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ABSTRACT
As the transistor’s feature size decreases following Moore’s Law,
hardware will become more prone to permanent, intermittent, and
transient errors, increasing the number of failures experienced by
applications, and diminishing the confidence of users. As a result,
resilience is considered the most difficult under addressed issue
faced by the High Performance Computing community.

In this paper, we address the design of error resilient iterative
solvers for sparse linear systems. Contrary to most previous ap-
proaches, based on Krylov subspace methods, for this purpose we
analyze stationary component-wise relaxation. Concretely, starting
from a plain implementation of the Jacobi iteration, we design a
low-cost component-wise technique that elegantly handles bit-flips,
turning the initial synchronized solver into an asynchronous itera-
tion. Our experimental study employs sparse incomplete factoriza-
tions from several practical applications to expose the convergence
delay incurred by the fault-tolerant implementation.
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1. INTRODUCTION
As the number of transistors in CMOS integrated circuits contin-

ues to grow at the pace dictated by Moore’s Law, the rate of faults
(e.g., due to the impact of alpha particles or radiation from chip
packaging,) will become significant [18]. In addition, with the end
of Dennard’s scaling [7], power is the key constraint for the perfor-
mance of current high performance computing (HPC) systems [11,
17]. Near-threshold voltage computing (NTVC) [15] can help in-
crease the levels of hardware concurrency and throughput of these
systems, but will do so at the expense of more transistor area and
larger volumes of systems faults [14].
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To challenge this background, fault resilience has been identified
as a critical component for future supercomputers [16]. In particu-
lar, the expected increase in error rates in large HPC systems will
render current checkpoint+restart methods too costly. However,
adding some fault tolerance mechanism that ensures correctness
will be necessary to yield useful exascale machines [18]. With-
out this protection, applications will not run to completion, or even
worse, they will return an incorrect answer without any indication.

In this paper, we propose and evaluate a low-cost technique that
enhances the resilience of component-wise relaxation (i.e., station-
ary) solvers for sparse linear systems [19] with respect to transient
bit-flips (a class of soft errors or silent data corruption). By na-
ture, this type of iterative method features a certain degree of error
resilience in case of hardware outage or a low bit-flip rate [2]. In
this work, we move one step forward by integrating an affordable
fault tolerance technique that also preserves the convergence of the
iteration in case high bit-flip rates occur during the sparse matrix-
vector product (SpMV) –an operation which typically dominates the
computational cost of the solver. More precisely, we propose a
light-weight soft error protection mechanism which inspects each
iteration approximation of the solution against some bit-flip thresh-
old, accepting or rejecting the updates at the component level. For
a benchmark associated with the finite difference discretization of
the Laplace problem, we optimize the only threshold parameter of
the method; we exercise the strategy against an increasing bit-flip
rate; and we investigate the influence of the bit-flip location in the
64-bit IEEE number representation. For a more extensive evalua-
tion, we leverage sparse incomplete factorizations for several cases
taken from the University of Florida Matrix Collection1 (UFMC).
The relative convergence delay indicating the overhead incurred by
the fault-tolerant implementation, compared with an error-free im-
plementation, reveals the efficiency of the approach.

The rest of the paper is structured as follows. In Section 2 we
review a number of related works that have also analyzed fault tol-
erance/resilience in the solution of sparse linear systems. In Sec-
tion 3 we offer a brief introduction to stationary solvers, and in
Section 4 we describe our fault tolerance technique for low-cost er-
ror resilience in this type of method. The paper is closed with an
experimental analysis of the technique, in Section 5, followed by
concluding remarks in Section 6.

2. RELATED WORK
Several recent works have considered the effect of soft errors, in

most cases focusing on data corruption and iterative Krylov sub-
space methods [19].

1Available at https://www.cise.ufl.edu/research/sparse/matrices/.
Last accessed: July 2015.



Bronevetsky and de Supinski [3] analyze the vulnerability to soft
errors of the Krylov-based solvers in SparseLib [8]. Their study
concludes that simple soft error detectors can render low overhead
mechanisms with few false positives (FPs), but these techniques do
not yield an acceptable reduction in application vulnerability.

