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ABSTRACT
A wide variety of heterogeneous compute resources are available to
modern computers, including multiple sockets containing multicore
CPUs, one-or-more GPUs of varying power, and coprocessors such
as the Intel Xeon Phi. The challenge faced by domain scientists
is how to efficiently and productively use these varied resources.
For example, in order to use GPUs effectively, the workload must
have a greater degree of parallelism than a workload designed for
a multicore-CPU. The domain scientist would have to design and
schedule an application in multiple degrees of parallelism and task
grain sizes in order to obtain efficient performance from the re-
sources. We propose a productive programming model starting from
serial code, which achieves parallelism and scalability by using a
task-superscalar runtime environment to adapt the computation to
the available resources. The adaptation is done at multiple points,
including multi-level data partitioning, adaptive task grain sizes, and
dynamic task scheduling. The effectiveness of this approach for uti-
lizing multi-way heterogeneous hardware resources is demonstrated
by implementing dense linear algebra applications.
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Hardware accelerator systems have been gaining ground not
just in terms of computational performance but also in the ease
of use with the introduction of software technologies such as CUDA,
OpenCL, and, recently, OpenACC. A similar technology offered
by Intel are coprocessors, currently known as the Xeon Phi. The
computational edge of the latter has also been established and their
dominant software technology, OpenMP 4, has served the commu-
nity well in terms of productivity to render auxiliary the burden of
using lower level of the Intel coprocessor software stack: SCI and
COI. We refer to this match of hardware with its software stack as
the vertical integration of a platform.

Interestingly, horizontal integration, or combining different plat-
forms and their software stacks is much less supported or researched.
Yet, modern computing systems are likely to feature multiple accel-
erators, often not the same kind, in order to accommodate the whole
variety of scientific workloads.

Finally, the constant technological progress of hardware accel-
erators, now featuring nearly 10 billion transistors, foreshadowed
the advancement in traditional multicore CPU technology. A CPU
can now produce half a Tera-flop of computations per second in
double precision on a single motherboard socket. This CPU perfor-
mance was made possible by the fast paced improvement in CPU
vectorization standards with the flagship AVX and multi-argument
fused multiply-add instructions coupled with multiple floating units
per core that (with proper use of Level 1 cache) can sustain very
high performance without being burdened by the vagaries of modern
memory systems and NUMA overheads.

We are presenting a programming model for the rapid develop-
ment of linear algebra applications designed to be efficient on com-
plex heterogeneous hardware. Our programming model derives its
productivity from a design that is based on the task-superscalar
paradigm, allowing us to write serial-like code. Then, a task-
superscalar runtime executes the code adaptively, scalably, and
efficiently on the available heterogeneous resources. In this sec-
tion, we give background for the linear algebra problem, describe
approaches to heterogeneous programming, and discuss alternatives
for the runtime environment.

2. BACKGROUND AND MOTIVATION
The desire for faster computers and greater immersive experi-

ences has led hardware designers to push beyond the constraints



of Moore’s Law. Machines are designed with increasing numbers
of cores and specialized accelerators that provide enormous perfor-
mance boosts for the right kind of computation. In response to this,
computer scientists are designing algorithms, software and frame-
works that can take advantage of these highly parallel resources.
Algorithms need to be restructured to allow greater levels of asyn-
chronous parallelism and workloads need to be tailored to match
the available hardware, where the hardware can include multicore
CPUs, GPUs, and other accelerators or coprocessors.

Dense linear algebra libraries are at the core of a substantial
number of scientific codes across science domains. The traditional
approach to extracting high linear algebra performance from the
hardware resources is by relying on highly tuned, platform-specific
optimized libraries, such as the Basic Linear Algebra Subroutines
(BLAS). The scientific codes are then constructed as a sequence of
calls to an optimized library. However, this can result in a BSP [20,
19] (also called fork-join) style execution where highly tuned parallel
code is interleaved with code that achieves very low parallelism.
Newer alternatives to extracting parallelism from available hardware
have been advocating a higher level approach [6]. This approach is
a task-based dataflow approach where precedence-constrained tasks
are executed asynchronously and in parallel. This approach can
provide a much higher occupancy of the computational resources.

