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Abstract. Numerical techniques used for describing many-body sys-
tems, such as the Coupled Cluster methods (CC) of the quantum chem-
istry package NWCHEM, are of extreme interest to the computational
chemistry community in fields such as catalytic reactions, solar energy,
and bio-mass conversion. In spite of their importance, many of these
computationally intensive algorithms have traditionally been thought of
in a fairly linear fashion, or are parallelised in coarse chunks.

In this paper, we present our effort of converting the NWCHEM’s
CC code into a dataflow-based form that is capable of utilizing the task
scheduling system PARSEC (Parallel Runtime Scheduling and Execu-
tion Controller) — a software package designed to enable high perfor-
mance computing at scale. We discuss the modularity of our approach
and explain how the PARSEC-enabled dataflow version of the subrou-
tines seamlessly integrate into the NWCHEM codebase. Furthermore, we
argue how the CC algorithms can be easily decomposed into finer grained
tasks (compared to the original version of NWCHEM); and how data dis-
tribution and load balancing are decoupled and can be tuned indepen-
dently. We demonstrate performance acceleration by more than a factor
of two in the execution of the entire CC component of NWCHEM, con-
cluding that the utilization of dataflow-based execution for CC methods
enables more efficient and scalable computation.

Keywords: PaRSEC - Tasks + Dataflow - DAG + PTG + NWChem -
CCSD

1 Introduction

Simulating non-trivial physical systems in the field of Computational Chemistry
imposes such high demands on the performance of software and hardware, that
it comprises one of the driving forces of high performance computing. In par-
ticular, many-body methods, such as Coupled Cluster [1] (CC) of the quantum
chemistry package NWCHEM [15], come with a significant computational cost,
which stresses the importance of the scalability of nwchem in the context of real

science.
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On the software side, the complexity of these software packages — with diverse
code hierarchies, and millions of lines of code in a variety of programming
languages — represents a central obstacle for long-term sustainability in the
rapidly changing landscape of high-performance computing. On the hardware
side, despite the need for high performance, harnessing large fractions of the
processing power of modern large scale computing platforms has become increas-
ingly difficult over the past couple of decades. This is due both to the increasing
scale and the increasing complexity and heterogeneity of modern (and projected
future) platforms. This paper is centered around code modernization, focusing
on adapting the existing NWCHEM CC methods to a dataflow-based approach
by utilizing the task scheduling system PARSEC. We argue that dataflow-driven
task-based programming models, in contrast to the control flow model of coarse
grain parallelism, are a more sustainable way to achieve computation at scale.

The Parallel Runtime Scheduling and Execution Control (PARSEC) [2]
framework is a task-based dataflow-driven runtime that enables task execu-
tion based on holistic conditions, leading to a better computational resources
occupancy. PARSEC enables task-based applications to execute on distributed
memory heterogeneous machines, and provides sophisticated communication and
task scheduling engines that hide the hardware complexity from the application
developer. The main difference between PARSEC and other task-based engines
lies in the way tasks, and their data dependencies, are represented. PARSEC
employs a unique, symbolic description of algorithms allowing for innovative
ways of discovering and processing the graph of tasks. Namely, PARSEC uses an
extension of the symbolic Parameterized Task Graph (PTG) [3,4] to represent
the tasks and their data dependencies to other tasks. The PTG is a problem-
size-independent representation that allows for immediate inspection of a task’s
neighborhood, regardless of the location of the task in the Directed Acyclic
Graph (DAG). This contrasts all other task scheduling systems, which discover
the tasks and their dependencies at run-time (through the execution of skele-
ton programs) and therefore cannot process a future task that has not yet been
discovered, or face large overheads due to storing and traversing the DAG that
represents the whole execution of the parallel application.

In this paper, we describe the transformations of the NWCuEM CC code to
a dataflow version that is executed over PARSEC. Specifically, we discuss our
effort of breaking down the computation of the CC methods into fine-grained
tasks with explicitly defined data dependencies, so that the serialization imposed
by the traditional linear algorithms can be eliminated, allowing the overall com-
putation to scale to much larger computational resources.

