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Abstract—Many scientific applications, ranging from na-
tional security to medical advances, require solving a number
of relatively small-size independent problems. As the size of
each individual problem does not provide sufficient parallelism
for the underlying hardware, especially accelerators, these
problems must be solved concurrently as a batch in order
to saturate the hardware with enough work, hence the name
batched computation. A possible simplification is to assume a
uniform size for all problems. However, real applications do not
necessarily satisfy such assumption. Consequently, an efficient
solution for variable-size batched computations is required.

This paper proposes a foundation for high performance
variable-size batched matrix computation based on Graphics
Processing Units (GPUs). Being throughput-oriented proces-
sors, GPUs favor regular computation and less divergence
among threads, in order to achieve high performance. There-
fore, the development of high performance numerical software
for this kind of problems is challenging. As a case study, we
developed efficient batched Cholesky factorization algorithms
for relatively small matrices of different sizes. However, most
of the strategies and the software developed, and in particular
a set of variable size batched BLAS Kernels, can be used
in many other dense matrix factorizations, large scale sparse
direct multifrontal solvers, and applications. We propose new
interfaces and mechanisms to handle the irregular computation
pattern on the GPU. According to the authors’ knowledge, this
is the first attempt to develop high performance software for
this class of problems. Using a K40c GPU, our performance
tests show speedups of up to 2.5x against two Sandy Bridge
CPUs (8-core each) running Intel MKL library.
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I. INTRODUCTION

The purpose of batched routines is to solve a set of
independent problems in parallel. Such configuration arises in
many real applications, including astrophysics [21]], quantum
chemistry [9], metabolic networks [19]], CFD and resulting
PDEs through direct and multifrontal solvers [31]], high-
order FEM schemes for hydrodynamics [[10]], direct-iterative
preconditioned solvers [16]], image [22]] and signal process-
ing [8]. If the matrix size is large enough to allow efficient
use of the entire device, there is no benefit of using batched
computation; it is preferred to solve the set of independent
problems in serial fashion as a sequence of problems, to
better enforce locality of data and increase the cache reuse.
However, when matrices are small, the amount of work

needed to perform the computation cannot saturate the device,
either CPU or GPU, and thus there is a need for batched
routines. In general, matrices do not necessarily have the
same size.

The development of an efficient framework for batched
matrix computation depends on the nature of the underlying
hardware (latency oriented vs. throughput oriented). For
multicore CPUs, the framework can be developed both
easily and efficiently using the existing software stack.
Since matrix sizes are relatively small, they can fit into
the fast CPU cache, and vendor supplied libraries such
as MKL [18] or ACML [6] can be used to achieve high
performance. In addition, vectorization can be used to achieve
even higher performance, either explicitly (the Intel Small
Matrix Library [[17]]) or implicitly (intrinsic instructions and
vectorized BLAS operations). If each individual matrix can
fit into the cache, one CPU core can be assigned to solve
one problem at a time. As we show in Section [[V] this is
a better practice than using all cores to work on a single
matrix at a time. More details about batched computation
using multicore CPUs can be found in [13]].

By using properly designed and implemented batched
operations, small problems can be solved two to three times
faster on GPUs, and with four to five times better energy
efficiency than on multicore CPUs alone (subject to the
same power draw). Given the fundamental importance of
numerical libraries to science and engineering applications,
the need for libraries that can perform batched operations on
small matrices has clearly become acute. The same approach
cannot be used for GPUs, due to their throughput-oriented
architecture. GPUs have small caches/shared memories
that can host only tiny matrices. For example, a modern
Kepler GPU has about 48KB of shared memory, which
can host one matrix whose size is up to 7878 in double
precision (assuming that no other shared variables/workspaces
are needed). In addition, most of the existing software
infrastructure for GPUs target relatively large matrices to
achieve high performance. As a result, there is a need to
develop a dedicated framework for batched computation on
GPUs, supporting both fixed and variable size problems.

This paper is a first attempt to extend the MAGMA [27]]
framework proposed in [13] in order to support variable



size batched computation. The proposed work focuses on a
Cholesky factorization problem of the configuration shown
in Figure [T} However, we emphasize that many of the kernels
proposed in this paper create a foundation for the class of
variable-size batched factorization and solve routines.
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Figure 1. Schematic view of a variable-size batched Cholesky factorization
problem for a set of k£ dense matrices. Each matrix is assumed to have a
different size and leading dimension.