Chen [5] introduces an on-line verification of orthogonality and
residual to detect soft errors during the execution of Krylov sub-
space solvers. This technique is then combined with check-pointing
to obtain correct results in an unreliable computing scenario.

Hoemmen and Heroux [13] apply selective reliability to assem-
ble a fault-tolerant version of GMRES, furnished with an inner-
outer iteration, that converges at a rate that degrades with the fault
rate. When faults are rare, this algorithm operates most of the time
in unreliable mode, avoiding expensive restarts from checkpoints.

Elliott, Hoemmen, and Mueller [9] present a low cost fault detec-
tion mechanism for GMRES, expanding this to limit the magnitude
of the error that the inner solve may return. Related with this, the
same authors [10] investigate the connection between errors in the
IEEE 754 representation of real numbers, the dot product kernel,
and the effect of normalizing the data.

Sao and Vuduc [20] depart from previous work by adopting “self-
stabilization” to obviate the need for full state saving and fault de-
tection. When a fault occurs, their stabilized Krylov subspace sol-
vers can, by design, reach a correct state in a finite number of steps,
while ensuring convergence in the absence of additional faults.

Compared with these efforts, we also address the iterative solu-
tion of sparse linear systems, but consider the error resilience of
relaxation methods instead of Krylov subspace-based solvers. De-
spite the often superior convergence characteristics of Krylov meth-
ods, component-wise iterations remain an important building block
as smoothers for multigrid methods [21], and for the approximate
solution of sparse triangular systems within an incomplete factor-
ization preconditioner [6, 1].

Krylov subspace methods are typically combined with an in-
complete factorization preconditioner to accelerate convergence.
However the application of this preconditioner requires solving two
sparse triangular systems per iteration. These solves are tradition-
ally implemented using forward/backward substitution, a proce-
dure which is not only difficult to parallelize but also error prone.
Concretely, a single bit-flip rapidly propagates into the complete
system damaging the preconditioner as well as the top-level solver
iteration. As the sparse triangular factors arising in this context ful-
fill the convergence condition for asynchronous component-wise
iteration, fault-tolerant relaxation methods are a highly attractive
alternative to the “exact” triangular solves in an error-prone sce-
nario.

3. STATIONARY METHODS
Consider the linear system Ax = b, where A ∈ Rn×n is sparse,

b ∈ Rn is the right-hand side vector, and x ∈ Rn is the sought-after
solution. Stationary solvers apply component-wise relaxation prin-
ciples, iteratively updating each individual component of an ap-
proximated solution x{k}, using the matrix A, combined with val-
ues of other components, and vector b. A popular example is the
Jacobi iteration, which can be formulated as

x{k} := D−1
(

b− (A−D)x{k−1}
)
= D−1b+Mx{k−1}

= y+Mx{k−1}, k = 1,2, . . . , (1)

where D ∈ Rn×n is a diagonal matrix containing the diagonal en-
tries of A, and x{0} corresponds to a starting solution guess [19].

An appealing property of the “Jacobi update” y+Mx{k−1} is that

all components of x{k} can be obtained in parallel, as the arithmetic
operations on any component x{k}i only involve values from x{k−1}.
In contrast, the Gauss-Seidel method [19] requires values from both
the last and the current iterate, imposing a specific updating order
that strongly constrains its concurrency.

If an implementation of the Jacobi iteration does not update all
components, but some of them keep the value from the previous
iteration, the method becomes asynchronous (or “chaotic”) in the
sense that, at a certain point during the iteration process, some com-
ponents may differ in the number of times they have been updated.
This is equivalent to an asynchronous iteration where each com-
ponent is modified in an arbitrary manner, but always using the
latest available values for the remaining components [4, 12]. (The
synchronized Jacobi and Gauss-Seidel methods can be viewed as
specialized cases of this general class.) Asynchronous iterations
require stronger convergence conditions than the synchronized Ja-
cobi and Gauss-Seidel variants [12]. Nonetheless, these criteria
are, for example, fulfilled for the sparse triangular factors arising in
incomplete factorization preconditioners.