Developing linear algebra algorithms for today’s heterogeneous
machines requires a level of complexity that was not required in ho-
mogeneous environments. Each different type of hardware is likely
to have a different workload-grain size for optimal performance. For
example, for matrix-matrix multiplication, a GPU will require large
matrix sizes in order to achieve high performance, whereas a CPU
can achieve its best performance at much smaller sizes.

Furthermore, in a distributed memory environment, the data needs
to be partitioned among the nodes to enable load balance and scal-
ability. If the nodes have varying capabilities, then the algorithm
needs to allow different workloads to be allocated to each node.

This paper presents research in designing the algorithms and
the programming model for high-performance DLA in distributed-
memory heterogeneous environments. The compute nodes in these
environments can be composed of a mix of multicore CPUs, GPUs,
, and coprocessors such as Xeon Phi (formerly MIC), all of which
may have varying capabilities and different optimal workload gran-
ularity. While the main goal is to obtain as high fraction of the
peak performance as possible for the entire system, a competing sec-
ondary goal is to propose a programming model that would simplify
the development.

To this end, we propose and develop a new distributed-memory
lightweight runtime environment, and describe the construction of
DLA routines based on it. We demonstrate the new heterogeneous
runtime environment and its programming model using the LU
factorization.

The design of this new environment considers our experience [14],
as well as other state-of-the-art developments in the area, summa-
rized as follows, to extract and develop the techniques best suited
for DLA on distributed heterogeneous systems.

3. NOVELTY AND CONTRIBUTIONS
We consider the following to be novel contributions of this paper,

they either need to be considered independently or as whole because
they are implemented in a single working solution.

1. Our scheduling allows a mix of tasks that are primarily either
numerical or non-numerical but can also be both. We have
investigated primarily numerical tasks in our prior work [14]
and our current work extends it to non-numerical memory-

bound tasks. The details can be found in this and following
sections.

2. We handle in our extended scheduler tasks with a range of
ratios of computational load to memory accesses. This means
that the scheduler is much more sensitive to data locality since
suboptimal scheduling decisions can no longer be attenuated
by high computational load. In order to take advantage of
the feature and improved runtime schedule, the user labels
tasks with categories that range from mostly compute-bound
to mostly memory-bound. Presets are available for common
library routines such as BLAS Level 1, 2, or 3.

3. We show a unified method that supports for coprocessors,
GPUs, and multicore CPUs without prescribed relative com-
putational strength of the devices. The computational capacity
is represented as a single number – a weight that correlates
well to the peak performance of the device. To account for the
delay of data transfers, we use very simple communication
model that uses the peak device link bandwidth to estimate
communication overhead. Such a model is to simplistic for
large scale networks but is adequate within a single node
regime.

4. We implement a hardware-oblivious scheduling with virtual
computing devices that can be any combination of a single
or multiple CPU cores, a single or multiple GPUs, a single
or multiple GPU streams (a stream roughly representing a
single NVIDIA SMX) or OpenCL queues, a single or multiple
coprocessor threads (the Knights Landing edition of Xeon
Phi features up to 240 threads on the high end version of the
hardware).

5. We allow the user to use the synchronous communication
model with asynchronous communication progress. The
former simplifies the programming model while the latter
maximizes the achieved bandwidth and reduces the overhead
associated with latency.

6. We introduced the concept of multi-grain scheduling with
practical implementation that efficiently handles fine-, coarse-
, and mid-grained tasks to match them against accelerators
and CPUs of drastically difference performance.

7. We use weights to characterize the hardware and to distribute
the data across the system, which allows the user to capture
performance and bandwidth of compute devices and links.
This in turn provides efficient means for the scheduler to
distribute work, data, and asynchronously balance the load
between the hardware components.

4. RELATED WORK
Linear Algebra: Gaussian elimination with pivoting is effi-

ciently realized in software by means of an LU factorization with
row interchanges. In particular, the computationally achieved map-
ping PA! LU is the common implementation vehicle to achieve
practical numerical stability and high performance. However, when
considering the multitude of hardware components we mentioned
earlier, it quickly becomes a challenge of how to achieve good
use of each of the components: CPUs, GPUs, and/or coproces-
sors. We have numerical kernels of various computational intensity,
e.g., BLAS Level 1, 2, and 3. Each of these have much different
memory footprint and tolerance to the memory system overheads.
The kernels that select pivots and its application have a very low



computational, e.g., comparable to the Level 1 and 2 BLAS, while
contributing nothing to the total floating-point operation count.

