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Abstract

This paper introduces hybrid LU-QR algorithms for solving dense linear sys-
tems of the form Ax = b. Throughout a matrix factorization, these algorithms
dynamically alternate LU with local pivoting and QR elimination steps based
upon some robustness criterion. LU elimination steps can be very efficiently
parallelized, and are twice as cheap in terms of floating-point operations, as QR
steps. However, LU steps are not necessarily stable, while QR steps are always
stable. The hybrid algorithms execute a QR step when a robustness criterion
detects some risk for instability, and they execute an LU step otherwise. The
choice between LU and QR steps must have a small computational overhead
and must provide a satisfactory level of stability with as few QR steps as pos-
sible. In this paper, we introduce several robustness criteria and we establish
upper bounds on the growth factor of the norm of the updated matrix incurred
by each of these criteria. In addition, we describe the implementation of the
hybrid algorithms through an extension of the PARSEC software to allow for
dynamic choices during execution. Finally, we analyze both stability and perfor-
mance results compared to state-of-the-art linear solvers on parallel distributed
multicore platforms. A comprehensive set of experiments shows that hybrid
LU-QR algorithms provide a continuous range of trade-offs between stability
and performances.
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1. Introduction

Consider a dense linear system Az = b to solve, where A is a square tiled-
matrix, with n tiles per row and column. Each tile is a block of n-by-ng
elements, so that the actual size of A is N = n x n,. Here, ny is a parameter
tuned to squeeze the most out of arithmetic units and memory hierarchy. To
solve the linear system Ax = b, with A a general matrix, one usually applies
a series of transformations, pre-multiplying A by several elementary matrices.
There are two main approaches: LU factorization, where one uses lower unit
triangular matrices, and QR factorization, where one uses orthogonal House-
holder matrices. To the best of our knowledge, this paper is the first study
to propose a mix of both approaches during a single factorization. The LU
factorization update is based upon matrix-matrix multiplications, a kernel that
can be very efficiently parallelized, and whose library implementations typically
achieve close to peak CPU performance. Unfortunately, the efficiency of LU
factorization is hindered by the need to perform partial pivoting at each step of
the algorithm, to ensure numerical stability. On the contrary, the QR factor-
ization is always stable, but requires twice as many floating-point operations,
and a more complicated update step that is not as parallel as a matrix-matrix
product. Tiled QR algorithms [8, 9, 23] greatly improve the parallelism of the
update step since they involve no pivoting but are based upon more complicated
kernels whose library implementations requires twice as many operations as LU.

The main objective of this paper is to explore the design of hybrid algorithms
that would combine the low cost and high CPU efficiency of the LU factoriza-
tion, while retaining the numerical stability of the QR approach. In a nutshell,
the idea is the following: at each step of the elimination, we perform a robustness
test to know if the diagonal tile can be stably used to eliminate the tiles beneath
it using an LU step. If the test succeeds, then go for an elimination step based
upon LU kernels, without any further pivoting involving sub-diagonal tiles in
the panel. Technically, this is very similar to a step during a block LU factor-
ization [12]. Otherwise, if the test fails, then go for a step with QR kernels. On
the one extreme, if all tests succeed throughout the algorithm, we implement
an LU factorization without pivoting. On the other extreme, if all tests fail, we
implement a QR factorization. On the average, some of the tests will fail, some
will succeed. If the fraction of the tests that fail remains small enough, we will
reach a CPU performance close to that of LU without pivoting. Of course the
challenge is to design a test that is accurate enough (and not too costly) so that
LU kernels are applied only when it is numerically safe to do so.

Implementing such a hybrid algorithm on a state-of-the-art distributed-
memory platform, whose nodes are themselves equipped with multiple cores, is
a programming challenge. Within a node, the architecture is a shared-memory
machine, running many parallel threads on the cores. But the global architecture
is a distributed-memory machine, and requires MPI communication primitives
for inter-node communications. A slight change in the algorithm, or in the ma-
trix layout across the nodes, might call for a time-consuming and error-prone
process of code adaptation. For each version, one must identify, and adequately




implement, inter-node versus intra-node kernels. This dramatically complicates
the task of the programmers if they rely on a manual approach. We solve this
problem by relying on the PaRSEC software [5, 4, 3], so that we can concentrate
on the algorithm and forget about MPI and threads. Once we have specified
the algorithm at a task level, the PaRSEC software will recognize which oper-
ations are local to a node (and hence correspond to shared-memory accesses),
and which are not (and hence must be converted into MPI communications).
Previous experiments show that this approach is very powerful, and that the
use of a higher-level framework does not prevent our algorithms from achieving
the same performance as state-of-the-art library releases [14].

However, implementing a hybrid algorithm requires the programmer to im-
plement a dynamic task graph of the computation. Indeed, the task graph of
the hybrid factorization algorithm is no longer known statically (contrarily to
a standard LU or QR factorization). At each step of the elimination, we use
either LU-based or QR~based tasks, but not both. This requires the algorithm
to dynamically fork upon the outcome of the robustness test, in order to apply
the selected kernels. The solution is to prepare a graph that includes both types
of tasks, namely LU and QR kernels, to select the adequate tasks on the fly,
and to discard the useless ones. We have to join both potential execution flows
at the end of each step, symmetrically. Most of this mechanism is transparent
to the user. We discuss this extension of PARSEC in more detail in Section 4.

The major contributions of this paper are the following:

e The introduction of new LU-QR hybrid algorithms;

e The design of several robustness criteria, with bounds on the induced

growth factor;

e The extension of PaRSEC to deal with dynamic task graphs;

e A comprehensive experimental evaluation of the best trade-offs between

performance and numerical stability.
The rest of the paper is organized as follows. First we explain the main principles
of LU-QR hybrid algorithms in Section 2. Then we describe robustness criteria
in Section 3. Next we detail the implementation within the PARSEC framework
in Section 4. We report experimental results in Section 5. We discuss related
work in Section 6. Finally, we provide concluding remarks and future directions
in Section 7.

2. Hybrid LU-QR algorithms

In this section, we describe hybrid algorithms to solve a dense linear system
Az = b, where A = (A; ;)i j)e[r..n)? 1S a square tiled-matrix, with n tiles per
row or column. Each tile is a block of n,-by-n; elements, so that A is of order
N =n X ny.

The common goal of a classical one-sided factorization (LU or QR) is to
triangularize the matrix A through a succession of elementary transformations.
Consider the first step of such an algorithm. We partition A by block such

that A = <A51,1 g) In terms of tile, Ay; is 1-by-1, B is (n — 1)-by-1, C is




1-by-(n — 1), and D is (n — 1)-by-(n — 1). The first block-column <Aé1> is the

panel of the current step.

Traditional algorithms (LU or QR) perform the same type of transformation
at each step. The key observation of this paper is that any type of transforma-
tion (LU or QR) can be used for a given step independently of what was used
for the previous steps. The common framework of a step is the following:

A C factor apply U c’
( J; D) And (eliminate update) A ( 61 D/> : (1)
First, A1, is factored and transformed in the upper triangular matrix Uy;. Then,
the transformation of the factorization of Ay; is applied to C. Then Aq; is used
to eliminate B. Finally D is accordingly updated. Recursively factoring D’
with the same framework will complete the factorization to an upper triangular
matrix.

For each step, we have a choice for an LU step or a QR step. The operation
count for each kernel is given in Table 1.

LU step, var Al QR step
factor A 2/3 GETRF | 4/3 GEQRT
eliminate B | (n—1) TRSM | 2(rn—1) TSQRT
apply C (n—1) TRSM | 2(n—1) TSMQR
update D 2(n—1)2 GEMM | 4(n—1)? UNMQR

Table 1: Computational cost of each kernel. The unit is ng floating-point operations.