The soft error protection we propose in this work builds upon
an implementation of the Jacobi method, rejecting the update of
those locations (components) where the error detection test indi-
cates that a bit-flip occurred during the computation. In case of re-
jected updates, this turns the initial synchronized Jacobi solver into
an asynchronous iteration. As this imposes stronger convergence
conditions on the iteration matrix, and the number of updates for
the distinct components will likely differ during the iteration pro-
cess, we will refer to the bit-flip protected solver with the term
Fault-Tolerant Jacobi (FTJacobi). This intends to indicate that,
for the premise that all updates are accepted, the method becomes
a plain implementation of the Jacobi solver.

4. BIT-FLIP PROTECTION FOR JACOBI
Synchronous relaxation methods in general, and the Jacobi me-

thod in particular, carry the convenient property of a monotonic
residual decay [19]. Consider the relation between the residual
r{k} = b−Ax{k} ∈ Rn, at an iterate k, and the distance (error) be-
tween the approximation x{k} at that step and the exact solution
x{∗}:

r{k} = b−Ax{k} = A
(

x{∗}− x{k}
)
. (2)

For Jacobi, the residual decreases linearly with the iteration count,
up to convergence in appropriate floating–point format. Hence, a
straight-forward strategy for detecting errors arising during the Ja-
cobi iteration consists of checking for a monotonic decrease of the
residual vector, accepting the new solution vector only if it passes
this test. Unfortunately, this approach has the drawback of be-
ing computationally very expensive, as the residual computation
(which can also be affected by errors) has about the same cost as
the iteration itself. Furthermore, the method will not make any
progress in cases of high bit-flip rates.

4.1 Component-wise bit-flip protection
In addition to the monotonic convergence, the Jacobi iteration

also fulfills the contraction property of fixed-point iterations at the
component level, which states that the difference between the cur-
rent and last iterate decreases component-wise:

∀i ∈ [1,n], ∃ 0 < θi < 1 :∣∣∣x{k}i − x{k−1}
i

∣∣∣≤ θi

∣∣∣x{k−1}
i − x{k−2}

i

∣∣∣≤ θ 2
i

∣∣∣x{k−2}
i − x{k−3}

i

∣∣∣ . . .
≡ z{k}i ≤ θi z{k−1}

i ≤ θ 2
i z{k−2}

i . . . .



This allows replacing the costly residual test with a component-
wise convergence test, based on the expected difference to the next
iterate. For relaxation methods with linear convergence rate for a
specific problem, the component-wise ratio

ci := z{k−1}
i / z{k}i , k = 2,3 . . . (3)

remains constant up to convergence in the respective format. This
suggests one should compute ci in some reliable mode, and exploit
the tolerance-based estimation for the difference∣∣∣∣∣ z{k−1}

i

z{k}i

− ci

∣∣∣∣∣≤ ci ·δ , (4)

for some user-defined threshold δ , as (part of) a component-wise
error detection mechanism. Thus, if this condition is not fulfilled, it
might be an indicator that an error has occurred, and the update to
obtain x{l}i should be rejected. Hereafter we will refer to the test (4)
as the threshold condition (T-COND).

Despite being a good indicator, in particular for the practical
case of limited precision, the test T-COND is not perfect. On the
one hand, the condition is not able to detect all errors since bit-
flips with small effect on the component value can “slip” through
the threshold. This is acceptable, as errors of such magnitude will
likely cause no serious harm to the convergence rate of the relax-
ation method. On the other hand, a failure to pass the test due to
causes other than an actual bit-flip error can result in FPs. These
may not cause the divergence of the iteration, but can still result in
stagnation of the convergence. The threshold parameter δ provides
a mechanism to balance these two effects.