Heterogeneous Programming Models: NVIDIA, Intel, and
AMD provide programming models that are closely aligned with
their hardware offerings – each one offers a vertically integrated
software stack. NVIDIA provides the CUDA API to manage their
GPUs, Intel offers programming for the Xeon Phi using language
annotations such as pragmas and offload directives. AMD programs
their GPUs using the OpenCL programming model. Managing a
mix of multicore-CPUs, GPUs and Xeon Phi coprocessors within
the context of a single program remains a challenge. We are design-
ing a methodology and API that attempts to unify programming in
such multi-way heterogeneous hardware environments. The StarPU
project [2] has similar goals in providing a unified task based pro-
gramming environment, however we try to be more adaptive to a
wider variety of hardware resources and task grain sizes.

Task-Superscalar Runtime Environments The increasing
power and complexity of available hardware has multiplied the
difficulty of keeping hardware busy and exacerbated the cost of idle
resources. Task-superscalar runtime environments have become a
common approach for effective and efficient execution on current
hardware. These programming environment present two major ad-
vantages. First, programming is done by writing task-structured
serial code, which decreases the burden on the programmer. Second,
the tasks can be executed in an asynchronous, out-of-order sched-
ule, which can potentially make very efficient use of the hardware
resources.

Task-superscalar execution environments take a serial sequence
of tasks as input and schedule them for execution in parallel, in-
ferring the data dependencies between the tasks at runtime. The
dependencies between the tasks are inferred through the resolution
of data hazards: Read after Write (RaW), Write after Read (WaR),
and Write after Write (WaW). The tasks are then scheduled for ex-
ecution in an asynchronous, data-driven, task-superscalar runtime
environment. This execution can be represented by a Direct Acyclic
Graph (DAG), where the tasks are the nodes in the graph and the
edges correspond to data movement between the tasks. Since serial
code is the input to the runtime system, and the parallel execu-
tion respects all the data hazards, the correctness of the serial code
guarantees parallel correctness.

There has been much research on execution environments that
take serial code as input and result in a parallel execution, generally
using task superscalar techniques, for example Jade [18], Cilk [5],
OpenMP 4.0 [8], Sequoia [12], SuperMatrix [7], OmpSS [17], Ha-
banero [4], StarPU [3], QUARK [22], or the DepSpawn [13] project.

We are developing a programming methodology that could be
implemented within the context of several of the available task-
superscalar runtime systems. We have chosen to do our development
with the QUARK (QUeuing and Runtime for Kernels) because it
provides a simple, serial, library based approach to superscalar exe-
cution, targeting multicore processors and allowing for low level task
placement [22]. It has been used with GPU accelerators [16], and
has a prototype distributed memory implementation [21]. QUARK
provides the dynamic runtime layer for the PLASMA library [1, 15]
and as such has undergone substantial stress testing for performance
and scalability.

5. ADAPTIVE MULTIGRAIN SCHED-
ULER

Figure 1 shows a pseudocode for the main scheduling algorithm –
it is sequential in execution but dispatches tasks to run in parallel
and on heterogeneous hardware. The else-clause of the outermost

1 def main_thread_loop(user_code, queues, threshold):
2 # if there are enough tasks for cores

3 if queues.total_length() > threshold:
4 # resume user’s code for task submission

5 t = user_code.get_next_task()
6 q = queues.find_closest_queue(t.devices())
7 q.insert(t, t.priority())
8 else:
9 # if tasks available for stealing

10 if t = queues.steal_task(main_cpu):
11 t.execute() # execute a single task

12 else:
13 queues.wait_for_tasks()

Figure 1: Pseudocode for the main loop of the scheduler.