Generally speaking, QR transformations are twice as costly as their LU
counterparts. The bulk of the computations take place in the update of the
trailing matrix D. This obviously favors LU wupdate kernels. In addition, the
LU update kernels are fully parallel and can be applied independently on the
(n — 1)? trailing tiles. Unfortunately, LU updates (using GEMM) are stable
only when [|A!||~! is larger than || B|| (see Section 3). If this is not the case,
we have to resort to QR kernels. Not only these are twice as costly, but they
also suffer from enforcing more dependencies: all columns can still be processed
(apply and update kernels) independently, but inside a column, the kernels must
be applied in sequence.

The hybrid LU-QR Algorithm uses the standard 2D block-cyclic distribution
of tiles along a virtual p-by-q cluster grid. The 2D block-cyclic distribution nicely
balances the load across resources for both LU and QR steps. Thus at step k
of the factorization, the panel is split into p domains of approximately ”%“
tile rows. Domains will be associated with physical memory regions, typically a
domain per node in a distributed memory platform. Thus an important design
goal is to minimize the number of communications across domains, because
these correspond to nonlocal communications between nodes. At each step k of
the factorization, the domain of the node owning the diagonal tile Ay, j is called
the diagonal domain.




Algorithm 1: Hybrid LU-QR algorithm

for k=1 tondo
Factor: Compute a factorization of the diagonal tile: either with LU

partial pivoting or QR;
Check: Compute some robustness criteria (see Section 3) involving
only tiles A; i, where k < i < n, in the elimination panel;
Apply, Eliminate, Update:
if the criterion succeeds then
‘ Perform an LU step;
else
L Perform a QR step;

Algorithm 2: Step k of an LU step - var (Al)

Factor: Ap «— GETRF(Agy) ;
fori=k+1 ton do

| Eliminate: A; — TRSM (A, Ai);
for j =k+1 ton do

| Apply: Ay — SWPTRSM (A, Ary);

fori=k+1 ton do
for j=k+1tondo
L Update: Ai,]‘ — GEMM(AZ',)C,A]CJ,AZ'J);

The hybrid LU-QR Algorithm applies LU kernels when it is numerically safe
to do so, and QR kernels otherwise. Coming back to the first elimination step,

the sequence of operations is described in Algorithm 1.

2.1. LU step

We assume that the criterion validates an LU step (see Section 3). We

describe the variant (A1) of an LU step given in Algorithm 2.
The kernels for the LU step are the following:

e Factor: Ay «— GETRF(Ay ) is an LU factorization with partial pivot-
ing: Py x Ak, = L xUk i, the output matrices Ly and Uy i, are stored in

place of the input Ay .

o Eliminate: A; «— TRSM (A k, A; i) solves in-place, the upper triangular
system such that A; — Ai,kUk_),i where Uy, is stored in the upper part

of Ak,k-

o Apply: Ay ; «— SWPTRSM (A, Ai k) solves the unit lower triangular
system such that Ay ; «— L,;}CPk,kAkJ where Ly, i, is stored in the (strictly)

lower part of A .

o Update: A;j — GEMM(A; g, Ak j, A j) is a general matrix-matrix mul-

tiplication A; ; «— A;; — Ai Ak ;.



Algorithm 3: Step k of the HQR factorization

fort=k+1 ton do
| elim(i, eliminator (i, k), k);

In terms of parallelism, the factorization of the diagonal tile is followed by
the TRSM kernels that can be processed in parallel, then every GEMM kernel
can be processed concurrently. These highly parallelizable updates constitute
one of the two main advantages of the LU step over the QR step. The second
main advantage is halving the number of floating-point operations.

During the factor step, one variant is to factor the whole diagonal domain
instead of only factoring the diagonal tile. Considering Algorithm 2, the differ-
ence lies in the first line: rather than calling GETRF(Ay 1), thereby searching
for pivots only within the diagonal tile Ay, we implemented a variant where
we extend the search for pivots across the diagonal domain (the Apply step is
modified accordingly). Working on the diagonal domain instead of the diagonal
tile increases the smallest singular value of the factored region and therefore
increases the likelihood of an LU step. Since all tiles in the diagonal domain
are local to a single node, extending the search to the diagonal domain is done
without any inter-domain communication. The stability analysis of Section 3
applies to both scenarios, the one where Ay, j, is factored in isolation, and the one
where it is factored with the help of the diagonal domain. In the experimental
section, we will use the variant which factors the diagonal domain.

2.2. QR step

If the decision to process a QR step is taken by the criterion, the LU decom-
position of the diagonal domain is dropped, and the factorization of the panel
starts over. This step of the factorization is then processed using orthogonal
transformations. Every tile below the diagonal (matrix B in Equation (1)) is
zeroed out using a triangular tile, or eliminator tile. In a QR step, the diagonal
tile is factored (with a GEQRF kernel) and used to eliminate all the other tiles
of the panel (with a TSQRT kernel) The trailing submatrix is updated, respec-
tively, with UNMQR and TSMQR kernels. To further increase the degree of
parallelism of the algorithm, it is possible to use several eliminator tiles inside a
panel, typically one (or more) per domain. The only condition is that concurrent
elimination operations must involve disjoint tile pairs (the unique eliminator of
tile A; will be referred to as Acyminator(i,k),k)- Of course, in the end, there
must remain only one non-zero tile on the panel diagonal, so that all eliminators
except the diagonal tile must be eliminated later on (with a TTQRT kernel on
the panel and TTMQR updates on the trailing submatrix), using a reduction
tree of arbitrary shape. This reduction tree will involve inter-domain commu-
nications. In our hybrid LU-QR algorithm, the QR step is processed following
an instance of the generic hierarchical QR factorization HQR [14] described in
Algorithms 3 and 4.




Algorithm 4: Elimination elim(i, eliminator (i, k), k)
(a) With TS kernels
Aeliminator(i,k),k — GEQRT(Aeliminator(i,k),k);
Ai,kv Aeliminator(i,k),k — TSQRT(AZ,k7 Aeliminator(i,k),k);
forj=k+1ton—1do
L Aeliminator(i,k),j — UNMQR(Aeli'minatOT(i,k),j: Aeliminator(i,k),k;

Ai,ja Aelimmator(i,k),j — TSMQR(A’L,]? Aeliminator(i,k),ja Ai,k);

(b) With TT kernels
Aeliminatar(i,k),k — GEQRT(Aelim,inator(i,k),k);
forj=k+1ton—1do
Aeliminatar(i,k),j — UNMQR(Aeliminator(i,k),ja Aelimmator(i,k),k;
Ai,j — UNMQR(AZ’J, Ai,k;
Ai,k’v Aeliminator(i,k),k — TTQRT(A’L,kv Aeliminato’r(i,k),k);
forj=k+1ton—1do
L Ai,j7 Aeli’rni’nutor(i,k)d — TTMQR(A’L,j7 Aelinnnutor(i,k),j? Ai,k);

Each elimination elim(i, eliminator(i, k), k) consists of two sub-steps: first
in column k, tile (¢, k) is zeroed out (or killed) by tile (eliminator(i, k), k); and in
each following column j > k, tiles (4, j) and (eliminator(i, k), j) are updated; all
these updates are independent and can be triggered as soon as the elimination
is completed. The algorithm is entirely characterized by its elimination list,
which is the ordered list of all the eliminations elim(i, eliminator(i, k), k) that
are executed. The orthogonal transformation elim(i, eliminator(i, k), k) uses
either a TTQRT kernel or a TSQRT kernel depending upon whether the tile
to eliminate is either triangular or square. In our hybrid LU-QR Algorithm,
any combination of reduction trees of the HQR algorithm described in [14] is
available. It is then possible to use an intra-domain reduction tree to locally
eliminate many tiles without inter-domain communication. A unique triangular
tile is left on each node and then the reductions across domains are performed
following a second level of reduction tree.

2.3. LU step variants
In the following, we describe several other variants of the LU step.

2.8.1. Variant (A2)

It consists of first performing a QR factorization of the diagonal tile and

proceeds pretty much as in (A1) thereafter.

o Factor: Apy «— GEQRF(Ajy) is a QR factorization Ay = QU k,
where Q. is never constructed explicitly and we instead store the House-
holder reflector Vi . The output matrices Vi, and Uy are stored in
place of the input Ay .




e Eliminate: A, — TRSM (A i, A ) solves in-place the upper triangular
system such that A; — Ai,kUk_),i where Uy, 1, is stored in the upper part
of Ak,k-

o Apply: Ap; «— ORMQR(Agk, Ai ) performs Ay ; «— Q{’RA;@’]- where
QT is applied using Vi j stored in the (strictly) lower part of Ay .