The rest of the paper is organized as follows. Section [II]
discusses some previous efforts in GPU-accelerated matrix
factorizations, with a focus on batched routines. Section [I11}
presents a detailed description of the framework proposed to
handle a variable-size batched matrix computation problem,
taking Cholesky factorization as a case study. In Section [[V]
we show some performance results and the speedups achieved
against other techniques. We also show how the performance
of some routines is progressively improved. The paper ends
with a conclusion in Section [V

II. RELATED WORK

A problem size is usually a defining factor to decide which
algorithm and hardware to use. In a batched problem, we
have two factors, the size of each individual problem, and the
batch size. For simplicity, we always assume that the batch
size is large enough to fill up the resources of the hardware.

As mentioned earlier, sufficiently large matrices do not
need a batched routine. The GPU can handle one matrix at
a time based on prior work that proposes hybrid algorithms
that use both the CPU and the GPU [28]]. The motivation
behind hybrid algorithms arises from the fact that GPU
can not be used on panel factorizations as efficiently as on
trailing matrix updates [29]]. Since such updates are mostly
gemms [4], [12], many hybrid algorithms perform the panel
factorization on the CPU, while the updates are performed
on the GPU. For small problems, however, hybrid algorithms
lose efficiency due to lack of parallelism, especially in the
trailing matrix updates which fail to hide the latency of both
the panel factorization and the data movement between the
CPU and the GPU.

There are some efforts that proposed batched computations
on the GPU. For example, the work done by Villa et al. [25]],
[26] proposed batched LU factorization for matrices up to

128, where a single thread block solves one system at a time.

Similarly, Wainwright [30] proposed a design based on using
a single CUDA warp to perform LU with full pivoting on
matrices of size up to 32. Dong et al. [|[11]] proposed three
different implementations for batched Cholesky factorization,
where the performance was compared against a multicore

CPU and the hybrid MAGMA [5] algorithm. Kurzak et
al. [20] proposed an implementation and a tuning framework
for batched Cholesky factorization for small matrices (<100)
in single precision. Batched QR factorization has also been
accelerated using GPUs [14]], where several-fold speedup
is obtained against a competitive design by CUBLAS [24].
Haidar et al. proposed common optimization techniques,
based on batched BLAS kernels, that can be used for all one-
sided factorizations (LU, QR, and Cholesky) using NVIDIA
GPUs [[13]] [15]. However, all the aforementioned efforts
focus on the case where all the matrices have the same size.
This paper addresses the generic case of having different
sizes in one batch.

III. ALGORITHMIC ADVANCMENT AND DESIGN

We have been working closely with affected application
communities to define modular, language agnostic interfaces
that can be implemented to work seamlessly with the
compiler, and be optimizable using techniques such as
code replacement and inlining. The goal is to provide the
developers of applications, and runtime systems with the
option of expressing interfaces to batch computations as
a single call to a routine, that would also allow the entire
linear algebra (LA) community to collectively develop a wide
range of small matrix problems. Success in such an effort will
require innovations in interface design, computational and
numerical optimization, as well as packaging and deployment
at the user site to trigger final stages of tuning at the moment
of execution. In this section, we describe a framework for
the development of efficient kernels for batched computation
of small matrices with different sizes. From now on, variable-
size batched routines will be abbreviated as vbatched routines.

A. Interface of a Vbatched Routine

Batched routines for fixed-size matrices have an interface
similar to the classic LAPACK [7] routines except that:

« Input matrices are passed as an array of pointers instead
of just a pointer to a single matrix;

o The routine needs information about the batch count,
thus an extra parameter is added.

However, if matrices do not have the same size, both the
matrix sizes and the leading dimensions need to be passed
(as arrays of integers). A vbatched routine assumes that
each matrix has an independent size and leading dimension.
A consequence of this modification is that any pointer
displacement or any simple arithmetic operation on the matrix
size need to be performed on the whole array. Thus, all arrays
need to reside on the GPU memory and specific GPU kernels
required for these kind of operations (such as integer addition
and min/max operations) must be developed.