if-statement allows the scheduler to execute user tasks on the core
assigned to processing user task requests. The switching between
scheduling and executing tasks is done based on the computational
load and availability of hardware resources. A number of queues
hold the tasks ready to be executed – the data they depend on has
been made available through either a prior task or an incoming
network communication. Invocation of the get_next_task() method
on the user_code object switches the context from the scheduler
loop to the user-level code that creates tasks and passes them to
the scheduler. There are not many restrictions on the user code
and a sample is presented in Algorithm 1. The user is responsible
for providing computational fragments as tasks, define dataflow
dependences between tasks that are free of side-effects, and indicate
task priority as well as its kind: memory- or compute-bound. The
scheduler will take over the execution of tasks by first inserting
them in the appropriate queue (according to tasks type and available
code: CPU, GPU, or Phi coprocessor). The selection of the right
queue takes into account the length of each queue, which reflects
the current and future load of the device, and the computational
capacity of the device. This is achieved by assigning tasks to device
bins with a greedy heuristic. The queue selection is represented as
the find_closest_queue() method of the queues object. Finally, the
task is inserted into the appropriate queue according to its priority to
allow for progress along the critical path of the task graph. The prior-
ities are user-defined and are optional but in practice, they can give a
performance advantage for some workloads. Similarly, appropriate
allocation of hardware resources to the scheduler devices can be
regarded as a tuning option. For example, the panel factorization in
the LU algorithm benefits from the combined cache size of multiple
cores [10, 9, 11] and thus should be executed on a virtual device
comprised of multiple cores.

6. HETEROGENEOUS AND ADAPTIVE
PROGRAMMING MODEL

In this section we discuss a programming model that produces
a higher level of abstraction when programming multi-way het-
erogeneous resources and allows us to have a unified approach to
programming various devices. We describe the techniques that we
use in our runtime environment to enable adaptive execution on
the available resources. This work builds on our earlier work on
programming for multi-way heterogeneous architectures [14].

6.1 A Model for Programming Multi-way
Heterogeneous Resources

GPUs and coprocessors have a very high computational peak com-



pared to multicore CPUs. The variety of capabilities that they pro-
vide makes it challenging to develop an algorithm that can achieve
high performance and reach good scalability in a multi-way het-
erogeneous environment. From the hardware point of view, an
accelerator communicates with the CPU using I/O commands and
DMA memory transfers, whereas from the software standpoint, the
accelerator is a platform presented through a programming inter-
face: be it explicit API calls or implicit function calls inserted by
the compiler through programming language directives. The key
features taken into account by our model are the capabilities of the
computational resources (CPUs, GPUs, Xeon Phi), the memory
access, and the communication cost. As with CPUs, the time for
an accelerator to access device memory is slow compared to peak
performance. CPUs try to improve the effect of the long memory
latency and bandwidth by using hierarchical caches. This does not
solve completely the slow memory problem but is often effective.

Accelerators often use multithreading operations that access large
data sets that would overflow the size of most caches. When the
accelerator’s thread unit issues an access to the device memory,
that thread unit stalls until the memory returns the requested data.
During this time, the accelerator’s scheduler switches to another
hardware thread and continues executing the other thread. This is
how an accelerator exploits program parallelism to keep functional
units busy while the memory fulfills past requests. In comparison
with CPUs, the accelerator memory access delivers higher absolute
bandwidth (around 180 GB/s for K40 and Xeon Phi, and 160 GB/s
for Kepler K20c).

To side-step memory issues, we have developed a strategy that
prioritizes the data-intensive operations to be executed by the ac-
celerator and to keep the memory-bound ones for the CPUs, since
the hierarchical caches with out-of-order superscalar scheduling are
more appropriate to handle it. Moreover, we redesigned the kernels
and implemented dynamically guided data distribution to exploit
parallelism in order to keep the accelerators and processors busy.

From a programming model point of view, we cannot hide the
distinction between the differing levels of parallelism, designed
for the CPU host or the accelerator. Each algorithm is converted
into a host part and an accelerator part. The routines destined to
execute on the accelerator must be extracted into a separate hardware
specific kernel function. The kernel itself may have to be carefully
optimized for the accelerator, including unrolling loops, replacing
some memory-bound operations by compute-intensive ones even
if it has a marginal extra cost, and also arranging tasks to use the
device memory efficiently. The host code must manage the device
memory allocation, the CPU-device data movement, and the kernel
invocation. We redesigned our QUARK runtime engine in order to
present a much easier programming environment and to simplify
scheduling. This often allows us to maintain a single source version
that handles different types of accelerators either independently or
mixed together. Our intention is that our model simplifies most of
the hardware details, but gives us finer levels of control.