° Upliate: A;j — GEMM (A, Ay j, A; ;) is a general matrix-matrix mul-
tiplication Ai,j — Ai,j — Ai,kAk,j-

The Eliminate and Update steps are the exact same as in (Al). The (A2)
variant has the same data dependencies as (A1) and therefore the same level of
parallelism. A benefit of (A2) over (A1) is that if the criterion test decides that
the step is a QR step, then the factorization of Ay j is not discarded but rather
used to continue the QR step. A drawback of (A2) is that the Factor and Apply
steps are twice as expensive as the ones in (Al).

2.3.2. Variants (B1) and (B2)

Another option is to use the so-called block LU factorization [12]. The result
of this formulation is a factorization where the U factor is block upper triangular
(as opposed to upper triangular), and the diagonal tiles of the L factor are
identity tiles. The Factor step can either be done using an LU factorization
(variant (B1)) or a QR factorization (variant (B2)). The FEliminate step is
Aig — Ai’kA,;}c. There is no Apply step. And the Update step is A;; «—
Al,] - Al,kAk,j'

The fact that row k is not updated provides two benefits: (i) A, does not
need to be broadcast to these tiles, simplifying the communication pattern; (ii)
The stability of the LU step can be determined by considering only the growth
factor in the Schur complement of Ay ;. One drawback of (B1) and (B2) is that
the final matrix is not upper triangular but only block upper triangular. This
complicates the use of these methods to solve a linear system of equations. The
stability of (B1) and (B2) has been analyzed in [12].

We note that (A2) and (B2) use a QR factorization during the Factor step.
Yet, we still call this an LU step. This is because all four LU variants mentioned
use the Schur complement to update the trailing sub-matrix. The mathematical
operation is: A;; «— A;; — Ai,kA;;}cAk,jy- In practice, the Update step for all
four variants looks like A; ; «— A; ; — A; Ak, j, since A;}g is somehow applied
to A; 1, and Ay ; during the preliminary update and eliminate steps. The Schur
update dominates the cost of an LU factorization and therefore all variants are
more efficient than a QR step. Also, we have the same level of parallelism for the
update step: embarrassingly parallel. In terms of stability, all variants would
follow closely the analysis of Section 5.4. We do not consider further variants
(A2), (B1), and (B2) in this paper, since they are all very similar, and only
study Algorithm 2, (A1l).




2.4. Comments

2.4.1. Solving systems of linear equations

To solve systems of linear equations, we augment A with the right-hand
side b to get A = (A,b) and apply all transformations to A. Then an N-by-N
triangular solve is needed. This is the approach we used in our experiments.
We note that, at the end of the factorization, all needed information about
the transformations is stored in place of A, so, alternatively, one can apply the
transformations on b during a second pass.

2.4.2. No restriction on N

In practice, N does not have to be a multiple of n,. We keep this restriction
for the sake of simplicity. The algorithm can accommodate any N and n; with
some clean-up codes, which we have written.

2.4.3. Relation with threshold pivoting

The LU-QR Algorithm can be viewed as a tile version of standard threshold
pivoting. Standard threshold pivoting works on 1-by-1 tiles (scalars, matrix
elements). It checks if the diagonal element passes a certain threshold. If the
diagonal element passes the threshold then elimination is done without pivoting
using this diagonal element as the pivot. If the diagonal element does not
pass the threshold, then standard pivoting is done and elimination is done with
largest element in absolute value in the column. Our Hybrid LU algorithm can
be seen as a variant with tiles. Our algorithm checks if the diagonal tile passes
a certain threshold. If the diagonal tile passes the threshold then elimination
is done without pivoting using this diagonal tile as the pivot. If the diagonal
tile does not pass the threshold, then a stable elimination is performed. The
fact that our algorithm works on tiles as opposed to scalars leads to two major
differences. (1) New criteria for declaring a diagonal tile as being safe had to
develop. (2) In the event when a diagonal tile is declared not safe, we need to
resort to a tile QR step.

3. Robustness criteria

The decision to process an LU or a QR step is done dynamically during the
factorization, and constitutes the heart of the algorithm. Indeed, the decision
criteria has to be able to detect a potentially “large” stability deterioration (ac-
cording to a threshold) due to an LU step before its actual computation, in
order to preventively switch to a QR step. As explained in Section 2, in our hy-
brid LU-QR algorithm, the diagonal tile is factored using an LU decomposition
with partial pivoting. At the same time, some data (like the norm of non local
tiles belonging to other domains) are collected and exchanged (using a Bruck’s
all-reduce algorithm [7]) between all nodes hosting at least one tile of the panel.
Based upon this information, all nodes make the decision to continue the LU
factorization step or to drop the LU decomposition of the diagonal tile and pro-
cess a full QR factorization step. The decision is broadcast to the other nodes




not involved in the panel factorization within the next data communication.
The decision process cost will depend on the choice of the criterion and must
not imply a large computational overhead compared to the factorization cost.
A good criterion will detect only the “worst” steps and will provide a good sta-
bility result with as few QR steps as possible. In this section, we present three
criteria, going from the most elaborate (but also most costly) to the simplest
ones.

The stability of a step is determined by the growth of the norm of the
updated matrix. If a criterion determines the potential for an unacceptable
growth due to an LU step, then a QR step is used. A QR step is stable as
there is no growth in the norm (2-norm) since it is a unitary transformation.
Each criterion depends on a threshold « that allows us to tighten or loosen the
stability requirement, and thus influence the amount of LU steps that we can
afford during the factorization. In Section 5.4, we experiment with different
choices of « for each criterion.

3.1. Max criterion

LU factorization with partial pivoting chooses the largest element of a col-
umn as the pivot element. Partial pivoting is accepted as being numerically
stable. However, pivoting across nodes is expensive. To avoid this pivoting, we
generalize the criterion to tiles and determine if the diagonal tile is an acceptable
pivot. A step is an LU step if

k)\—1|— k
o (AT = max AT (2)

For the analysis we do not make an assumption as to how the diagonal tile
is factored. We only assume that the diagonal tile is factored in a stable way
(LU with partial pivoting or QR are acceptable). Note that, for the variant
using pivoting in the diagonal domain (see Section 2.1), which is the variant we
experiment with in Section 5, A,(f,)c represents the diagonal tile after pivoting
among tiles in the diagonal domain.
To assess the growth of the norm of the updated matrix, consider the update
of the trailing sub-matrix. For all 7,5 > k we have:
A5 = AT = AR A5 AT

5]
k k k)N — k
< NABN + AR 1 CAED I AD
k k
< AP 1 + ol AF1,

k k

< (14 o) max (|4 1, 4L 1)
(k)

< (1+ o) max (14 )

The growth of any tile in the trailing sub-matrix is bounded by 1 + « times
the largest tile in the same column. If every step satisfies (2), then we have the

10




following bound:

k
e LIPS
max;,; [|Ai ;1
The expression above is a growth factor on the norm of the tiles. For a = 1,
the growth factor of 2"~! is an analogous result to an LU factorization with
partial pivoting (scalar case) [21]. Finally, note that we can obtain this bound
by generalizing the standard example for partial pivoting. The following matrix

will match the bound above:

a~ ! 0 0 1
-1 ot 0 1
A= -1 -1 o' 1
-1 -1 -1 1

3.2. Sum criterion

A stricter criterion is to compare the diagonal tile to the sum of the off-
diagonal tiles:

ax (A = D AR L (3)
i>k

Again, for the analysis, we only assume A;}c factored in a stable way. For
a > 1, this criterion (and the Max criterionj is satisfied at every step if A is
block diagonally dominant [21]. That is, a general matrix A € R"*" is block
diagonally dominant by columns with respect to a given partitioning A = (A4; ;)
and a given norm || - || if:

Vi€ [Lal, 147717 =D 14l
i#£j
Again we need to evaluate the growth of the norm of the updated trailing sub-
matrix. For all ¢, > k, we have

k k k k) — k
S AR = ST A - AR AE) AP,

i>k i>k
<> 1AM|,
>k
k k k
AP AT S 1AR L
>k
k k
<ST1AX | + o AP
>k

Hence, the growth of the updated matrix can be bounded in terms of an entire
column rather than just an individual tile. The only growth in the sum is due
to the norm of a single tile. For a = 1, the inequality becomes

k+1 k
STAE < ST 1A

i>k >k

11




If every step of the algorithm satisfies (3) (with a = 1), then by induction we
have:

DA < 3 il

i>k i>1

for all 4, j, k. This leads to the following bound:

k
max; ;i ||A5,j) [t
— <.
max; j || Aq ;|1
From this we see that the criteria eliminates the potential for exponential growth
due to the LU steps. Note that for a diagonally dominant matrix, the bound
on the growth factor can be reduced to 2 [21].