A central question is how the bit-flip protection strategy handles
a negative evaluation of T-COND. If the strategy rejects the complete
Jacobi update, and (almost) any iteration carries a corruption, an FP,
or both, this option causes stagnation. Hence, it is beneficial to up-
date only those components where the condition is fulfilled, while
rejecting the changes to locations violating T-COND. However, ac-
cepting some component updates, but rejecting others, destroys the
synchronism of the relaxation method. As a consequence, if a com-
ponent update is rejected, the linear decay of the difference be-
tween the last and the new iteration solution approximations will
no longer be guaranteed for the remaining components. Instead,
components strongly depending on those entries which were not
updated may exhibit a small increase of this quantity in the current
iteration. These will expose themselves as FPs during the next it-
eration. Therefore, to also ensure progress in the case of FPs, we
propose to extend the strategy by a second condition that becomes
relevant if a component was not updated during the previous iter-
ation(s). Concretely, a flag ( f lag f p

i ) accumulates how many con-
secutive times a certain component has not been updated, and the
component-wise update is accepted if the false-positive condition
(FP-COND) indicates that the component value does not explode:

z{k−1}
i

z{k}i

> 10− f lag f p
i (5)

with a certain φ ≥ f lag f p
i . This bound should be chosen according

to the condition number of the system matrix and the sought-after
relative residual reduction. Specifically, a higher bound in (5) per-
mits convergence to a very small relative residual, with the dan-
ger of residual explosion for ill-conditioned systems. A tighter
bound prevents residual explosion at the cost of potential stagna-
tion after a certain residual reduction. In practice, we identified
f lag f p

i ≤ φ = 10 to be a good choice for many problems, as this
allows satisfying convergence to machine precision at the risk of a

residual increase of —at most— φ orders of magnitude multiplied
by the last difference z{k−1}

i .

4.2 Implementation details
Figure 1 offers a practical implementation of the bit-flip pro-

tection mechanism implemented in MATLAB®. The function in-
puts correspond, in that order, to the problem dimension n, the
threshold δ , the convergence component-wise ratio c, the values
x{k−1} and z{k−1} from the previous iterate (xprev and zprev),
the current x{k} (xcur), and values for flags associated with T-

COND and FP-COND. After performing the appropriate operations,
the function updates only those entries that pass the test, overwrit-
ing the “previous” xprev and zprev in preparation for the next iter-
ation. This particular implementation exposes the favorable proper-
ties of the bit protection mechanism for vectorization and execution
on an SIMD unit or a data-parallel architecture. The code involves
12 component-wise operations on vectors of length n, plus a few
masked array updates (e.g., flag_fp(fpcond) = 0;). Note in
particular that this is also true for the max and min computations,
which apply this operator component-wise instead of performing a
reduction.

We emphasize that our approach assumes a reliable computation
of c, to ensure that the iteration has proceeded beyond the increase
in the relative residual that can occur at the beginning of an asyn-
chronous iteration. In practice, we can ensure the precision of c by,
for example, repeating (as needed) the first three iterations of the
Jacobi method, or performing them on reliable hardware/mode.

To conclude this discussion of practical aspects, let us inspect
the update of f lag f p. Define di = z{k}i and assume that, in the next

iteration, z{k+1}
i does not pass the test and the corresponding com-

ponent is not be updated. In iteration k+2, the update is accepted
provided z{k+2}

i < 101 · d. If rejected again, in iteration k+ 3, the

update will be accepted if z{k+3}
i < 102 ·d; and so on.

5. EXPERIMENTAL EVALUATION

5.1 Setup and solvers
All the experiments in this section were performed using MAT-

LAB (release R2014a) and IEEE 754 double-precision (64-bit) arith-
metic, on a server equipped with two Intel Xeon E5-2670 sockets
(2× 16 cores, operating at 2.6 GHz) and 64 GB of RAM.

The baseline for the evaluation of our fault tolerance technique
is a plain implementation of the Jacobi iteration in (1) using MAT-
LAB. Obviously, this iterative scheme can be expected to experi-
ence slow convergence or even divergence in the presence of bit-
flips. The fault-tolerant variant FTJacobi integrates the soft-error
protection defined by (4)–(5), in the form of the bit-flip protection
function given in Figure 1.

In both the original and the fault-tolerant codes, the iteration is
stopped when the residual satisfies ‖rk‖2 < τ‖x‖2, with τ a user-
defined threshold.