Despite having in-house expertise in PARSEC, and working closely and delib-
erately with computational chemists, this code conversion proved to be laborious.
Still, the outcome of our effort of exploiting finer granularity and parallelism with
runtime/dataflow scheduling is twofold. First, it successfully demonstrates the
feasibility of converting TCE generated code into a form that can execute in a
dataflow-based task scheduling environment. Second, it demonstrated that utiliz-
ing dataflow-based execution for CC methods enables more efficient and scalable
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computations. We present a thorough performance evaluation and demonstrate
that the modified CC component of NWCHEM outperforms the original by more
than a factor of two.

2 Implementation of Coupled Cluster Theory

The Coupled Cluster theory is considered by many to be the gold standard
for accurate quantum-mechanical description of ground and excited states of
chemical systems. Its accuracy, however, comes at a significant computational
cost. An important role in designing the optimum memory vs. cost strategies
in Coupled Cluster implementations is played by the automatic code generator,
the Tensor Contraction Engine (TCE) [6]. In the first subsection, we highlight
the basics necessary to understand the original parallel implementation of CC
through TCE. We then describe our design decisions of the dataflow version of
the CC code.

2.1 Coupled Cluster Theory Through TCE

Especially important in the hierarchy of the CC formalism is the iterative CC
model with Single and Double excitations (CCSD) [13], which is the base for
many accurate perturbative CC formalisms. Our starting point for the investi-
gation in this paper is the CCSD version that takes advantage of the alternative
task scheduling, and the details of these implementations have been described
in [7].

In NWCHEM, the CCSD code (among other kernels) is generated through
the TCE into multiple sub-kernels that are divided into so-called “T1” and
“T2” subroutines for equations that determine the T1 and T2 amplitude matri-
ces. These amplitude matrices embody the number of excitations in the wave
function, where T1 represents all single excitations and T2 represents all dou-
ble excitations. The underlying equations of these theories are all expressed as
contractions of many-dimensional arrays or tensors (generalized matrix multi-
plications). There are typically many thousands of such terms in any one prob-
lem, but their regularity makes it relatively straightforward to translate them
into FORTRAN code — parallelized with the use of Global Arrays (GA) [11] —
through the TCE.

Structure of the CCSD Approach. For the iterative CCSD code, there
exist 19 T1 and 41 T2 subroutines, and all of them highlight very similar code
structure and patterns. Figure 1 shows the pseudocode FORTRAN code for one
of the generated T1 and T2 subroutines, highlighting that most work is in deep
loop nests. These loop nests consist of three types of code:

— Local memory management (i.e., MA_PUSH_GET (), MA_POP_STACK() ),
— Calls to functions (i.e., GET_HASH BLOCK (), ADD_HASH BLOCK()) that transfer
data over the network via the GA layer,
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my_next_task = SharedCounter ()
DO h7b = 1,noab
DO p3b = noab+1l,noab+nvab
IF (int_mb(k_spin+h7b).eq.int_mb(...)) THEN
call MA_PUSH_GET(f(p3b,h7b),..., k_c)

DO p5b = noab+1,noab+nvab
DO h6b = 1,noab
call GET_HASH_BLOCK(dbl_mb(k_b),...,f(p3b,p5b,h7b,h6b))
call TCE_SORT_4( dbl_mb(k_b),..., £ (p3b,p5b,h7b,h6b))

call DGEMM( ..., f(p3b,p5b,h7b,h6Db))
END DO
END DO

call ADD_HASH_BLOCK(dbl_mb(k_c), ...)
my_next_task = SharedCounter ()
END IF
END DO
END DO

Fig. 1. Pseudocode of one CCSD subroutine as generated by the TCE.

— Calls to the subroutines that perform the actual computation on the data
GEMM() and SORT() (which performs an O(n) remapping of the data, rather
than an O(n * log(n)) sorting).

The control flow of the loops is parameterized, but static. That is, the induc-
tion variable of a loop with a header such as “DO p3b = noab+1,noab+nvab”
(i.e., p3b) may take different values between different executions of the code,
but during a single execution of CCSD the values of the parameters noab and
nvab will not vary; therefore every time this loop executes it will perform the
same number of steps, and the induction variable p3b will take the same set
of values. This enables us to restructure the body of the inner loop into tasks
that can be executed by PARSEC. That is, tasks with an execution space that
is parameterized (by noab, nvab, etc.), but constant during execution.