3.8. MUMPS criterion

In LU decomposition with partial pivoting, the largest element of the column
is used as the pivot. This method is stable experimentally, but the seeking of
the maximum and the pivoting requires a lot of communications in distributed
memory. Thus in an LU step of the LU-QR Algorithm, the LU decomposition
with partial pivoting is limited to the local tiles of the panel (i.e., to the diagonal
domain). The idea behind the MUMPS criterion is to estimate the quality of the
pivot found locally compared to the rest of the column. The MUMPS criterion is
one of the strategies available in MUMPS although it is for symmetric indefinite
matrices (LDLT) [17], and Amestoy et al. [1] provided us with their scalar
criterion for the LU case.

At step k of the LU-QR Algorithm, let L®U®) be the LU decomposition
of the diagonal domain and A( J) be the value of the tile A; ; at the beginning of
step k. Let local_maxy(j) be the largest element of the column j of the panel
in the diagonal domain, away-mazk(j) be the largest element of the column j
of the panel off the diagonal domain, and pivoty be the list of pivots used in the
LU decomposition of the diagonal domain:

l & ) = ) .
ocalmay () = max | mac |(Ais)egl
diagonal domain

away-mazi(j) =, max, max (Al
diagonal domain

pivoty(j) = |U(k)|

pivoty(j) represents the largest local element of the column j at step j of the
LU decomposition with partial pivoting on the diagonal domain. Thus, we can
express the growth factor of the largest local element of the column j at step j as:
growth_factory(j) = pivoty(j)/local_maxy(j). The idea behind the MUMPS
criterion is to estimate if the largest element outside the local domain would have
grown the same way. Thus, we can define a vector estimate_maxy, initialized to
away-mazy and updated for each step i of the LU decomposition with partial
pivoting like estimate_maxy(j) «— estimate_maxy(j) X growth_factory(i). We
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consider that the LU decomposition with partial pivoting of the diagonal domain
can be used to eliminate the rest of the panel if and only if all pivots are larger
than the estimated maximum of the column outside the diagonal domain times
a threshold .. Thus, the MUMPS criterion (as we implemented it) decides that
step k of the LU-QR Algorithm will be an LU step if and only if:

Vi, a x pivoty(j) > estimate_maxy(j). (4)

3.4. Extending the MUMPS criterion to tiles

In this section, we extend the MUMPS criterion [1, 17] to tiles. We did not
implement this extension in software. We present the main idea here in the
context of the max criterion. It is possible to adapt to the sum criterion as well.

The main idea is to maintain a local upper bound on the maximum norm
of the tiles below the diagonal. The goal for MUMPS is to spare a search in
the pivot column to see if the current pivot is acceptable. Our goal is to spare
a search in the tile column to know if we are going to apply an LU step or a
QR step. In both cases, if the criterion is satisfied, the search will not happen,
hence (1) this avoids the communication necessary for the search, and (2) this
avoids to synchronize the processes in the column. In other words, if the initial
matrix is such that the criterion is always satisfied at each step of the algorithm,
the synchronization of the panel will go away and a pipeline will naturally be
instantiated.

Following our general framework, we have a matrix A partitioned in n tiles
per row and column. At the start of the algorithm, all processors have a vector
r of size n. If the process holds column j, j = 1,...,n, then it also holds r;
such that
1 _

T

b max HAz,j”l

1=2,...,n
If the process does not hold column j, then it does not have (and will not need)
a value for r;. If
Dy—1)— 1
o [[(AT) Iy 2 ma AT 1,
i>1
we know that an LU step will be performed according to the max criterion. (See
Equation 2.) This condition is guaranteed if

DIv—=11— 1
ax (A YT > .

We assume that this condition is satisfied and so an LU step is decided, so
that our first step is an LU step. The pivot process can decide so without any
communication or synchronization. An LU step therefore is initiated. Now,
following the MUMPS criterion [1, 17], we update the vectors r as follows:
2 1 1 1)y — 1 .
P = IAD) T AT G =20,
We note that || (Ag?)_1 7" can be broadcast along with the L and U factors of

Agll) and that A%) is broadcast for the update to all processes holding 7;, so all
processes holding 7; can update without communicating r;.
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Now we see that

(2 (2) -
Tj Zl:rgl,a’X’nHAz,] H17 ]—2,...,7’7,

Indeed, let j = 2,...,n. Now, let i = 3,...,n, we have
2 1 1 1)\ — 1
1A = 1AL — A (Al AP,
1 1 1)\ — 1
< A+ 1A LA AN L
1 1 1)\ — 1
< (g 1400 ) + (e AR 1L ) Al A
1 1 1)\ — 1
<P VAt A
Hence, for j = 2,...,n, we have
2 1 1 1)\ — 1
Jmax [|APY 0 < AT T e,

so that, as claimed,
(2) (2)
izngﬁ)f" [4ijlh < T -
Therefore, at step 2, the process holding Ass can evaluate locally (without
communication nor synchronization) the condition

2) =1 = 2
o x [|(453) It = g
and decides whether an LU or a QR step is appropriate.

3.5. Complexity

All criteria require the reduction of information of the off-diagonal tiles to the
diagonal tile. Criteria (2) and (3) require the norm of each tile to be calculated
locally (our implementation uses the 1-norm) and then reduced to the diagonal
tile. Both criteria also require computing || A; 1||. Since the LU factorization of
the diagonal tile is computed, the norm can be approximated using the L and U
factors by an iterative method in O(n?) floating-point operations. The overall
complexity for both criteria is O(n x nj). Criterion (4) requires the maximum
of each column be calculated locally and then reduced to the diagonal tile. The
complexity of the MUMPS criterion is also O(n x n}) comparisons.

The Sum criterion is the strictest of the three criteria. It also provides the
best stability with linear growth in the norm of the tiles in the worst case. The
other two criteria have similar worst case bounds. The growth factor for both
criteria are bound by the growth factor of partial (threshold) pivoting. The
Max criterion has a bound for the growth factor on the norm of the tiles that
is analogous to partial pivoting. The MUMPS criteria does not operate at the
tile level, but rather on scalars. If the estimated growth factor computed by
the criteria is a good estimate, then the growth factor is no worse than partial
(threshold) pivoting.
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4. Implementation

As discussed in section 1, we have implemented the LU-QR Algorithm on
top of the PARSEC runtime. There are two major reasons for this choice: (i)
it allows for easily targeting distributed architectures while concentrating only
on the algorithm and not on implementation details such as data distribution
and communications; (ii) previous implementations of the HQR algorithm [14]
can be reused for QR elimination steps, and they include efficient reduction
trees to reduce the critical path of these steps. The other advantage of using
such a runtime is that it provides an efficient look-ahead algorithm without
the burden. This is illustrated by the figure 2 that shows the first steps of
the factorization with the LU-QR Algorithm. QR STEPS (in green) and LU
STEPS (in orange/red) are interleaved automatically by the runtime and panel
factorization does not wait for the previous step to be finished before starting.