Algorithm 1 shows the pseudocode for the LU factorization from
an algorithm designer’s point of view. It consists of a sequential code
that is simple to comprehend and is independent of the architecture.
Each call represents a task that is inserted into the scheduler, which
stores it to be executed when all of its dependencies are satisfied.
Each task by itself consists of a call to a kernel function that could
either be a CPU or an accelerator function. We tried to hide the
differences between hardware and to allow the QUARK engine to
handle the transfer of data automatically. In addition, we developed
low-level interfaces and optimizations for both types of accelerators,
in order to accommodate hardware-, software- and library-specific
tuning and fulfillment of data requirements. We have implemented

Algorithm 1: LU implementation for multiple devices.

Initilizer with default values
Task_Flags panel_flags = Task_Flags_Initializer

Set the default priority of tasks
Task_Flag_Set(&task_flags, PRIORITY, 10)

Panel factorization is memory-bound! disable task stealing

Task_Flag_Set(&panel_flags, BLAS2, 0)

memory-bound! locked to CPU
for k 2 {0,nb,2⇥nb, . . . ,n} do

Factorization of the panel A(k:n,k:k+nb)
TASK: getf2(A(k:n,k:k+nb))
swap the rows to the left and the right of the panel

TASK: laswp(A(k:n,1:k))
TASK: laswp(A(k:n,k+nb:n))
Schur complement update: The Schur update task,
A22  A22 �A21A�1

11 A12, is split into a set of parallel,
compute intensive tasks that call trsm and gemm. This in-
creases parallelism and enhances the overall performance.
Note that the first task (trsm and gemm) consists of the
update of the next panel. The scheduler inserts it immedi-
ately in the queue since with a high priority. Right after
the dependences are satisfied and once the high priority
tasks finish, the data are sent it to the CPU in order to
perform the panel factorization of the next step – this
technique is called lookahead.

for j 2 {k+nb,k+2nb, . . . ,n�nb} do
trsm(A(k:k+nb,k:k+nb)! A(k:k+nb,j:j+nb)

if panel_m > panel_n then
gemm with trailing matrix

for j 2 {k+nb,k+2nb, . . . ,n�nb} do
gemm( A(j:n,k:k+nb) ⇥ A(k:k+nb,j,j+nb)!
A(j:n,j:j+nb) )

a set of scheduling directives that are evaluated at runtime in order
to fully map the algorithm to the hardware, and to run close to the
peak performance of the system. Using these strategies, we can
easily develop simple and portable code that can run on different
heterogeneous architectures, letting the scheduling and execution
engine do the task dependency analysis, resource scheduling, and
finally, the task execution. A simple example of this functionality is
the lookahead technique. The first task (trsm and gemm) consists
of the update of the next panel. The scheduler pushes it first on the
queue as a priority task (since it is on the critical path), tracks its
dependencies, and once finished, sends it to the CPU in order to
perform the panel factorization of the next step. This technique is
called lookahead, and is hidden here by the scheduler without any
extra lines of code.

6.2 Adaptive Task Scheduling and Data Lay-
out

In this section we overview the techniques that we used to provide
an adaptive, scalable, high performance execution in a multi-way
heterogeneous environment. Further details and experiments for our
choices can be found in our earlier work [14].



The LU pseudocode generates a serial sequence of tasks which are
inserted by the algorithm into the QUARK superscalar runtime en-
vironment. For an efficient execution, the tasks need to be assigned
to the computational resources taking into account the varying com-
putational differences between the resources. In order to keep a
measure of the difference between the resources, for each device i
and each kernel type k, QUARK maintains an aik parameter which
corresponds to the effective performance rate that can be achieved
on that device. This aik, also referred to as a resource capability
weight for the task, can be provided by the user via a task-flag, or
could potentially be estimated by the runtime environment. As an
example, the capability-weights for the update operation (a Level 3
BLAS) is around 1 : 10 which means that the GPU can execute 10
times as many update tasks as CPU.

