown in Figure [for the two ETM techniques. Moreover, the difference between ETM-classic
and ETM-aggressive is minimal in this case because the number of extra threads is always less
than nb. Figure [illustrates the four proposed versions of the vbatched kernel. The batches

7

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

350 |- 200
300 -
© 250 o 150 |
g g
5= 200 ke
© . o-® O 100}
150 | _o-0-9-0-0-0°]
.e-® 20000000
100 lazy-aggressive — H 50 lazy-aggressive —
lazy-classic -X%- I lazy-classic -x- ||
50 - greedy-aggressive —x— | greedy-aggressive —x—
o greedy-classic -@- o greedy-classic -@-
0 100 200 300 400 500 0 100 200 300 400 500
Maximum matrix size in the batch Maximum matrix size in the batch
(a) Single precision (b) Double precision

Figure 4: Optimizing vbatched kernel performance, batchCount = 3,000, on a K40c GPU.

used in the test cases have matrix sizes that are randomly generated, where the x axis shows
the maximal size of all of them. Considering the greedy scheduling, an aggressive ETM is up
to 40-50% better than a classic ETM. With lazy scheduling, we observe up to 87% speedup in
single precision (and 125% in double) over the greedy scheduling-classic ETM, and up to 40%
in single (89% in double) over the greedy scheduling-aggressive ETM.

5 Performance Results

Our system setup is two 8-core Intel Sandy Bridge CPUs (Xeon E5-2670 - 2.6 GHz) using
MKL 11.3.0, and a Kepler K40c GPU (ECC on) using CUDA 7.0. For performance comparisons
against the CPU, we use: (1) A loop over matrices where each matrix is factorized using the
multi-threaded MKL xpotrf routine executing on 16 cores, (2) An OpenMP loop statically
unrolled among the 16 cores, where each core factorizes a single matrix at a time using the
sequential MKL xpotrf routine, and (3) Similarly to (2), but the openMP loop is dynamically
unrolled.

Figure [5| shows the performance of our fixed size batched routine, with the best configura-
tion. We compare the performance against different CPU techniques, as well as our MAGMA

‘ magma-fused —— magma-separate - A- mkl-multithreaded —@—- omp+mkl-dynamic —¢- omp+mkl-static —g— ‘

300 F

N P

¥ olfe - - s -
0 100 200 800 400 500 0 100 200 800 400 500

Maximum matrix size in the batch Maximum matrix size in the batch

(a) Single precision (b) Double precision

Figure 5: Performance on batches of fixed size, batchCount = 3, 000.

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

‘ magma-vbatched ——magma-batched-padding - omp+mkl-dynamic —¢- omp+mkl-static —g— mkl-multithreaded @ ‘

350 F 350 F

300 - 300 -

© 250+ 02501
Q Q

2200 | 2200 |
(0] (0]

150 | 150 |

100 | 100 F

50 - 50 - i
0 ! . 0 o 2000000000090
0 100 200 300 400 500 0 100 200 300 400 500
Maximum matrix size in the batch Maximum matrix size in the batch
(a) Single precision - Uniform (b) Single precision - Gaussian

200 -

150 b
2
g
k<]

O 100 |

50 -

0 o 200000000009000 .‘e
0 100 200 300 400 500 0 100 200 300 400 500
Maximum matrix size in the batch Maximum matrix size in the batch
(¢) Double precision - Uniform (d) Double precision - Gaussian

Figure 6: Performance on batches of variable sizes, batchCount = 3, 000.

routine proposed in [5], which uses a separate BLAS kernels approach. It is clear that a multi-
threaded CPU configuration is not a suitable solution for batched computation. If we compare
the performance of the proposed magma-fused routine with magma-separate, we observe an
interesting speedups in both single and double precisions. However, we observe that magma-
separate starts to achieve better performance with matrices of size > 400 in double precision.
This is due to the fact that, at this size, the computation is dominated by the level 3 BLAS
routine, and thus the improvments seen at very small size became marginal here. This eventu-
ally leads to a final design that combines both approaches with a crossover point that switches
which routine must be used. A similar crossover point is observed in single precision around
size 700 (not shown). In most cases, the best competitor is omp-mkl-dynamic, against which the
proposed approach achieves speedups that exceed 3x in single and 2x in double precision for
small matrix sizes.

Figure [6] shows the overall performance of the vbatched routine against different configura-
tions of MAGMA and MKL. The matrix sizes are generated using either uniform or Gaussian
distribution, and we show the maximal size allowed on the X axis. Our vbatched routine is at
least 3x faster than using the MAGMA fixed size routine with padding. The best competitor
remains the OpenMP dynamic with MKL. The MAGMA vbatched routine is up to 2.3x faster
in single (1.88x in double) for uniform distribution of matrix sizes, and up to 2.4x faster in
single (1.83x in double) for a Gaussian distribution. Such impressive speedups occur if the
range of sizes is up to 200. Speedups then decay asymptotically to reach 10%-30%. As we
pointed out earlier for fixed size, there is a different technique [5] that can be used as the range

9

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

of sizes starts to exceed the crossover point of 500.