However, this choice implied major difficulties due to the parameterized task
graph representation exploited by the PARSEC runtime. This representation
being static, a solution had to be developed to allow for dynamism in the graph
traversal. To solve this issue, we decided to fully statically describe both LU
and QR algorithms in the parameterized task graph. A layer of selection tasks
has then been inserted between each iteration, to collect the data from the
previous step, and to propagate it to the correct following step. These tasks,
which do no computations, are only executed once they received a control flow
after the criterion selection has been made. Thus, they delay the decision to
send the data to the next elimination step until a choice has been made, in
order to guarantee that data follow the correct path. These are the Propagate
tasks on Figure 1. It is important to note, that these tasks do not delay the
computations since no updates are available as long as the panel is not factorized.
Furthermore, these tasks, as well as Backup Panel tasks, can receive the same
data from two different paths which could create conflicts. In the PARSEC
runtime, tasks are created only when one of their dependencies is solved; then
by graph construction they are enabled only when the previous elimination step
has already started, hence they will receive their data only from the correct
path. It also means that tasks belonging to the neglected path will never be
triggered, and so never be created. This implies that only one path will forward
the data to the Propagate tasks.

Figure 1 describes the connection between the different stages of one elimi-
nation step of the algorithm. These stages are described below:

BAckuP PANEL. This is a set of tasks that collect the tiles of the panel from
the previous step. Since an LU factorization will be performed in-place for
criterion computation, it is then necessary to backup the modified data in case
the criterion fails the test on numerical accuracy. Only tiles from the current
panel belonging to the node with the diagonal row are copied, and sent directly
to the Propagate tasks in case a QR elimination step is needed. On other nodes,
nothing is done. Then, all original tiles belonging to the panel are forwarded to
the LU On Panel tasks.
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Figure 1: Dataflow of one step of the algorithm.

LU ON PANEL. Once the backup is done, the criterion is computed. Two kinds
of work are performed in those tasks. On the first node, the U matrix related to
this elimination step is computed. This can be done through an LU factorization
with or without pivoting. We decided to exploit the multi-threaded recursive-
LU kernel from the PLASMA library to enlarge the pivot search space while
keeping good efficiency [15]. On all other nodes, the information required for the
criterion is computed (see section 3). Then, an all-reduce operation is performed
to exchange the information, so that everyone can take and store the decision
in a local array. This all-reduce operation is directly implemented within the
parameterized task graph with Bruck’s algorithm [7] to optimize the cost of this
operation. Once the decision is known by the nodes on the panel, it is stored
in a global array by each process in order to give access to the information to
every worker threads. The information is then broadcast by row to all other
nodes such that everyone knows which kind of update to apply, and a control
flow per process triggers all the local Propagate task which can now have access
to the decision and release the correct path in the dataflow.

PROPAGATE. These tasks, one per tile, receive the decision from the previous
stage through a control flow, and are responsible for forwarding the data to
the computational tasks of the selected factorization. The tasks belonging to
the panel (assigned to the first nodes) have to restore the data back to their
previous state if QR elimination is chosen. In all cases, the backup is destroyed
upon exit of these tasks.

We are now ready to complete the description of each step:

a) LU STEP. If the numerical criterion is met by the panel computation, the
update step is performed. On the nodes with the diagonal row, a task per panel
is generated to apply the row permutation computed by the factorization, and
then, the triangular solve is applied to the diagonal to compute the U part of
the matrix. The result is broadcasted per column to all other nodes and a block
LU algorithm is used to performed the update. This means that the panel is
updated with TRSM tasks, and the trailing sub-matrix is updated with GEMM
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tasks. This avoids the row pivoting between the nodes usually performed by
the classical LU factorization algorithm with partial pivoting, or by tournament
pivoting algorithms [20]. Here this exchange is made within a single node only.

b) QR STEP. If the numerical criterion is not met, a QR factorization has to
be performed. Many solutions could be used for this elimination step. We chose
to exploit the HQR method implementation presented in [14]. This allowed
us to experiment with different kinds of reduction trees, so as to find the most
adapted solution to our problem. The goal is to reduce the inter-nodes com-
munications to the minimum while keeping the critical path short. In [14], we
have shown that the FLATTREE tree is very efficient for a good pipeline of the
operations on square matrices, while FIBONACCI, GREEDY or BINARYTREE are
good for tall and skinny matrices because they reduce the length of the critical
path. In this algorithm, our default tree (which we use in all of our experi-
ments) is a hierarchical tree made of GREEDY reduction trees inside nodes, and
a FIBONACCI reduction tree between the nodes. The goal is to perform as few
QR steps as possible, so a FIBONACCI tree between nodes has been chosen for
its short critical path and its good pipelining of consecutive trees if multiple QR
steps are performed in sequence. Within a node, the GREEDY reduction tree
is favored for similar reasons (See [14] for more details on the reduction trees).
A two-level hierarchical approach is natural when considering multicore parallel
distributed architectures, and those choices could be reconsidered according to
the matrix size and numerical properties.

To implement the LU-QR Algorithm within the PARSEC framework, two
extensions had to be implemented within the runtime. The first extension allows
the programmer to generate data during the execution with the OUTPUT
keywords. This data is then inserted into the tracking system of the runtime
to follow its path in the dataflow. This is what has been used to generate the
backup on the fly, and to limit the memory peak of the algorithm. A second
extension has been made for the end detection of the algorithm. Due to its
distributed nature, PARSEC detects the end of an algorithm by counting the
remaining tasks to execute. At algorithm submission, PARSEC loops over all
the domain space of each type of task of the algorithm and uses a predicate,
namely the owner computes rule, to decide if a task is local or not. Local tasks
are counted and the end of the algorithm, it is detected when all of them have
been executed. As explained previously, to statically describe the dynamism of
the LU-QR Algorithm, both LU and QR tasks exist in the parameterized graph.
The size of the domain space is then larger than the number of tasks that will
actually be executed. Thus, a function to dynamically increase/decrease the
number of local tasks has been added, so that the Propagate tasks decrease the
local counter of each node by the number of update tasks associated to the non
selected algorithm.

The implementation of the LU-QR Algorithm is publicly available in the
latest DPLASMA release (1.2.0).
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Figure 2: Execution trace of the first steps of the LU-QR Algorithm on a matrix of size
N = 5000 with ny = 200, and criterion that alternates between LU and QR steps. A grid of
2 — by — 2 process with 4 threads each is used. The green tasks are the QR STEPS (dark for the
panel factorization, and light for the trailing submatrix update); the orange and red tasks are
the LU STEPS (red for the panel update and orange for the trailing submatrix update); the
blue tasks are the LU panel factorizations performed at every step; and small black tasks, that
do not show up on the figure because their duration is too small, are the criterion selections,
and the Propagate tasks.

5. Experiments

The purpose of this section is to present numerical experiments for the hy-
brid LU-QR Algorithm, and to highlight the trade-offs between stability and
performance that can be achieved by tuning the threshold « in the robustness
criterion (see Section 3).

5.1. Ezperimental framework

We used Dancer, a parallel machine hosted at the Innovative Computing
Laboratory (ICL) in Knoxville, to run the experiments. This cluster has 16
multi-core nodes, each equipped with 8 cores, and an Infiniband interconnection
network of 10GB/s bandwith (MT25208 cards). The nodes feature two Intel
Westmere-EP E5606 CPUs at 2.13GHz. The system is running the Linux 64bit
operating system, version 3.7.2-x86_64. The software was compiled with the
Intel Compiler Suite 2013.3.163. BLAS kernels were provided by the MKL
library and OpenMPI 1.4.3 has been used for the MPI communications by the
PARSEC runtime. Each computational thread is bound to a single core using
the HwLoc 1.7.1 library. If not mentioned otherwise, we will use all 16 nodes and
the data will be distributed according to a 4-by-4 2D-block-cyclic distribution.
In all our experiments, this distribution performs better than a 8-by-2 or a 16-
by-1 distribution for our hybrid LU-QR Algorithm, as expected, since square
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grids are known to perform better for LU and QR factorization applied to
square matrices [9]. The theoretical peak performance of the 16 nodes is 1091
GFLOP /sec.