Another implicit consequence from the nature of the
vbatched routine is that any kernel has to accommodate the
largest matrix in the batch. Therefore, any vbatched kernel
takes as input the maximum size across all matrices. We



propose to have two interfaces for the vbatched routines, one
that requires the maximum dimension(s) across all matrices
as an input parameter, and a simple one very close to the
LAPACK interface where the maximum value is computed
using a GPU kernel. The former is recommended when the
user has such information so that computing the maximums
is waived. The latter wraps the first interface and calls GPU
kernels to compute these maximums. In most cases, the
overhead of computing the maximum is negligible.

B. Methodology and Optimization Techniques

The experience of the research community over the last
few years has shown that applications dominated by small
matrices cannot be executed efficiently using standard LA
libraries for heterogeneous systems with GPUs. We know,
from collaborating with computational scientists who have
problems involving many small matrices, that making a
separate call to one of these existing “optimized” libraries
for each small matrix will consistently result in the same
low performance. We call this approach naive because it
does not recognize that the techniques used to optimize these
libraries presuppose large matrices. Consequently, we try
to discourage this approach by showing, that getting good
performance for small matrices demands a different approach.

There are relatively straightforward explanations of why
neither standard (i.e. naive) implementations, which assume
“fast large matrix-matrix multiply” as the base, nor classic
autotuning techniques will solve the problems that small
matrices encounter. In the case of the former, fast matrix-
matrix multiply only achieves its close-to-peak speed at
the asymptotic limit, whereas small matrix operations never
attain this asymptotic behavior. It assumes that the surface-to-
volume effect will dominate the time in terms of computation,
so that other overheads (communication, memory hierarchy
prefetch, kernel launch overhead, etc.) will not have serious
impact because their influence is overshadowed by compu-
tation. Batch operations do not have this luxury. Classical
optimization and autotuning can help in the large matrix-
matrix-multiplication case because it provides a well defined
target; it can, if done judiciously and with knowledge of the
architecture, often hide problems like insufficient memory
bandwidth and/or main memory latency; batched operations
require much more elaborate autotuning and kernels fusions.

C. Fusion vs. Separation of BLAS Kernels

As proposed by Haidar et al. [13], a batched BLAS
approach is superior to other methodologies where a single
CUDA thread or thread block does the whole factoriza-
tion [25]], [26], [30]. However, such batched BLLAS kernels
are always called from the CPU, which might introduce a
large overhead of kernel launches, especially if the matrix
sizes are below a certain threshold. In this paper, we adopt the
same batched BLAS approach, and investigate both fusion
and separation of these kernels. Kernel fusion is expected to

outperform kernel separation up to some crossover point at
which the separation technique starts to take over.

D. Approach 1: Fused BLAS Kernels

The motivation behind fusing BLAS kernels is to reduce
kernel launch overhead and avoid workspace allocations,
which are unnecessary if certain assumptions can be made
about the matrix size. It also enables data reuse across
the fused kernels, thus minimizing global memory traffic.
We describe our approach on the Cholesky factorization,
described in Algorithm [T} The computation follows three
steps. The panel is updated by the effect of the previous
steps. This is a rank-k update that can be performed by a
customized syrk. Then the tile is factorized (potf2) and the
lower portion of the panel is factorized by a trsm.

Algorithm 1 The blocked Cholesky factorization.

for i € {1,2,3,...,n/nb} do

if i > 1) then
Panel Update Co.xw = Couxs — Amsxin X (BT ) nxcns

end if
Tile Factorize ¢, :=Cholesky(C1) (dpotf2)
Panel Factorize ¢, = c,(cT)™" (dtrsm)