The tasks are scheduled using adaptive scheduling with capa-
bility weights. As a task is inserted into the runtime, it is assigned
to the resource with the largest remaining capability-weights. This
greedy heuristic takes into account the capability-weights of the
resource as well as the current number of waiting tasks preferred to
be executed by this resource. For example, for the CPU, the panel
tasks are memory-bound and thus are preferentially executed on the
CPU side. The adaptive heuristic tries to maintain the ratios of the
capability-weights across all the resources to maintain a balanced
execution time.

When a task is assigned to a computational resource, it may not
be executed at once. QUARK schedules tasks for execution after
their dependencies are correctly fulfilled and all the data hazards are
avoided. A major positive side effect of this superscalar scheduling
is that no extra effort is required to enable dynamic lookahead in
the execution of the algorithm. If tasks from future iterations can be
executed after a specific task from the current iteration completes,
then the QUARK runtime will expose and schedule these tasks. In
order to expose the lookahead tasks as soon as possible, tasks are
inserted with enhanced task priorities. For example, in the block
factorization algorithms, the panel operations are given a higher
priority than the update operations, which leads to higher lookahead
depth, since the factorization of the next panel will be a higher
priority than the current trailing matrix update.

Once the tasks are scheduled for execution, the QUARK runtime
provides transparent data movement. If QUARK detects the data
required for a task is not available at the location that the task is
scheduled, it manages the data transfer. The advantage of such
strategy is not only to hide the data transfer cost between the CPU
and GPU(since it is overlapped with the GPU computation), but also
to keep the GPU’s CUDA streams busy by providing enough tasks
to execute.

The initial data layout is structured so that the data is distributed
over all the accelerators in a 1-D block-column cyclic fashion, with
an approximately equal number of columns assigned to each. The
data is allocated on each device as one contiguous memory block
with the data being distributed as columns within the contiguous
memory segment. This contiguous data layout allows large update
operations to take place over a number of columns via a single Level
3 BLAS operation, which is far more efficient than having multiple
calls with block columns.

Given the heterogeneous resources, a standard 1-D block cyclic
data layout does not match the work-grain to the resource. We
have updated the algorithm and runtime to enable dynamic data
redistribution which re-adjusts the data layout using the resource
capability-weights. Using the QUARK runtime, the data is either
distributed or redistributed at runtime in an automatic fashion so
that each device gets the appropriate volume of data to match its
capabilities.
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Figure 2: Execution trace of the LU factorization using 3 K40c
and 1 Xeon Phi, when adaptive scheduling is disabled (top
trace) or enabled (bottom trace).

7. PERFORMANCE RESULTS
Hardware Description and Setup We conducted our exper-

iments on three different systems, denoted A, B, and C, each
equipped with two 8-core Intel Xeon E5-2670 (Sandy Bridge) pro-
cessors/sockets, running at 2.6 GHz. In addition,

• Kepler System is equipped with six NVIDIA K20c cards,
running at 705 MHz. The practical dgemm peak is about
1000 Gflop/s per GPU.

• Phi System is equipped with three Intel Xeon Phi cards, run-
ning at 1.23 GHz, achieving a double precision dgemm peak
of about 950 Gflop/s.

• Kepler-Phi System is a heterogeneous system equipped with
three NVIDIA K40c cards, running at 825 MHz. The practical
dgemm peak is 1200 Gflop/s per GPU. The system is also
equipped with an Intel Xeon Phi card, similar to the ones of
Phi System.

All the cards of our three systems are connected to the host via
two PCIe I/O hubs with 6 GB/s bandwidth. A number of software
packages were used for the experiments. On the CPU, we used
Intel MKL (Math Kernel Library). On the Xeon Phi, we used the
MPSS 3.5 software stack, icc 15.0.3 20150407 which comes with
the Composer XE 2015 suite as the compiler. On the GPU we used
CUDA version 7.0.27.