Parallelization of CCSD. Parallelism of the TCE generated CC code fol-
lows a coarse task-stealing model. The work inside each T1 and T2 subroutine is
grouped into chains of multiple matrix-multiply kernels (GEMM). The GEMM opera-
tions within each chain are executed serially, but different chains are executed in
a parallel fashion. However, the work is divided into levels. More precisely, the
19 T1 subroutines are divided into 3 different levels and the execution of the 41
T2 subroutines is divided into 4 different levels. The task-stealing model applies
only within each level, and there is an explicit synchronization step between the
levels. Therefore the number of chains that are available for parallel execution
at any time is a subset of the total number of chains.

Load balancing within each of the seven levels of subroutines is achieved
through shared variables (exemplified in Fig. 1 through SharedCounter()) that
are atomically updated (read-modify-write) using GA operations. The use of
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shared variables, that are atomically updated is bound to become inefficient at
large scale, becoming a bottleneck and causing major overhead.

Also, the notion of task in the current CC implementation of NWCHEM and
the notion of task in PARSEC are not identical. As discussed before, in NWCHEM,
a task is a whole chain of GEMMs, executed serially, one after the other. In our
PARSEC implementation of CC, each individual GEMM kernel is a task on its own,
and the choice between executing them as a chain, or as a reduction tree, is
almost as simple as flipping a switch. In summary, the most significant impact of
porting CC over PARSEC is the ability to eliminate redundant synchronizations
between the levels and to break down the algorithms into finer grained tasks with
explicitly defined dependencies.

2.2 Coupled Cluster Theory over PaRSEC

PARSEC provides a front-end compiler for converting canonical serial codes
into the PTG representation. However, due to computability limits, this tool
is limited to polyhedral codes, i.e., loops, branches, and array indexes that only
depend on affine functions of the loop induction variables, constant variables,
and numeric literals. The CC code generated by TCE is neither organized in
pure tasks — i.e., functions with no side-effects to any memory other than argu-
ments passed to the function itself — nor is the control flow affine. For example,
branches such as “IF(int_mb(k_spin+h7b-1)...)” (see Fig.1) are very common.
Such branches make the code not only non-affine, but statically undecidable
since their outcome depends on program data, and thus it cannot be resolved at
compile time.

While the behavior of the CC code depends on program data, this data
is constant during a given execution of the code. Therefore, the code can be
expressed as a parameterized DAG, by using lookups into the program data,
either directly or indirectly. In our implementation we access the program data
indirectly by builting meta-data structures in a preliminary step. The details of
this “first step” are described later in this section.

In the work described in this paper, we implemented a dataflow form for all
functions of the CCSD computation that are associated with calculating parts
of the T2 amplitudes, particularly the ones that perform a GEMM operation (the
most time consuming parts). More precisely, we converted a total of 29' of the
41 T2 subroutines — which we refer to under the unified moniker of “GA:T2” for
the original version, and “PaRSEC:T2” for the dataflow version of the subroutines.

Design Decisions. The original code of our chosen subroutines consists of
deep loop nests that contain the memory access routines as well as the main
computation, namely SORT and GEMM. In addition to the loops, the code contains
several IF statements, such as the one mentioned above. When CC executes, the

L All subroutines with prefix “icsd_t2.” and suffices: 2.2.2.2(), 2.2.3(), 2-4-2(),
2.5.2(), 2.6(), 1t2.3x(), 4.2.2(), 4.3(), 4.-4(), 5.20), 5.3(), 6-2-2(), 63(), 720, 7-30,
vtlic-1-2(), 8(), 2-2-2(), 2-4(), 2-5(), 4-2(), 5(), 6-2(), vtlic_1, 7(), 2-2(), 40), 6(), 2().
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code goes through the entire execution space of the loop nests, and only executes
the actual computation kernels (SORT and GEMM) if the multiple IF branches
evaluate to true. To create the PARSEC-enabled version of the subroutines
(PaRSEC: T2), we decomposed the code into two steps:

The first step traverses the execution space and evaluates all IF statements,

without executing the actual computation kernels (SORT and GEMM). This
step uncovers sparsity information by examining the program data (i.e.,
int_mb(k_spin+h7b-1)) that is involved in the IF branches, and stores the
results in custom meta-data vectors that we defined.
The custom meta-data vectors merely hold information regarding the actual
loop iterations that will execute the computational kernels at run-time, i.e.,
iterations where all the IF statements evaluate to true. This step signifi-
cantly reduces the execution space of the loop nests by eliminating all entries
that would not have executed. In addition, this step probes the GA library
to discover where the program data resides in memory and stores these
addresses into the meta-data structures as well.