end for

We designed a high performance kernel for the left-looking
Cholesky factorization that fuses these steps. For a matrix of
size m, the kernel requires that a panel of size m x nb can
be stored in shared memory, where nb is a tuning blocking
size. This enables fast data reads and writes for the potf2
and trsm operations. One of the advantages of kernel fusion
is that we do not need to implement all the possibilities that
the batched BLAS provides. For example, the syrk operation
inside the fused kernel is customized to compute C,,,, =
Criss — Ain X (BT, as shown in Figure 2| Unlike
generic Batched BLAS syrk routines, we implement one
version (A is non-transposed and B is transposed). Moreover,
we know that for Cholesky, B consists of a portion of A.
Thus, we take advantage of it in the customized routine and
avoid redundant loads from the GPU main memory. Using a
standard syrk kernel cannot take advantage of such special
cases, as it always assumes the generic standard rank-k update.
We also employ a double buffering technique to perform the
panel update using pipelined stages, where data movements
from the global memory at one stage overlap computation
from the previous stage. We autotuned this kernel for all
the possible sizes. We defined a modular templated interface
so that we call the kernel using the predefined template
where the nb tuning parameter is predefined at compile time,
which allows the compiler to provide more optimizations and
to store data in the constant cache memory. For simplicity,
fused kernels were initially developed for fixed-size batched
operations, where we observed significant speedups for very



nb

Figure 2. Panel update for a left-looking Cholesky factorization

small matrices against the separated kernel approach, as we
point out in Section

Having the fused kernels approach working for fixed-size
test cases, we developed the following techniques to support
variable-size batched computation.

1) Early Termination Mechanisms (ETM): Matrices of
different sizes require different number of factorization steps.
For example, given nb=8, a matrix of size 100 requires 13
factorization steps, while a matrix of size 25 requires only 4.
As pointed out in Section [[II-A] any vbatched kernel should
be configured to accomodate the largest matrix in the batch.
This means that some thread blocks may not have work to do
at some factorization steps, because the matrix assigned to
them is fully factorized. An ETM enables such thread blocks
to terminate immediately after launch. A decision is made
at the kernel level, where each thread block independently
determines whether it has work to do. This decision is based
on thread block coordinates, the size of the assigned matrix,
and the number of factorization steps carried out so far. We
propose two ETMs:

o« ETM-classic: This mechanisms terminates only full
thread blocks, which means that all threads in a thread
block must have no work to do in order to terminate it.
If at least one thread has work to do, the corresponding
thread block is kept alive. This mechanism can be safely
used with any kernel regardless of the implementation
details or the operation being performed.

o« ETM-aggressive: This mechanism is more aggressive
than ETM-classic. It implements ETM-classic, but also
looks into threads in live thread blocks that might not
have work to do. This mechanism is kernel-specific
and is not valid to use for any implementation. The
aforementioned fused kernel was developed to support
ETM-aggressive. For example, assuming a 1D configu-
ration of thread blocks with 64 threads, two matrices

whose sizes are 24 and 63 require one thread block each.
However, ETM-aggressive will terminate 40 threads for
the first matrix, and 1 thread for the second. On the
contrary, ETM-classic will keep all the 64 threads on
both thread blocks alive.

2) Implicit Sorting: To achieve better occupancy and load
balance, in addition to the ETMs techniques, we developed
an implicit sorting scheme which emphasizes computation
on matrices within the same range of sizes. The idea can
be viewed as a scheduling techniques. At every step of the
computation, a window of sizes is noted as “active sizes”
meaning ready to be factorized. Matrices of size within this
window move to a ready state queue. This approach allows
the algorithm to go through the matrices by batch of “nearly
similar sizes”, improving occupancy and workload balance.
The window size is determined by the block size nb.

E. Approach 2: Separated BLAS Kernels

The fused kernel approach cannot be used for medium
matrix size, since the shared memory requirement can exceed
the resources on the GPU if m is large. At this point,
an approach based on separated batched BLAS kernels
is adopted, which can handle from medium to very large
sizes. This approach is based on building vbatched kernels
which implement standard BLAS operations (potf2, trsm,
gemm, and syrk). While the focus of this paper is on
Cholesky factorization, we emphasize that these kernels are a
foundation for other variable-size batched factorizations (LU
and QR) as well as other higher level LAPACK algorithms.

1) Panel Factorization: This kernel performs the Cholesky
factorization as described by the potf2 routine. In fact, we
reuse the fused kernel described in Section in order to
factorize a square panel of size NB, where NB>nb. Tuning
nb takes into consideration the shared memory constraint of
the fused kernel.