For each experiment, we consider a square tiled-matrix A of size N-by-V,
where N = nxn;. The tile size n, has been fixed to 240 for the whole experiment
set, because this value was found to achieve good performance for both LU and
QR steps. We evaluate the backward stability by computing the HPL3 accuracy
test of the High-Performance Linpack benchmark [16]:

[ Az — bl
[Alloo [l llo x € N7

HPL3 =

where b is the right-hand side of the linear system, z is the computed solution
and € is the machine precision. Each test is run with double precision arithmetic.
In all our experiments, the right-hand side of the linear system is generated using
the DPLASMA_dplrnt routine. It generates a random matrix (or a random
vector) with each element uniformly taken in [—0.5,0.5]. For performance, we
point out that the number of floating point operations executed by the hybrid
algorithm depends on the number of LU and QR steps performed during the
factorization. Thus, for a fair comparison, we assess the efficiency by reporting
the normalized GFLOP /sec performance computed as

2 A73
3N
EXECUTION TIME'

GFLOP /sec =

where %N 3 is the number of floating-point operations for LU with partial piv-
oting and EXECUTION TIME is the execution time of the algorithm. With this
formula, QR factorization will only achieve half of the performance due to the
%N 3 floating-point operations of the algorithm. Note that in all our experi-
ments, the right-hand side b of the linear system is a vector. Thus, the cost of
applying the transformations on b to solve the linear system is negligible, which
is not necessarily the case for multiple right-hand sides.

5.2. Results for random matrices

We start with the list of the algorithms used for comparison with the LU-
QR Algorithm. All these methods are implemented within the PaRSEC frame-
work:

e LU NoPiv, which performs pivoting only inside the diagonal tile but no
pivoting across tiles (known to be both efficient and unstable)

e LU IncPiv, which performs incremental pairwise pivoting across all tiles
in the elimination panel [9, 23] (still efficient but not stable either)

e Several instances of the hybrid LU-QR Algorithm, for different values of
the robustness parameter a. Recall that the algorithm performs pivoting
only across the diagonal domain, hence involving no remote communica-
tion nor synchronization.

e HQR, the Hierarchical QR factorization [14], with the same configuration
as in the QR steps of the LU-QR Algorithm: GREEDY reduction trees
inside nodes and FIBONACCI reduction trees between the nodes.
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For reference, we also include a comparison with PDGEQRE'": this is the LUPP
algorithm (LU with partial pivoting across all tiles of the elimination panel)
from the reference ScaLAPACK implementation [10].

- - Fake True Fake % True %
Algorithm > Time | % LU steps GFLOP /sec GFLOP /sec Peak Perf. Peak Perf.
LU NoPiv 6.29 100.0 §48.6 $48.6 78 778
LU IncPiv 9.25 100.0 576.4 576.4 52.9 52.9

LUQR (MAX) oo 7.87 100.0 677.7 677.7 62.1 62.1
LUQR (MAX) | 13000 | 7.99 94.1 667.7 707.4 61.2 64.9
LUQR (I\/[AX) 9000 8.62 83.3 619.0 722.2 56.8 66.2
LUQR (MAX) | 6000 | 10.95 61.9 486.9 672.4 44.6 61.7
LUQR (MAX) | 4000 12.43 51.2 429.0 638.4 39.3 58.5
LUQR (MAX) 1400 13.76 35.7 387.6 636.9 35.5 58.4
LUQR (MAX) 900 16.39 11.9 325.4 612.0 29.8 56.1
LUQR (MAX) 0 18.05 0.0 295.5 590.9 27.1 54.2

HQR 16.01 0.0 333.1 666.1 30.5 61.1

LUPP 15.30 100.0 348.6 348.6 32.0 32.0

Table 2: Performance obtained by each algorithm, for N = 20,000, on the Dancer platform
(4 x 4 grid). We only show the results for the LU-QR Algorithm with the Max criterion.
The other criteria have similar performance. In column Fake GFLOP/sec, we assume all
algorithms perform %N3 floating-point operations. In column True GFLOP /sec, we compute

the number of floating-point operations to be (%fLU + %(1 — fru))N3, where fry is the
fraction of the steps that are LU steps (column 4).

Figure 3 summarizes all results for random matrices. The random matrices
are generated using the DPLASMA _dplrnt routine. The figure is organized as
follows: each of the first three rows corresponds to one criterion. Within a row:

e the first column shows the relative stability (ratio of HPL3 value divided

by HPL3 value for LUPP)

e the second column shows the GFLOP /sec performance

e the third column shows the percentage of LU steps during execution
The fourth row corresponds to a random choice between LU and QR at each
step, and is intended to assess the performance obtained for a given ratio of LU
vs QR steps. Plotted results are average values obtained on a set of 100 random
matrices (we observe a very small standard deviation, less than 2%).

For each criterion, we experimentally chose a set of values of a that provides a
representative range of ratios for the number of LU and QR steps. As explained
in Section 3, for each criterion, the smaller the « is, the tighter the stability
requirement. Thus, the numerical criterion is met less frequently and the hybrid
algorithm processes fewer LU steps. A current limitation of our approach is that
we do not know how to auto-tune the best range of values for «, which seems to
depend heavily upon matrix size and available degree of parallelism. In addition,
the range of useful « values is quite different for each criterion.

For random matrices, we observe in Figure 3 that the stability of LU NoPiv
and LU IncPiv is not satisfactory. We also observe that, for each criterion,
small values of « result in better stability, to the detriment of performance. For
a = 0, LU-QR Algorithm processes only QR steps, which leads to the exact
same stability as the HQR Algorithm and almost the same performance results.
The difference between the performance of LU-QR Algorithm with o = 0 and
HQR comes from the cost of the decision making process steps (saving the
panel, computing the LU factorization with partial pivoting on the diagonal
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domain, computing the choice, and restoring the panel). Figure 3 shows that
the overhead due to the decision making process is approximately equal to
10% for the three criteria. This overhead, computed when QR eliminations
are performed at each step, is primarily due to the backup/restore steps added
to the critical path when QR is chosen. Performance impact of the criterion
computation itself is negligible, as one can see by comparing performance of the
random criterion to the MUMPS and Max criteria.

LU-QR Algorithm with @ = co and LU NoPiv both process only LU steps.
The only difference between both algorithms in terms of error analysis is that LU
NoPiv seeks for a pivot in the diagonal tile, while LU-QR Algorithm with o = oo
seeks for a pivot in the diagonal domain. This difference has a considerable im-
pact in terms of stability, in particular on random matrices. LU-QR Algorithm
with a = 0o has a stability slightly inferior to that of LUPP and significantly
better to that of LU NoPiv. When the matrix size increases, the relative stabil-
ity results of the LU-QR Algorithm with o = oo tends to 1, which means that,
on random matrices, processing an LU factorization with partial pivoting on a
diagonal domain followed by a direct elimination without pivoting for the rest
of the panel is almost as stable as an LU factorization with partial pivoting on
the whole panel. A hand-waving explanantion would go as follows. The main
instabilities are proportional to the small pivots encountered during a factoriza-
tion. Using diagonal pivoting, as the factorization of the diagonal tile proceeds,
one is left with fewer and fewer choices for a pivot in the tile. Ultimately, for
the last entry of the tile in position (np,np), one is left with no choice at all.
When working on random matrices, after having performed several successive
diagonal factorizations, one is bound to have encountered a few small pivots.
These small pivots lead to a bad stability. Using a domain (made of several
tiles) for the factorization significantly increases the number of choice for the
pivot and it is not any longer likely to encounter a small pivot. Consequently
diagonal domain pivoting significantly increases the stability of the LU-QR Al-
gorithm with o = co. When the local domain gets large enough (while being
significanty less than N), the stability obtained on random matrices is about
the same as partial pivoting.