5.2 Bit-flip injection methodology
At the beginning of each iteration of the Jacobi method, single

bit-flips are inserted into ε random positions of the uncorrupted
positive iteration matrix M (different at each iteration k), before
computing the SpMV involving this matrix; see (1). After this, the
original values of the matrix are restored, in preparation for the next
iteration. These transient errors, therefore, reflect a scenario where,
at iteration k, the results of κ floating-point operations involving
elements of M get corrupted, but the source of the data (e.g., in



1 f u n c t i o n [...] =
2 Check_cond( n, delta , c, xprev , zprev , xcur ,
3 flag_t , flag_fp )
4

5 % Constant vector
6 phi = 10;
7 vk = 10.^[0: -1: - phi];
8

9 % Compute component -wise quotient
10 zcur = max( abs (xcur - xprev), e p s );
11 zratio = zprev ./ zcur;
12

13 % Evaluate T-COND
14 t1 = abs ( zratio - c );
15 t2 = delta * c;
16 tcond = ( t1 < t2 );
17

18 % Update FLAG_FP vector and evaluate FP-COND
19 flag_fp = flag_fp + 1;
20 t3 = min( flag_fp , phi );
21 t4 = vk( t3 );
22 fpcond = ( zratio > t4 );
23 flag_fp(fpcond) = 0;
24

25 % combine T-COND or ( flag_t == 1 & FP-COND )
26 ccond = tcond | ( flag_t == 1 & fpcond );
27

28 % update flag_t
29 flag_t = ones(n,1);
30 flag_t(ccond) = 0;
31

32 % Update locations fulfilling T-COND
33 % or flag_t == 1 and FP-COND
34 zprev(ccond) = zcur(ccond);
35 xprev(ccond) = xcur(ccond);

Figure 1: Bit-flip protection in MATLAB.

main memory or certain level of the cache) remains correct to be
re-loaded in the next iteration k+ 1. We note that, during the k-th
iteration, a single error in an element of M corrupts a single entry
of xk. However, with κ errors in M, the number of entries corrupted
in xk equals the number of different rows of M these errors affect,
which can be smaller than κ . Furthermore, we assume that all other
operations, and in particular the error detection technique, operate
in a reliable mode.

5.3 Assessment criteria
We employ the following quantitative “metrics” to expose the

properties of the fault tolerance technique:

• Detected and missed bit-flips (DBFs and MBFs, respectively).
Obviously, we would like to detect κ bit-flips per iteration
and miss none. In practice, because the bit-flips are detected
by checking the result xk, the maximum number of bit-flips
that can be detected may be smaller than κ , as two or more
errors in the same row of M propagate to the same entry of
the result vector, corrupting only a single entry in it.

• False positives (FPs). Detecting a false bit-flip in an entry
of xk implies that this entry is not updated during the current
iteration and may slow down convergence. Therefore, we
would like to keep the number of FPs low.

• Relative convergence delay µ . We define this metric as a ra-
tio between the number of iterations required by FTJacobi,
to reach a relative residual bounded by τ in the presence of κ

errors per iteration, and the number of iterations required by
Jacobi to reach the same residual threshold when no errors
occur. Ideally, we would like the delay ratio to be close to 1.

5.4 Detailed evaluation of Laplace benchmark
For a comprehensive evaluation of the strategy, we target a finite

difference discretization of the Laplace problem in 3D. The sys-
tem matrix is derived by using a 27-pt stencil on a 16× 16× 16
discretization. This results in a regular system matrix with 97,336
nonzeros distributed over 4,096 rows and a small condition num-
ber [19] of 9.36e+01. The purpose of our initial evaluation is to
assess the impact of the following three factors on the metrics defin-
ing the quality of the fault tolerance technique:

• The parameter δ controlling the update in (4).

• The number of bit-flips per iteration κ (i.e., per SpMV). To
make the effects of data corruption rapidly visible, we in-
troduce κ = 40 errors by default, which is also the scenario
chosen in [20]. We note that this number can be considered
quite high, as it may corrupt up to 1% of the updates in this
particular benchmark.