2) Triangular Solve: We developed a vbatched trsm kernel
that is based on the design proposed in [13] which starts
by inverting the diagonal blocks of size typically 32x32
using a vbatched trtri routine, and then updates the solution
matrix based on several calls to a vbatched gemm kernel [3],
which was optimized and autotuned based on techniques
from the classic MAGMA gemm routine [23]]. The vbatched
kernels for trtri and gemm operations use ETM-classic. They
cannot use ETM-aggressive since the implementation of these
kernels requires all threads in live thread blocks to be in
sync.

3) Symmetric rank-k update: The trailing matrix update
is done by the syrk kernel, which inherits its implementation
from the vbatched gemm kernel. The Syrk operation is
realized as a gemm with an additional decision layer that
identifies thread blocks required to update either the upper
or the lower triangular part of the trailing submatrix, and
thus terminating all other thread blocks. We also use another
alternative for the trailing matrix updates, based on the high



performance syrk from CUBLAS [24], where one kernel
is launched per matrix and concurrent kernel execution is
realized using CUDA streams. The decision to select either
vbatched MAGMA kernel or the streamed Syrk kernel is
based on a performance tuning process that is beyond the
scope of this paper.

F. Factorization Driver

In addition to the kernels mentioned above, there is a top
layer that runs on the CPU side and controls the launch of
the vbatched kernels. It consists of the main loop of the
algorithm and for that we call it the factorization driver. It
provides information to the kernels about step id and sizes.
Such information prevents creating out-of-bound memory
accesses or kernel launch failures. For example, if the batch
contains some matrices that are less than nb in size, then
these matrices will be fully factorized during the first panel
factorization phase. For such matrices, any calls to the trsm
or the syrk kernels are useless and should be terminated.
The factorization driver uses auxiliary kernels to pass the
necessary information to the trsm and the syrk kernels to
ignore the factorized matrices onward as the computation
progresses. As we will show in Section [V} the overhead of
these auxiliary kernels is almost negligible.

IV. EXPERIMENTAL RESULTS
A. System Setup

All the experiments are conducted on a machine equipped
with two 8-core Intel Sandy Bridge CPUs (Intel Xeon
E5-2670, running at 2.6 GHz), and a Kepler generation
GPU (Tesla K40c, running at 745 MHz, with ECC on).
CPU performance tests use Intel MKL Library 11.3.0. GPU
performance tests use CUDA Toolkit 7.0. While we show
performance tests for single and double precisions only, the
proposed framework supports complex precisions.

B. Matrix Size Distribution

Considering the test cases for the vbatched routines, the
matrix sizes in any batch are randomly generated using two
different pseudo random number generators. The first one
uses a uniform distribution so that given a maximum size
Ninaz, the batch contains sizes that range from 1 to N4,
based on a uniform distribution. As an example, Figure [3a]
shows a histogram for the matrix sizes generated for a batch
size of 2,000. The figure shows that most sizes appear at
least once, with the majority of sizes appearing between 1
and 5 times. The second generator is based on a Gaussian
distribution, so that given a maximum size N, ., most of
the matrix sizes in the batch are around the mean value | 4|,
with fewer sizes appearing near the boundaries of the interval
[1:Nyyqz], as shown in Figure 3B

The following sections show the performance in Gflop/s
for different versions developed. The total number of flops is
computed as the summation of the flops required to perform

Frequency of occurrence

N O
o kY

Matrix size

(a) Uniform Distribution

Frequency of occurrence

Matrix size

(b) Gaussian Distribution
Figure 3. Histograms of the size distribution for a batch count equal to
2000 with maximum matrix size set to 512
the factorization on each individual matrix, which reflects
the elapsed time, e.g., a twice Gflop/s means twice faster.