The second step is the execution of the PTG representation of the subroutines.
Since the control flow depends on the program data, the PTG examines our
custom meta-data vectors populated by the first step; this allows the execu-
tion space of the modified subroutines over PARSEC to match the original
execution space of GA:T2. Also, using the meta-data structures, PARSEC
accesses the program data directly from memory, without using GA.

Parallelization and Optimization. One of the main reasons we are port-
ing CC over PARSEC is the ability of the latter to express tasks and their
dependencies at a finer granularity, as well as the decoupling of work tasks and
communication operations that enables us to experiment with more advanced
communication patterns than serial chains. Since matrix addition is an associa-
tive and commutative operation, the order in which the GEMMs are performed
does not bear great significance as long as the results are atomically added. This
enables us to perform all GEMM operations in parallel and sum the results using
a binary reduction tree. Clearly, in this implementation there are significantly
fewer sequential steps than in the original chain [10]. In addition, the sequential
steps are matrix additions, not GEMM operations, so they are significantly faster,
especially for larger matrices. Reductions only apply to GEMM operations that
execute on the same node, thus avoiding additional communication.

The original version of the code performs an atomic accumulate-write opera-
tion (via calls to ADD_HASH_BLOCK () ) at the end of each chain. Since our dataflow
version of the code computes the GEMMs for each chain in parallel, we eliminate
the global atomic GA functionality and perform direct memory access instead,
using local atomic locks within each node to prevent race conditions.
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SUBROUTINE ccsd_energy_loc()
start = ga_wtime()

SUBROUTINE <icsd_t2()

c Initialize PaRSEC

aRSEC c Unchanged 1icsd_x subroutines
call parsec_init() call dicsd_t2_1()
call icsd_t2_2_1()

DO iter=1,maxiter call dcsd_t2_2_2_1()

C Calculate tl1 amplitudes of CCSD

) 1
call icsd_t1()

0

Bridge code:
Metadata of changed subroutines
call populate_metadata()

a

c Calculate t2 amplitudes of CCSD
call +icsd_t2()

NWChem-PaRSEC Handshake:

Execute tasks of changed subroutines

call parsec_start_execution()

o)

call tce_residual_t1()
call tce_residual_t2()

0

ENDDO c Free metadata of changed subroutines

call free_metadata()
END

c Finalize PaRSE(

call pérsec_fiﬁalize()

end = ga_wtime()-start
END

Fig. 2. High level view of PARSEC code in NWCHEM.

3 Performance Evaluation

In this section we present the performance of the entire CCSD code using the
dataflow version “PaRSEC:T2” of the 29 CC subroutines and contrast it with the
performance of the original code “GA:T2”. Figure2 depicts a high level view of
the integration of the PARSEC-enabled code in NWCueEM’s CCSD component.
The code that we timed (see start and end timers in Fig.2) includes all 19
T1 and 41 T2 subroutines as well as additional execution steps that set up the
iterative CCSD computation. The only difference between the original NWCHEM
runs and our modified version is the replacement of the 29 original T2 sub-
routines “GA:T2” with their dataflow version “PaRSEC:T2” and the prerequisites
discussed in Sect. 2.2; these prerequisites include: meta-data vector population,
initialization, and finalization of PARSEC. Also, in our experiments we allow for
all iterations of the iterative CCSD code to reach completion.

3.1 Methodology

As input, we used the beta-carotene molecule (CyoHsg) in the 6-31G basis set,
composed of 472 basis set functions. In our tests, we kept all core electrons frozen,
and correlated 296 electrons. Figure 3a shows the relative workload of different
subroutines (omitting those that fell under 0.1%). To calculate this load we
sum the number of floating point operations of each GEMM that a subroutine
performs (given the sizes of the input matrices). Additionally, Fig. 3b shows the
distribution of chain lengths for the five subroutines with the highest workload
in the case of beta-carotene. The different colors in this figure are for readability
only. As can be seen from these statistics, the subroutines that we targeted for
our dataflow conversion effort comprise approx. 91 % of the execution time of all
41 T2 subroutines in the original NWCneMm TCE CCSD execution.
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Fig. 3. CCSD statistics for beta-carotene and tilesize =45.