• The position of the bit-flips. We distinguish between an er-
ror flipping any of the 64 bits of a number; or only the sign,
exponent, or upper/lower “half” of the mantissa (i.e., its frac-
tionary part). The latter corresponds, respectively, to the bit-
flip occurring in positions ρ = IE3(63), IE3([52−62]), or
IE3([26−51])/IE3([0−25]) of the IEEE 754 representation
of the number.

5.4.1 Convergence delay and T-COND

We commence with an evaluation of the delay experienced by
FTJacobi when δ = 0.9, κ = 40, and ρ = IE3([0−63]). The left-
hand side plot in Figure 2 visualizes the distance zk

i , along with
the threshold condition T-COND defined by ci ·δ , for a single com-
ponent i. For those iterations where zk

i is outside the boundaries
imposed by the condition, the update to xk

i is rejected. The cor-
responding convergence of FTJacobi for this particular execution
is shown in the middle plot of the figure, which also reports the
behaviour of an error-free run of Jacobi and FTJacobi. As ex-
pected, in a scenario prone to soft errors, FTJacobi exhibits a
moderately slower convergence than Jacobi due to the rejected
updates. This relative convergence delay is quantified in the right-
hand side plot in the figure. These results reveal that the delay
increases as we raise the threshold to declare convergence, from
slightly below 1.03 (3%) for τ = 10−1 to around 1.17 (17%) for
τ = 10−12 for this high bit-flip rate. The reason is the different ef-
fect of the errors as the iteration progresses and the entries of the
approximated solution vector xk incorporate more accurate digits.
In the initial iterations, we can expect that only the sign/exponent
and a few bits in the most significant part of the mantissa are cor-
rect. Therefore, errors flipping the less significant bits of the man-
tissa do not affect the convergence rate. However, as the iteration
proceeds, xk “incorporates” more and more correct flips, increasing
the negative impact of undetected errors. The analysis of the effect
of the bit-flip position in Section 5.4.4 sheds further light into this
behavior.

We note that the left plot of Figure 2 reflects the results from a
single execution of the Jacobi-based solvers. The other two plots in
that figure, as well as all experiments in the remainder of the paper,
report data that is averaged over the execution of 100 repetitions of
the experiments, with different random seeds in order to generate
different error positions.

5.4.2 Impact of δ

Let us now optimize the value of the threshold δ that trades off
FPs against MBFs. To illustrate the effect of this parameter, we take



Figure 2: Convergence delay experienced by FTJacobi applied to the Laplace benchmark. δ = 0.9, κ = 40, and ρ = IE3([0−63]).

Figure 3: Detected/missed bit-flips and false positives for iteration 400 experienced by FTJacobi applied to the Laplace benchmark. δ ∈
[0.7,1], κ = 1 (left) and κ = 40 (right), and ρ = IE3([0−63]).

a “snapshot” of the iteration process at iteration 400 which, for this
particular example, is somewhere in the middle of the convergence
process. We analyze how many bit-flips are detected/missed and
how many FPs appear at this specific iteration. The plots in the
first row in Figure 3 show the number of DBFs/MBFs with a single
and 40 bit-flips per SpMV (left and right plots, respectively). Both
cases motivate the selection of a small threshold δ in order to catch
more errors. The plots in the second row also include the num-
ber of FPs, which is about two orders of magnitude larger. This
shows that accepting more updates, by choosing a larger threshold
δ , decreases the number of FPs. In particular, in case of a large
bit-flip rate (right-hand side plot), the number of FPs dramatically
decreases as δ → 1. The convergence delay balances the effects
of MBFs/FPs; see Figure 4. For the scenario we address, the opti-

mal threshold is almost independent of the number of corruptions,
in the range [0.94, 0.97]. However, we emphasize that FPs may
delay the convergence and, in the worst case, result in stagnation,
while MBFs can potentially cause the explosion of the residual. Es-
pecially for ill-conditioned systems, this may ask to accept a larger
relative convergence delay at the advantage of a more robust bit-flip
protection.

5.4.3 Bit-flips per iteration
We now investigate the relationship between the number of bit-

flips per SpMV and the relative convergence delay using the exper-
imental δ = 0.9. The results in Figure 5 confirm the expectation
that increasing the number errors in the computation of the updates
yields higher relative convergence delays. For reasonable bit-flip



Figure 4: Convergence delay experienced by FTJacobi applied to
the Laplace benchmark. δ ∈ [0.7,1], κ ∈ {1,20,40,60,80}, and
ρ = IE3([0−63]). The lines with different pattern correspond to
τ = 10−4,10−8,10−12.