450 . : . 300

Kepler K40c e Kepler K40c =
400 H{ Kepler K20c - - 1 050 || KeplerK20c -4~
350 ||Fermi S2050 ——] [|Fermi S2050 ——
AAA
{3_300 s i .‘AAA‘Ai-"k A
2250} AL
0]
200 -
150 |
100 |
50 -
0 100 200 300 400 500 0 100 200 300 400 500
Matrix size Matrix size
(a) Single precision - Fixed size (b) Double precision - Fixed size
350 200
Kepler K40c —— Kepler K40c ——
300 || Kepler K20c -A- Kepler K20c -A-
Fermi S2050 —— Fermi S2050 ——
150 |
250 |-
L L
o o
2 200 k]
0] G 100
150 |
100 | 501
50 -
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Maximum matrix size in the batch Maximum matrix size in the batch
(c) Single precision - Variable size (d) Double precision - Variable size

Figure 7: Performance on different GPUs, batchCount = 1, 000.

Figure [7]shows the performance of the proposed kernel on different GPUs. The figure shows
that our design takes advantage of the increasing compute power on the GPU. Variable size
performance results (Figures and use uniform distribution to generate the matrix
sizes in each batch. In single precision, a K20c GPU can be up to 64% faster than a Fermi
S2050 GPU, for both fixed and variable size test cases. A smaller performance gain, up to
30%, is observed moving from the K20c to the K40c GPU, since both GPUs have the same
architecture but differ in the amount of resources available (number of multiprocessors and
memory bandwidth). In double precision, we observe up to 1.97x/2.49x speedups by the K20c
GPU over the Fermi GPU for fixed/variable size test cases. Similarly, a the performance is
improved by just up to 30% by using the K40c GPU.

6 Conclusion and Future Work

This work presented a set of design ideas, tuning, and optimization techniques to address linear
algebra operations on batches of fixed and variable size matrices on GPUs. The focus was on
the Cholesky factorization. The paper shows that it is necessary to consider various design
ideas in several combinations with tunable parameters in order to achieve high performance for
such workloads. The proposed design proved to outperform all state-of-the-art techniques on
both the CPU and the GPU. Future directions include benchmarking vbatched kernels against

10

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

size distributions that arise in real applications, and leveraging the same design concepts for
the LU and QR algorithms.

Acknowledgments

This material is based on work supported by NSF under Grants No. CSR 1514286 and ACI-
1339822, NVIDIA, and in part by the Russian Scientific Foundation, Agreement N14-11-00190.

References

(1]

2]

8]

(4]

[5]

(6]

[10]

[11]

[12]

E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S. Tomov. Faster,
Cheaper, Better — a Hybridization Methodology to Develop Linear Algebra Software for GPUs.
In W. mei W. Hwu, editor, GPU Computing Gems, volume 2. Morgan Kaufmann, Sept. 2010.

E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and
S. Tomov. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA
projects. J. Phys.: Conf. Ser., 180(1), 20009.

T. Dong, A. Haidar, S. Tomov, and J. Dongarra. A fast batched Cholesky factorization on a GPU.
In Proc. of 2014 International Conference on Parallel Processing (ICPP-2014), September 2014.
J. Dongarra, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and A. YarKhan. Model-driven one-
sided factorizations on multicore accelerated systems. International Journal on Supercomputing
Frontiers and Innovations, 1(1), June 2014.

A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra. Batched matrix computations
on hardware accelerators based on gpus. International Journal of High Performance Computing
Applications, 2015.

A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra. A framework for batched and gpu-
resident factorization algorithms applied to block householder transformations. In J. M. Kunkel
and T. Ludwig, editors, High Performance Computing, volume 9137 of Lecture Notes in Computer
Science, pages 31-47. Springer International Publishing, 2015.

A. Haidar, P. Luszczek, S. Tomov, and J. Dongarra. Towards batched linear solvers on accelerated
hardware platforms. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, 02/2015 2015. ACM, ACM.
J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and tuning of batched cholesky
factorization and solve for nvidia gpus. Parallel and Distributed Systems, IEEE Transactions on,
PP(99):1-1, 2015.

A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich, D. Poole,
and C. Lamb. Parallel performance measurement of heterogeneous parallel systems with gpus. In
Proc. of ICPP’11, pages 176-185, Washington, DC, USA, 2011. IEEE Computer Society.

V. Oreste, M. Fatica, N. A. Gawande, and A. Tumeo. Power/performance trade-offs of small
batched LU based solvers on GPUs. In 19th International Conference on Parallel Processing, Euro-
Par 2013, volume 8097 of Lecture Notes in Computer Science, pages 813-825, Aachen, Germany,
August 26-30 2013.

V. Oreste, N. A. Gawande, and A. Tumeo. Accelerating subsurface transport simulation on
heterogeneous clusters. In IEEE International Conference on Cluster Computing (CLUSTER
2013), Indianapolis, Indiana, September, 23-27 2013.

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra solvers for multicore with
GPU accelerators. In Proc. of the IEEE IPDPS’10, pages 1-8, Atlanta, GA, April 19-23 2010.
IEEE Computer Society. DOI: 10.1109/IPDPSW.2010.5470941.

11

Batched Cholesky Factorization on GPUs Abdelfattah, Haidar, Tomov and Dongarra

[13] V. Volkov and J. W. Demmel. LU, QR and Cholesky factorizations using vector capabilities of
GPUs. Technical Report UCB/EECS-2008-49, University of California, Berkeley, May 13 2008.
Also available as LAPACK Working Note 202.

[14] 1. Wainwright. Optimized LU-decomposition with full pivot for small batched matrices, April,
2013. GTC’13 — ID S3069.

12

	Introduction
	Related Work
	Algorithmic Designs for Fixed Sizes
	Algorithmic Designs for Variable Sizes
	Performance Results
	Conclusion and Future Work