The scalability tests for the original TCE generated code and the dataflow
version of PaRSEC:T2 were performed on the Cascade computer system at
EMSL/PNNL. Each node has 128 GB of main memory and is a dual-socket
Intel Xeon E5-2670 (Sandy Bridge EP) system with a total of 16 cores running
at 2.6 GHz. We performed various performance tests utilizing 1, 2, 4, 8, and 16
cores per node. NWCHEM v6.5 was compiled with the Intel 14.0.3 compiler, using
the optimized BLAS library MKL 11.1, provided on Cascade.
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Fig. 4. Execution time comparison using beta-carotene on EMSL/PNNL Cascade
(Color figure online)

3.2 Discussion

Figure 4 shows the execution time of the entire CCSD kernel when the implemen-
tation found in the original NWCHEM code is used, and when our PARSEC based
dataflow implementation is used for the (earlier mentioned) 29 PaRSEC:T2 sub-
routines. Each of the experiments were run three times; the variance between the
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runs, however, is so small that it is not visible in the figures. Also, the correctness
of the final computed energies have been verified for each run, and differences
occur only in the last digit or two (meaning, the energies match for up to the 14th
decimal place). In the graph we depict the behavior of the original code using
the dark (green) dashed line and the behavior of the PARSEC implementation
using the light (orange) lines. Once again, the execution time of the PARSEC
runs does not exclude any steps performed by the modified code.

On a 32 node partition, the PARSEC version of the CCSD code performs
best for 16 cores/node while the original code performs best for 8 cores/node.
Comparing the two, the PaARSEC execution runs more than twice as fast — to
be precise, it executes in 48 % of the best time of the original. If we ignore the
PaRSEC run on 16 cores/node — in an effort to compare performance when both
versions use 8 cores/node and thus have similar power consumption — we find
that PaRSEC still runs 44 % faster than the original.

The results are similar on a 64 node partition: the PARSEC version of CCSD
is fastest (for 16 cores/node) with a 43 % runtime improvement compared to
the original code (which on 64 nodes performs best for 4 cores/node). It is also
interesting to point out that for 64 nodes, while PaARSEC manages to use an
increasing number of cores — all the way up to 64 x 16 = 1024 cores — to improve
performance, the original code exhibits a slowdown beyond 4 cores/node. This
behavior is not surprising since (1) the unit of parallelism of the original code
(chain of GEMMs) is much coarser than that of PARSEC (single GEMM), and (2) the
original code uses a global atomic variable for load balancing while PARSEC
distributes the work in a round robin fashion and avoids any kind of global
agreement in the critical path.

4 Related Work

An alternate approach for achieving better load balancing in the TCE CC code
is the Inspector-Executor methods [12]. This method applies performance model
based cost estimation techniques for the computations to assign tasks to proces-
sors. This technique focuses on balancing the computational cost without taking
into consideration the data locality.

ACES III [9] is another method that has been used effectively to parallelize
CC codes. In this work, the CC algorithms are designed in a domain specific lan-
guage called the Super Instruction Assembly Language (SIAL) [5]. This serves
a similar function as the TCE, but with an even higher level of abstraction to
the equations. The STAL program, in turn, is run by a MPMD parallel virtual
machine, the Super Instruction Processor (SIP). SIP has components that coor-
dinate the work by tasks, communicate information between tasks for retrieving
data, and then for execution.

The Dynamic Load-balanced Tensor Contractions framework [8] has been
designed with the goal to provide dynamic task partitioning for tensor contrac-
tion expressions. Each contraction is decomposed into fine-grained units of tasks.
Units from independent contractions can be executed in parallel. As in TCE, the

jagode @icl.utk.edu



Accelerating NWChem Coupled Cluster 375

tensors are distributed among all processes via global address space. However,
since GA does not explicitly manage data redistribution, the communication
pattern resulting from one-sided accesses is often irregular [14].

5 Conclusion and Future Work

We have successfully demonstrated the feasibility of converting TCE generated
code into a form that can execute in a dataflow-based task scheduling environ-
ment, such as PARSEC. Our effort substantiates that utilizing dataflow-based
execution for Coupled Cluster methods enables more efficient and scalable com-
putation — as our performance evaluation reveals a performance boost of 2x for
the entire CCSD kernel.

As a next step, we will automate the conversion of the entire NWCaEM TCE
CC implementation into a dataflow form so that it can be integrated to more
software levels of NWChem with minimal human involvement. Ultimately, the
generation of a dataflow version will be adopted by the TCE engine.
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