When a = oo, our criterion is deactivated and our algorithm always performs
LU step. We note that, when « is reasonable, (as opposed to @ = o0,) the
algorithm is stable whether we use a diagonal domain or a diagonal tile. However
using a diagonal domain increases the chance of well-behaved pivot tile for the
elimination, therefore using a diagonal domain (as opposed to a diagonal tile)
increases the chances of an LU step.

Using random choices leads to results comparable to those obtained with the
three criteria. However, since we are using random matrices in this experiment
set, we need to be careful before drawing any conclusion on the stability of our
algorithms. If an algorithm is not stable on random matrices, this is clearly
bad. However we cannot draw any definitive conclusion if an algorithm is stable
for random matrices.

Table 2 displays detailed performance results for the Max criterion with
N = 20,000. In column Fake GFLOP /sec, we assume all algorithms perform
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%N?’ floating-point operations. In column True GFLOP /sec, we compute the
number of floating-point operations to be (2 fu + 5(1— fru))N?, where fry is
the fraction of the steps that are LU steps (column 4). For this example, we see
that the LU-QR Algorithm reaches a peak performance of 677.7 GFLOP /sec
(62.1% of the theoretical peak) when every step is an LU step. Comparing
LU-QR Algorithm with « = 0 and HQR shows the overhead for the decision
making process is 12.7%. We would like the true performance to be constant
as the number of QR steps increases. For this example, we see only a slight
decrease in performance, from 62.1% for a = oo to 54.2% for a = 0. HQR
maintains nearly the same true performance (61.1%) as the LU-QR Algorithm
with o = 0co. Therefore, the decrease in true performance is due largely to the
overhead of restoring the panel.

5.3. Results for different processor grid sizes

In Section 5.2, we presented the stability and performance results on a 4 x 4
grid of processors, which means that at each step of the LU-QR Algorithm the
panel was split in 4 domains. The number of domains in the panel has a strong
impact on the stability. In a LU step, increasing the number of domains will
reduce the search area for pivots during the factor step. Conversely, the bigger
the diagonal domain is, the larger the singular values of the factored region will
be. Figure 4 displays the stability results for different sizes of processors grid.
The first column shows the relative stability (ratio of HPL3 value divided by
HPL3 value for LUPP) obtained by running the hybrid LU-QR Algorithm on
a set of 5 random matrices of size N = 40,000. The second column shows the
percentage of LU steps during execution. We can see that the relative stability
remains quite constant when the number of domains in the panel increases. The
alpha parameters sets the stability requirement for the factorization indepen-
dently of the size of the platform. However, the percentage of LU steps for a
fixed value of o decreases when the number of domain increases. To maintain
this stability requirement when the size of the diagonal domain decreases, the
LU-QR Algorithm has to perform more QR steps. For instance, for the Max
criterion, and for o = 5625, the LU-QR Algorithm performs 90% of LU steps
during the factorization when the panel is split in 2 domains. It can only per-
form 60% of LU steps to maintain the same stability requirement when the
panel is split in 16 domains.

5.4. Results for special matrices

For random matrices, we obtain a good stability with random choices, al-
most as good as with the three criteria. However, as mentioned above, we
should draw no definite conclusion. To highlight the need for a smart criterion,
we tested the hybrid LU-QR Algorithm on a collection of matrices that includes
several pathological matrices on which LUPP fails because of large growth fac-
tors. This set of special matrices described in Table 3 includes ill-conditioned
matrices as well as sparse matrices, and mostly comes from the Higham’s Matrix
Computation Toolbox [21].
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criterion and by random choices, for random matrices of size 40000.

24




No.

10

11

12
13
14
15

16

17

18

19

20

21

Matrix

house

parter

ris

condex

circul

hankel

compan

lehmer

dorr

demmel

chebvand

invhess
prolate
cauchy

hilb
lotkin
kahan
orthogo

wilkinson

foster

wright

Description

Householder matrix, A = eye(n)—Gxv+v?

Parter matrix, a Toeplitz matrix with most
of singular values near II. A(i,5) =1/(i —
j+0.5).

Ris matrix, matrix with elements A(i,5) =
0.5/(n—i—j+1.5). The eigenvalues cluster
around —1I/2 and II/2.

Counter-example matrix to condition esti-
mators.

Circulant matrix

Hankel matrix, A = hankel(c,r), where
¢ = randn(n,1), r = randn(n,1), and
c(n) = r(1).

Companion matrix (sparse), A
compan(randn(n + 1,1)).

Lehmer matrix, a symmetric positive def-
inite matrix such that A(i,j) = i/j for
j > . Its inverse is tridiagonal.

Dorr matrix, a diagonally dominant, ill-
conditioned, tridiagonal matrix (sparse).
A = D x(eye(n)+ 10— T7*rand(n)), where
D = diag(1014 % (0 : n — 1)/n).
Chebyshev Vandermonde matrix based on
n equally spaced points on the interval
[0,1].

Its inverse is an upper Hessenberg matrix.
Prolate matrix, an ill-conditioned Toeplitz
matrix.

Cauchy matrix.

Hilbert matrix with elements 1/(i+j — 1).
A = hilb(n).

Lotkin matrix, the Hilbert matrix with its
first row altered to all ones.

Kahan matrix, an upper trapezoidal ma-
trix.

Symmetric eigenvector matrix: A(i,j) =
sqrt(2/(n+ 1)) x sin(i*j*w/(n+ 1))
Matrix attaining the upper bound of the
growth factor of GEPP.

Matrix arising from using the quadrature
method to solve a certain Volterra integral
equation.

Matrix with an exponential growth fac-
tor when Gaussian elimination with Par-
tial Pivoting is used.

Table 3: Special matrices in the experiment set.
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Figure 5 provides the relative stability (ratio of HPL3 divided by HPL3 for
LUPP) obtained by running the hybrid LU-QR Algorithm on a set of 5 random
matrices and on the set of special matrices. Matrix size is set to N = 40, 000,
and experiments were run on a 16-by-1 process grid. The parameter o has been
set to 50 for the random criterion, 6,000 for the Max criterion, and 2.1 for the
MUMPS criterion (we do not report result for the Sum criterion because they
are the same as they are for Max). Figure 5 considers LU NoPiv, HQR and
the LU-QR Algorithm. The first observation is that using random choices now
leads to numerical instability. The Max criterion provides a good stability ratio
on every tested matrix (up to 58 for the RIS matrix and down to 0.03 for the
Invhess matrix). The MUMPS criterion also gives modest growth factor for
the whole experiment set except for the Wilkinson and the Foster matrices, for
which it fails to detect some “bad” steps.

We point out that we also experimented with the Fiedler matrix from Higham’s
Matrix Computation Toolbox [21]. We observed that LU NoPiv and LUPP
failed (due to small values rounded up to 0 and then illegally used in a division),
while the Max and the MUMPS criteria provide HPL3 values (= 5.16 x 107%
and = 2.59 x 107%%) comparable to that of HQR (= 5.56 x 107%?). This proves
that our criteria can detect and handle pathological cases for which the generic
LUPP algorithm fails.
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Figure 5: Stability on special matrices.
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5.5. Results for varying the condition number

In section 5.4, we presented stability results for a set of pathological matrices
on which LUPP fails. Figure 6 provides the relative stability (ratio of HPL3
divided by HPL3 for LUPP) and the percentage of LU and QR steps obtained
by the hybrid LU-QR Algorithm on matrices with varying condition numbers.
The results have been obtained with Matlab (version 7.8.0) on matrices of size
1000, and for 100 domains per panel. The right-hand side of the linear system is
a vector with each element randomly taken from a standard normal distribution
(with a mean p = 0 and a standard deviation o = 1). The matrix A was gener-
ated by a singular value decomposition. Orthogonal matrices were obtained via
the Q-factor of a QR decomposition of matrices with each element randomly
taken from a standard normal distribution. To obtain a condition number of &,
we let the maximum singular value be 1 and the smallest singular value be £~ 1.
The base-10 logarithms of the singular values are linearly spaced. The diago-
nal matrix with the singular values on the diagonal is obtained in Matlab by
diag(10." (-linspace(0,log10(x),1000))). Each point of the curves is an average
of 10 runs.