Figure 5: Convergence delay experienced by FTJacobi applied to
the Laplace benchmark. δ = 0.9, κ ∈ [1,100], ρ = IE3([0−63]),
and τ ∈ {10−2,10−4,10−6,10−8,10−10}.

rates, in the range of corrupting 0.1% of the computations in the
Jacobi update (i.e., less than 5 bit-flips per SpMV), the relative con-
vergence delay stays below 10% for all residual thresholds τ . Ex-
tremely high bit-flip rates can incur an up to 20% delay for FTJa-
cobi.

5.4.4 Bit-flip position
Our last experiment with the Laplace benchmark evaluates the

impact of the bit-flip position in the detection properties of the bit-
flip protection mechanism and the impact of MBFs as well as FPs
on the convergence delay. Figure 6 assesses these two metrics in
four different scenarios, corresponding to the bit-flips affecting the
sign, exponent, lower or upper part of the mantisa. The first rows
show that corrupting the sign bit or the exponent of a matrix entry
in A has significant impact on Jacobi, causing either stagnation
(sign bit) or even explosion (exponent) of the residual (see left-
hand side plots). The error protection mechanism of FTJacobi

generally catches all these bit-flips. Only during the very first it-
erations, does this error type slip through. For the mantissa, the
bit-flips become crucial — and are detected — only if the location
is relevant in the convergence process. The more significant the po-
sition in the mantissa is (the higher the index of the position in the
IEEE format), the earlier the bit-flip becomes relevant for the Ja-

cobi convergence, and the easier it is to detect this corruption for

Matrix Factor Dimension Nonzeros Condition number

CHP
L 20,082 150,616 7.90e+05
U 20,082 150,616 1.75e+11

DC
L 116,835 441,781 6.54e+10
U 116,835 441,450 6.50e+09

STO
L 213,360 1,660,005 1.38e+07
U 213,360 1,575,003 6.08e+07

VEN
L 62,424 890,108 1.85e+07
U 62,424 890,108 2.51e+10

Table 1: Characteristics of the sparse triangular factors employed
in the experimentation.

the protection mechanism. An important takeaway from this exper-
iment is that “small” errors (in the mantissa) are not important in
the initial iterations, but become important later.

5.5 Benchmark problems
Finally, we turn to different benchmarks to evaluate the effi-

ciency of the bit-flip protection in a more general setting. For this
purpose, we look into the approximate solution of sparse triangular
systems arising for incomplete factorization preconditioners. Par-
ticularly, we consider the same problems that are solved using re-
laxation without bit-flip protection in [1]. These cases arise from
the incomplete LU factorization of test matrices from the UFMC.
Table 1 illustrates some key characteristics of the corresponding
sparse triangular factors. A key difference with respect to the pre-
vious experiments is that, for incomplete factorization precondi-
tioning, we do not require solving the sparse triangular systems
with high accuracy. Typically, an approximated solution reducing
the initial residual by a moderate factor is sufficient to produce the
same preconditioning benefits in the top-level solver as those at-
tained from an “exact” triangular solve via forward-backward sub-
stitution [6, 1]. For this reason, we investigate the performance
of the bit-flip protection for the relative residual stopping criteria
ρ ∈ {10−1,10−2}.

Table 2 lists the relative convergence delay (together with other
statistics) for scenarios with κ = 1 and κ = 40 bit-flips per SpMV.
For STO, convergence to τ = 10−1 is reached within the reliable
iterations. Furthermore, it can be observed that in the case of 40
corruptions per update, the relative residual cannot be decreased by
more than one order of magnitude for the upper triangular factors
U of the DC and STO problem. The reason is that the nonzero en-
tries in these factors are not evenly distributed, but lie all in one
row. When inserting 40 bit-flips in random nonzero locations, the
dense rows will almost always carry at least one corruption. As a
result, the FTJacobi is also unable to make any progress towards
convergence. Except for the aforementioned case, FTJacobi pro-
vides satisfying convergence to the target accuracy with moderate
convergence delay.