8. DISCUSSION
Figure 2 (top), shows the execution trace of the LU factorization

on the Kepler-Phi System without the adaptive data assignment but
with dynamic task scheduling technique. The panel factorization
kernel is depicted in red and has been allocated to the CPU. The
kernel that swaps rows of the matrix is illustrated in cyan. Each
device swaps only the rows that were assigned to that device. We
note that swapping rows on the GPU significantly decreases the
overall performance because rows are not stored consecutively in
the memory, and thus the GPU threads cannot read it in a coalesced
way – the swapping causes thread divergence due to non-contiguous
memory accesses. To alleviate this problem somewhat, we devel-
oped hardware-specific kernels and optimization methods and we
managed to obtain much better performance from each hardware
accelerator. The common technique is for the data on the GPU to be
stored in transposed form and to use a specialized and efficient GPU
kernel that performs row swapping at nearly the speed of the mem-
ory bandwidth. It is due to the fact that the row entries are stored as
contiguous locations in memory, and thus can be accessed through
coalesced reads and/or writes when the laswp function is invoked.



Note that the transpose does not affect any of the other kernels
(gemm and trsm) required by the LU factorization. The coalesced
reads/writes improve the performance of the laswp function by 1.6
times in our experiments. The compute-intensive kernels (dtrsm and
dgemm) are commonly preferred to be executed on the accelera-
tor and, on the figure, are illustrated by the orange and the green
colors, respectively. The data transfer is represented with purple
color. The use of the lookahead technique described in Algorithm 1,
does not require any extra programming effort since it is handled
transparently by the QUARK engine through the dependence anal-
ysis and priorities indicated by the programmer. The scheduling
engine ensures that the next panel (panel of step k+1) is updated
as soon as possible by the device (accelerator or coprocessor) in
order to be sent to the CPU for factorization, while the accelerator
device continues the update of the trailing matrix of step k. Also, the
QUARK scheduler manages the data transfers to-and-from the CPU
in automated fashion by allocating separate threads of execution
for them and including them in its standard dataflow analysis. The
advantage of such a strategy is not only to hide the cost of the data
transfer between the CPU and device by overlapping it with the
computation on the device, but also to keep the device busy by pro-
viding enough tasks to execute. Since the performance of K40c is
about 20% higher than the Xeon Phi, we observe that the three K40c
finish their trailing matrix updates (green) earlier than the Xeon
Phi. For example, in Figure 2 (top), the Xeon Phi is performing
its second trailing matrix update (second green for Phi), while the
GPUs have already finished the update of the third step (third green
for K40c). As a result, the panel of the fourth step, which is held
by the Xeon Phi, is still not ready. This slows down the execution.
At this point, sending it to a K40c will not improve anything, since
the K40c must wait anyway. Overall, the dataflow strategy and the
dynamic scheduling techniques in use, can overcome the Xeon Phi
delay, but only to a certain limit, until the amount of available tasks
becomes limited due to the imbalance of our model Xeon Phi when
compared to our model of the GPU counterparts. Thus, we note that
our optimization techniques work for a few steps before the progress
becomes limited by the Xeon Phi coprocessor (please consult the
figure where black space indicates wait time). This pattern repeats
for a few steps. The overall performance is between 30% to 40%
less efficient than it should be from the analysis of the basic kernels
without load imbalance. This trace is a clear indication for the need
of an adaptive technique that we proposed earlier. The execution
trace with the adaptive optimizations in place is highlighted in Fig-
ure 2 (bottom). The distribution of load and tasks per device is
proportional to its performance power. Thus, the waiting time of
faster devices is minimized, keeping all devices equally busy. The
obtained performance is about 34% better than what it was without
the adaptive strategy.

Figure 3 shows the performance scalability of our implementation
of the LU factorization in double precision on Kepler-Phi System,
using 16 CPU cores only (black curve), or a Xeon Phi alone (ma-
genta curve), or a Xeon Phi in combination with 1, 2, and 3 K40c
GPUs – the green, blue and red curves, respectively. The curves
show the performance in Gflop/s. Note that Gflop/s metric is in-
versely proportional to the elapsed time for a constant matrix size,
i.e., performance that is two times higher, corresponds to an elapsed
time that is two times shorter. Our heterogeneous multi-device im-
plementation achieves perfect scalability for large matrix sizes when
there is enough computational load to counteract the adverse effects
of limited bandwidth and long memory latencies. The peak perfor-
mance of the cuBLAS dgemm on one K40c is 1,200 Gflop/s. MKL
on the Xeon Phi achieves 950 Gflop/s, which translates to the total
peak performance of about 4,550 Gflop/s. Note that the shape of the