We observe that the percentage of LU and QR steps and the relative back-
ward error appear to be independent of the condition number of the matrix,
and to depend only on the o parameter. The stability of our algorithm is gov-
erned by the quality of the diagonal tile during an LU step. The quality of the
diagonal tile during an LU step does not depend on the condition number of
the matrix, but it depends on the a parameter.

5.6. Assessment of the three criteria

With respect to stability, while the three criteria behave similarly on random
matrices, we observe different behaviors for special matrices. The MUMPS
criterion provides good results for most of the tested matrices but not for all.
If stability is the key concern, one may prefer to use the Max criterion (or the
Sum criterion), which performs well for all special matrices (which means that
the upper bound of (1 4+ a)®~! on the growth is quite pessimistic).

With respect to performance, we observe very comparable results, which
means that the overhead induced by computing the criterion at each step is of
the same order of magnitude for all criteria.

The overall conclusion is that all criteria bring significant improvement over
LUPP in terms of stability, and over HQR in terms of performance. Tuning the
value of the robustness parameter o enables the exploration of a wide range of
stability /performance trade-offs.

6. Related work

State-of-the-art QR factorizations use multiple eliminators per panel, in or-
der to dramatically reduce the critical path of the algorithm. These algorithms
are unconditionally stable, and their parallelization has been fairly well studied
on shared memory systems [8, 23, 6] and on parallel distributed systems [14].
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Figure 6: Stability and percentage of LU steps obtained by the Max criterion, the Sum
criterion and the MUMPS criterion for random matrices of size 1000.
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The idea of mixing Gaussian transformations and orthogonal transforma-
tions has been considered once before. Irony and Toledo [22] present an al-
gorithm for reducing a banded symmetric indefinite matrix to diagonal form.
The algorithm uses symmetric Gaussian transformations and Givens rotations
to maintain the banded symmetric structure and maintain similar stability to
partial symmetric pivoting.

The reason for using LU kernels instead of QR kernels is performance: (i)
LU performs half the number of floating-point operations of QR; (ii) LU kernels
relies on GEMM kernels which are very efficient while QR kernels are more
complex and much less tuned, hence not that efficient; and (iii) the LU update
is much more parallel than the QR update. So all in all, LU is much faster
than QR (as observed in the performance results of Section 5). Because of the
large number of communications and synchronizations induced by pivoting in
the reference LUPP algorithm, communication-avoiding variants of LUPP have
been introduced [11], but they have proven much more challenging to design
because of stability issues. In the following, we review several approaches:

6.1. LUPP

LU with partial pivoting is not a communication-avoiding scheme and its
performance in a parallel distributed environment is low (see Section 5). How-
ever, the LUPP algorithm is stable in practice, and we use it as a reference for
stability.

6.2. LU NoPiv

The most basic communication-avoiding LU algorithm is LU NoPiv. This al-
gorithm is stable for block diagonal dominant matrices [21, 12], but breaks down
if it encounters a nearly singular diagonal tile, or loses stability if it encounters
a diagonal tile whose smallest singular value is too small.

Baboulin et al. [2] propose to apply a random transformation to the initial
matrix, in order to use LU NoPiv while maintaining stability. This approach
gives about the same performance as LU NoPiv, since preprocessing and post-
processing costs are negligible. It is hard to be satisfied with this approach [2]
because for any matrix which is rendered stable by this approach (i.e, LU NoPiv
is stable), there exists a matrix which is rendered not stable. Nevertheless, in
practice, this proves to be a valid approach.

6.3. LU IncPiv

LU IncPiv is another communication-avoiding LU algorithm [9, 23]. Incre-
mental pivoting is also called pairwise pivoting. The stability of the algorithm [9]
is not sufficient and degrades as the number of tiles in the matrix increases (see
our experimental results on random matrices). The method also suffers some
of the same performance degradation of QR factorizations with multiple elimi-
nators per panel, namely low-performing kernels, and some dependencies in the
update phase.
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6.4. CALU

CALU [20] is a communication-avoiding LU. It uses tournament pivoting
which has been proven to be stable in practice [20]. CALU shares the (good)
properties of one of our LU steps: (i) low number of floating-point operations;
(ii) use of efficient GEMM kernels; and (iii) embarrassingly parallel update. The
advantage of CALU over our algorithm is essentially that it performs only LU
steps, while our algorithm might need to perform some (more expensive) QR
steps. The disadvantage is that, at each step, CALU needs to perform global
pivoting on the whole panel, which then needs to be reported during the update
phase to the whole trailing submatrix. There is no publicly available implemen-
tation of parallel distributed CALU, and it was not possible to compare stability
or performance. CALU is known to be stable in practice [19, 13]. Performance
results of CALU in parallel distributed are presented in [19]. Performance re-
sults of CALU on a single multicore node are presented in [13].

6.5. Summary

Table 4 provides a summary of key characteristics of the algorithms discussed
in this section.

ALGORITHM CA  KERNELS EFF. FOR UPDATE PIPELINE #FLOPS STABLE

LU NoPiV YES GEMM-EFFICIENT YES 1x NOT AT ALL

LU IncPiv YES LESS EFFICIENT YES 1x SOMEWHAT

CALU YES GEMM-EFFICIENT NO 1x PRACTICALLY
LUQR (alpha) LU only YES GEMM-EFFICIENT NO 1x PRACTICALLY
LUQR (alpha) QR only YES LESS EFFICIENT NO 2x UNCONDITIONALLY
HQR YES LESS EFFICIENT YES 2x UNCONDITIONALLY
LUPP NO  GEMM-EFFICIENT NO 1x PRACTICALLY

Table 4: A summary of key characteristics of each algorithm. CA in column 2 stands for
Communication Avoiding. Other column titles are self-explanatory.

7. Conclusion

Linear algebra software designers have been struggling for years to improve
the parallel efficiency of LUPP (LU with partial pivoting), the de-facto choice
method for solving dense systems. The search for good pivots throughout the
elimination panel is the key for stability (and indeed both NoPiv and IncPiv fail
to provide acceptable stability), but it induces several short-length communica-
tions that dramatically decrease the overall performance of the factorization.

Communication-avoiding algorithms are a recent alternative which proves
very relevant on today’s archictectures. For example, in our experiments, our
HQR factorization [14] based of QR kernels ends with similar performance as
ScaLAPACK LUPP while performing 2x more floating-point operations, us-
ing slower sequential kernels, and a less parallel update phase. In this paper,
stemming from the key observation that LU steps and QR steps can be mixed
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during a factorization, we present the LU-QR Algorithm whose goal is to accel-
erate the HQR algorithm by introducing some LU steps whenever these do not
compromise stability. The hybrid algorithm represents dramatic progress in a
long-standing research problem. By restricting to pivoting inside the diagonal
domain, i.e., locally, but by doing so only when the robustness criterion fore-
casts that it is safe (and going to a QR step otherwise), we improve performance
while guaranteeing stability. And we provide a continuous range of trade-offs
between LU NoPiv (efficient but only stable for diagonally-dominant matrices)
and QR (always stable but twice as costly and with less performance). For some
classes of matrices (e.g., tile diagonally dominant), the LU-QR Algorithm will
only perform LU steps.

This work opens several research directions. First, as already mentioned,
the choice of the robustness parameter « is left to the user, and it would be
very interesting to be able to auto-tune a possible range of values as a function
of the problem and platform parameters. Second, there are many variants and
extensions of the hybrid algorithm that can be envisioned. Several have been
mentioned in Section 2, and many others could be tried. In particular, the tile
extension of the MUMPS criterion looks promising and deserves to be implement
in software during future work. Another goal would be to derive LU algorithms
with several eliminators per panel (just as for HQR) to decrease the critical
path, provided the availability of a reliable robustness test to ensure stability.
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