C. Impact of kernel fusion on fixed-size batched routine

As discussed in Section [[II-D} our starting point to develop
the vbatched framework is to enhance the performance of
the fixed-size batched routines, especially when matrices
are very small. Figure [ justifies the motivation to use
kernel fusion, where significant performance gains are scored
against the traditional approach (e.g., separated building
block BLAS kernels). The relative speedups are up to 13x
for single precision and 7x for double precision. Both
speedups decay as the matrix size gets larger. This is
expected, since the kernel fusion approach will require larger
shared memory, which affects the number of kernels that
can be processed concurrently. Meanwhile, the overhead of
separating BLAS kernels gets smaller with respect to the
amount of computation associated with larger matrices. This
is why Figure [4c| shows a steady trend where the speedup
is going below one. Our proposed framework is designed
to select the best out of the two approaches. It defines a
crossover point after which separated BLAS kernels are used.
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Figure 4. Fused kernels performance and speedup over separated BLAS
approach (fixed-size matrices)

D. Performance of The Fused Kernels Approach

There are four different versions that we progressively
developed for the kernel fusion approach. They are:

1) ETM-classic only;

2) ETM-aggressive only;

3) ETM-classic + implicit sorting; and

4) ETM-aggressive + implicit sorting.
The performances of these versions are shown in Figure [3]

for a uniform, and in Figure |§| for a Gaussian distribution.
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Figure 5. Performance of different versions of the vbatched xPOTRF

based on the fused kernels approach, batch count equal to 3000 (uniform
distribution)

Considering the uniform distribution test case, with the
absence of the implicit sorting technique, ETM-aggressive
has an advantage over ETM-classic with speedups ranging
from 12% up to 33% in single precision, and from 11% up
to 35% in double precision. These speedups are obtained
because ETM-aggressive employs a more fine-grain technique
to terminate both idle thread blocks as well as idle threads
in live thread blocks. Eventually, ETM-aggressive allows
more resources to be immediately released to be ready for
useful computation. With the addition of the implicit sorting
technique, we notice that the performance of ETM-classic is
improved by up to in 42% single precision and 60% in double
precision. Similarly for ETM-aggressive, implicit sorting
improves the performance by up to 15% in single precision
and 41% in double precision. Implicit sorting reorders the
computation so that, at any factorization step, live thread
blocks only consider matrices whose sizes are within a
window of nb, and so it achieves more load balancing and
reduces the overhead of early termination mechanisms.

Considering the Gaussian distribution test case, we observe
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test cases generated here, the crossover point is marked by
the maximum size in the batch. The reason behind choosing
the maximum as the deciding criteria is that the kernel fusion
approach cannot work for any matrix size, due to its shared
memory requirements. Checking the maximum size decides
whether it is safe to run such approach for the input batch.
Otherwise, there is no choice but to run the separated kernel
approach.
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Figure 6. Performance of different versions of the vbatched xPOTRF

based on the fused kernels approach, batch count equal to 3000 (Gaussian
distribution)

a similar behavior to Figure [5] except that the impact of
implicit sorting is much more significant than the case of
uniform distribution. The performance improvements are up
to 87.5% (single precision) and 125.26% (double precision)
with ETM-classic, and up to 35.1% (single precision) and
89.9% (double precision) with ETM-aggressive. The reason
behind such behavior is that the Gaussian distribution, by
nature, introduces few matrices that are far from the mean
value, especially matrices whose sizes are larger than the
mean. The presence of such larger matrices causes even
more load imbalance. The absence of implicit sorting causes
factorizations to start on all matrices at the same time, leading
to more load imbalance and large overhead of ETMs. With
implicit sorting involved, the computation reordering achieves
a more robust behavior, so that nearly the same performance
is achieved, compared to the uniform distribution test case.

E. Combining kernel fusion and separation

Figure [7] shows the crossover points between the two
approaches discussed in Sections [[II-D| and [I-E] for a
uniform distribution test case. The performance of the kernel
fusion approach is based on the best configuration highlighted
in Section [V-D| (ETM-aggressive + implicit sorting). For the
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Figure 7. Crossover points for vbatched xPOTF, batch count equal to 800.

F. Overall Performance

Figures [ and [0 show the overall performance of the
vbatched Cholesky factorization and compare it against the
following alternatives:

e MAGMA hybrid routines,
CPU+GPU algorithm;

« MAGMA fixed-size batched routines with padding;

o A multithreaded CPU kernel using Intel MKL. This
technique uses all cores to factorize one matrix at a
time;

« A CPU implementation with one core assigned per
matrix at a time. A scheduling schema is used to assign
matrices to cores (16 CPU cores in our experiments).

which use a hybrid
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The scheduling can be either static or dynamic. Both
variants are plotted.