2k 4k 8k 12k 16k 20k 24k 28k 32k 36k 40k 44k 48k 52k 56k 60k 64k 68k
0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

Matrix size

G
flo

p/
s

 

 
DGETRF  1 Xeon Phi   3 K40c
DGETRF  1 Xeon Phi   2 K40c
DGETRF  1 Xeon Phi   1 K40c
DGETRF  1 Xeon Phi   0 K40c
DGETRF  16 Sandy Bridge CPUs

Figure 3: Performance of our dynamic approach on the het-
erogeneous Kepler-Phi System using either 16 CPU cores Xeon
E5-2670, one Intel Xeon Phi and up to 3 NVIDIA K40c and
cards.

operands passed to the gemm routine in the LU update is rectangular
and reaches about 94% of the square gemm peak mentioned above.
Our LU factorization for a matrix of size 60,000 achieves about
4200 Gflop/s on the Kepler-Phi System using one Xeon Phi and 3
Kepler K40c GPUs. This means that our implementation asymptoti-
cally comes close to the practical peak performance of the fastest
kernel called in the code. It is worth mentioning another beneficial
behavior of our implementation that uses the adaptive techniques,
namely that for the tested heterogeneous system, the code did not
require any further optimizations, and it was able to scale very well
without extensive tuning that commonly accompany the effort of
porting the software to a new system and which is commonly used
for classical software packages that lack adaptive features. The
strong scalability of our implementation can also be deduced from
the figures by reading the plots in vertical fashion. For a fixed matrix
size, slicing the performance plots vertically shows strong scalabil-
ity of the LU factorization when adding more devices. The ratio
between two curves illustrates the speedup that was obtained. For
example, using one Xeon Phi for a matrix of size 40,000 is about
3⇥ faster than using CPUs only. Performance reaches 2,000 Gflop/s
by adding an extra K40c, which is about 7 times faster than the CPU
alone, and 2.2 times faster than using 1 Xeon Phi alone. Similarly,
using the 3 K40c within the Xeon Phi make the factorization more
than 14 times faster than the CPU only implementation, and about
4.2 times faster than when using a single Xeon Phi.

We observed similar performance trends when using either Ke-
pler System or Phi System. In Figures 4a and 4b, we show the
performance obtained by our implementation using up to 6 K20c
GPUs of Kepler System and up to three Xeon Phi’s of Phi System,
respectively. The described feature of our programming model and
dynamic scheduling techniques allows us to achieve high scalability
without much coding or tuning efforts. The same baseline code
was compiled and executed on these different machines without any
changes.

9. CONCLUSIONS AND FUTURE WORK
While heterogeneous compute nodes have become ubiquitous, the

need for an easy programming paradigm capable of providing porta-
bility and efficiency across a large range of hybrid environments
became ever critical. We designed and implemented a program-
ming model that features a number of optimization techniques for
developing high-performance algorithms suitable for multi-way het-
erogeneous environments with more than one type of a hardware
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Figure 4: Performance of our model using the adaptive dy-
namic scheduling on hybrid systems.

accelerator. In particular, we presented best practices and method-
ologies from the development of high-performance LU factorization
for accelerators and coprocessors. We also showed how judicious
modifications to superscalar task scheduling were used to ensure
that we meet two competing goals: (1) to obtain high fraction of
the peak performance for the combined resources of the heteroge-
neous system, and (2) to employ a programming model that would
simplify the development. Our performance analysis unequivocally
demonstrates that our approach improves the performance of het-
erogeneous platforms by using the adaptive scheduling techniques
and also enhances the scalability of the underlying algorithms by
providing a set of features capable of mapping the algorithm and
its data to all potential computing resources. This principle can
be extended to many other algorithms such as the eigenvalue and
singular value methods or even sparse solvers. Future work will
include merging CUDA, OpenCL, and Intel Xeon Phi development
branches into a single library using our new programming model.
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