6. CONCLUDING REMARKS
We have proposed a bit-flip protection mechanism that trans-

forms a synchronized Jacobi iteration —with no inherent protec-
tion against errors— into an asynchronous fault tolerant relaxation
method. The error protection scheme operates at the component
level, individually accepting or rejecting updates at each iteration,
depending on whether they pass certain tests based on a single user-
defined threshold, δ . Furthermore, the tests are composed of a
few Level-1 BLAS-like operations which can be efficiently imple-
mented in vector (SIMD) units, yielding an affordable overhead.

Our detailed experiments with a sparse benchmark show that
the optimal threshold δ is almost independent of the corruption
rate, and offers a means to balance the effects of MBFs vs FPs.



Bit-flip in location ρ = IE3(63) (sign bit)

Bit-flip in location ρ ∈ IE3([52−62]) (exponent)

Bit-flip in location ρ ∈ IE3([26−51]) (most significant bits of the mantissa)

Bit-flip in location ρ ∈ IE3([0−25]) (less significant bits of the mantissa)

Figure 6: Detected/missed bit-flips (left) and convergence delay (right) experienced by FTJacobi applied to the Laplace benchmark. δ = 0.0,
κ = 40, and different positions of the bit-flips.



κ = 1 κ = 40
Matrix τ = 10−1 τ = 10−2 τ = 10−1 τ = 10−2

Factor µ DBF MBF FPs µ DBF MBF FPs µ DBF MBF FPs µ DBF MBF FPs

CHP
L 1.00 10% 90% 4.16e+04% 1.00 10% 90% 9.56e+04% 1.00 11% 89% 1.05e+03% 1.10 16% 84% 2.94e+03%
U 1.00 20% 80% 5.70e+03% 1.00 13% 87% 1.20e+04% 1.00 12% 88% 1.42e+02% 1.00 12% 88% 4.01e+02%

DC
L 1.17 53% 47% 6.97e+06% 1.14 55% 45% 5.63e+06% 1.17 66% 34% 1.74e+05% 1.14 62% 38% 1.41e+05%
U 1.33 65% 35% 1.68e+06% 1.29 72% 28% 1.92e+06% 3.00 83% 17% 5.69e+04% NaN — — —

STO
L 1.00 * * * 1.00 40% 60% 4.36e+06% 1.00 * * * 1.00 42% 59% 1.09e+05%
U 1.00 * * * 1.00 60% 40% 4.48e+06% 1.00 * * * NaN — — —

VEN
L 1.23 28% 72% 1.91e+06% 1.22 42% 58% 2.08e+06% 1.23 36% 64% 4.76e+04% 1.22 42% 58% 5.19e+04%
U 1.12 28% 72% 1.78e+06% 1.19 39% 61% 1.85e+06% 1.12 31% 69% 4.45e+04% 1.19 36% 64% 4.61e+04%

Table 2: Relative convergence delay µ of FTJacobi applied to UFMC benchmarks for δ = 0.9, κ = 1 (left) and κ = 40 (right), and
ρ = IE3([0−63]). The number of DBPs, MBPs, and FPs is given relative to the number of actual corruptions.

This evaluation also reveals that, for reasonable bit-flip rates, in the
range of corrupting 0.1% of the computations, the relative conver-
gence delay stays below 10% for all residual thresholds. Thirdly,
this example shows the interplay among the location of bit-flips in
the IEEE standard, the volume of MBF/DBF, and the convergence
of the iterations. Concretely, as the error location moves towards
the less significant part(s) of the number, they become easier too
miss but exert a milder effect on the relative residual until that level
of accuracy is reached.

Finally, we have applied the fault tolerant solver to several sparse
triangular linear systems arising from the sparse incomplete fac-
torizations of four benchmarks from the UFMC. The results show
that unless the bit-flips repeatedly corrupt the same component, the
protection mechanism is also able to ensure convergence for high
bit-flip rates with a reasonable convergence delay.
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