Obviously, the MAGMA hybrid routines are not the correct
choice for this type of workload. As these routines assume
a relatively large matrix, the performance for a batch of
small matrices is low, as discussed in Section [} There exist
libraries developed and optimized for batch computation
but for fixed-size matrices only (MAGMA or CUBLAS).
Thus, application that requires variable sizes computation
will not have choice except to use the fixed-size batch
routines. For that, the users need to pad the matrices with
zeros in order to make them fixed-size. Although the fixed-
size batched routines perform better than the hybrid ones,
their performance is still unacceptable and it is even lower
than some CPU performance graphs. The padding technique
results in a lot of extra computation, and its influence on
performance depends on the size distribution.

A multithreaded CPU scheme is not a wise option either
for this kind of problems, since each individual matrix is too
small to have multiple cores working on it. This is why it lags
behind other schemes that use one core per matrix at a time.
The best competitor to the proposed approach is dynamic
assignment of one CPU core at a time for a given matrix.

magma
cpu (mkl-dynamic)

700 H cpu (mkl-static)

cpu (mkl-multithreaded)
magma with padding

bhxks

[|magma hybrid

Maximum matrix size in the batch

(a) Single Precision
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(b) Double Precision
Figure 9. Overall performance of the vbatched xPOTRF routine, batch

count equal to 800 (Gaussian distribution).

Most of the matrices in such workloads will fit in the fast
cache levels, and the dynamic scheduling ensures balancing
the load among cores. This is why the static scheduling
results in some performance oscillations.

For a uniform distribution test case, speedups against the
best competitor range from 1.11x up to 2.42x in single
precision, and from 1.51x up to 2.29x in double precision.
Respective speedups for a Gaussian distribution range from
1.31x to 2.07 x in single precision, and from 1.21x to 2.52x
in double precision. Without the introduction of the vbatched
routines, the only way a user can use batch routine on GPU is
to use padding, against which the proposed vbatched routines
are up to 3x faster. The performance graphs of the padding
technique look truncated due to running out of the GPU
memory, which is yet another motivation to have a vbatched
routine.

G. Energy Efficiency

An interesting metric to study and measure is the energy to
solution. All our benchmark runs show that energy efficiency
significantly favors the GPU implementation. Figure[T0]shows
the total amount of energy consumed by both hardware CPU
and GPU for a benchmark testbed for matrices with different
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Figure 10. Total energy consumed by the CPU and the GPU for vbatched dpotrf

range of sizes. The experiment is conducted for the proposed
vbatched routine against the fastest CPU implementation,
which calls the optimzed MKL Library within a dynamically
unrolled parallel OpenMP loop, assigning one core per
matrix at a time. The system setup is identical to the one
described in Section We use PAPI [2]] (version 5.4.0)
and NVIDIA Management Library (NVML) [1] in order
to record the power consumed by either the CPU and the
GPU implementation, respectively. The results in Figure [I0]
represent the integration of the power measurements over
time. Our experiments proved that the GPU implementation
is always more efficient than the CPU ones, in terms of both
time and energy to solution. The results in Figure [T0] shows
that the GPU design can reach a factor up to 3 X more
energy efficient.

V. CONCLUSION AND FUTURE WORK

This paper developed a framework for variable size batched
matrix computations using GPU accelerators. While Cholesky
factorization has been chosen as a case study, the proposed
ideas and methodology can be used for other factorizations
and solver algorithms. In fact, the new interfaces and
techniques proposed in this paper create a foundation for
high performance variable-size batched computation. We
showed that kernel fusion achieves better performance when
matrix sizes are below some threshold, after which the
design switches to another technique where BLAS kernels
are separated from each other and used as a building block
modular routines. Many fold speedups are achieved against
alternative techniques using the CPU or the GPU.

Future directions include the extension of this work to the
LU and QR factorizations, sparse direct multifrontal solvers,
and applications, where many of the BLAS kernels proposed
here can be reused out of the box. It is also important to test
the impact of different size distributions on performance, and

how the variation in sizes might affect the crossover points.
Another open direction is to investigate LAPACK compliance
of these routines, especially with respect to error checking,
and to propose an alternate scheme to report possible errors
to the user.
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