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Motivation

PERFORMANCE

A

Without MAGMA Batched with MAGMA Batched
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Dynamic

tri c.ee

Linear Algebra on small problems
are needed in many applications:

Machine learning,
Data mining,
High-order FEM,
Numerical LA,
Graph analysis,
Neuroscience,
Astrophysics,
Quantum chemistry,
Multi-physics problems,
Signal processing,
and more
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Motivation ...

Batched vs. standard LA techniques

Techniques Batched Standard Expectgd
(for small problems) (for large problems ) acceleration
LA problems ranges
Basic Linear Algebra Batched BLAS Vendor optimized BLAS ?zl <y
Subprograms (BLAS) | (noscheduling overheads) | (e.g., CUBLAS, Intel MKL) ||&
B small 128
Advanced routines: Built on Batched BLAS |« Built on BLAS ”
* Linear system solvers GPU-only (no comm.) * Hybrid CPU + GPU = >10x
 Eigensolvers & SVD Batch-aware algorithms | « High-level algorithms  ||&
Batch-scheduled » DAG scheduling s
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Examples

Need of Tensor contractions S — 3

stored FLOPs for | amount of | FLOPs for numerical

for FEM simulations oixed | FLOPsfor | amoun of | FLOPs &

[ collaboration with LLNL on BLAST package and Inria, France ] , full assembly
M ’ O(p“‘d) ’ 0(p2d) ‘ 0(p2d)

B,D+ B'DB,z +— Mz

decomposed evaluation

B,D ‘ O(p*) ‘ O(p*) ‘ O(p*™) ’ z+> Bz,z+ BTz, Dz

Lagrangian Hydrodynamics in the BLAST codel"

nearoptimal assembly — equations (1) and (2)

On semi-discrete level our method can be written as My | 0@ | 0@ | 0w Ao = Sy B BY Dy, @

dV A g ine = Zkz Bgiszz o Ci kain (b)

Momentum Conservation: =-MJF-1
dt Aihk%kli N Zkl Bk‘ 1‘Bk1,j1Dkl:k2xk3 (2a)
de Ai) i2,k3,51,92 = Zk Bk iz Bk j: Cil k2,k3,51 (@b)
. . 1 T 392,35, 2 2,12 2:J2 23,
Energy Conservation: ym =M_'F Aiviriosinis = S BB Coe s 6O
. . dx near-optimal evaluation (partial assembly) — equations (3) and (.

Equation of Motion: — =V 7 — P cquations § and @
dt B4D | 0p) | 0w | 0@™) Ajvs = 5 B Vi Ga)
where v, e, and x are the unknown velocity, specific internal energy, and grid A = Ly Bl O s
position, respectively; M, and M, are independent of time velocity and en- Aunia = X Bl O 6o
ergy mass matrices; and F is the generalized corner force matrix depending on Airis = Yoy Bl O Gd
(v, e, x) that needs to be evaluated at every time step. Ajviaks = iy Blsy Vinns (4a)
Aji ok = Xj, Bt 1,0 s (4b)
[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian Ak ks = gy B, Ci ks G40
hydrodynamics. SIAM J.Sci.Comp.34(5), B606-B641. (36 pages) At i = S BY, Cho ks G4d
A iy = Zk2 Bliiigckn,kz,is (4¢)
 Contractions can often be implemented as index reordering Auiai = B BlisOninis 4

. . trix-free evaluati
plus batched GEMM (and hence, be highly efficient) e
none ‘ none ‘ none ‘ O(p#t!) ‘ evaluating entries of B¢, D, (32)~(4f) sums
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Examples

Need of Batched routines for Numerical LA

[ e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.; ]

Sparse / Dense Matrix

System

.l o gy 3
1 119 233 348 464 589 707 837 950
nz = 6716

To capture main LA patterns needed in a
DAG-based factorization numerical library for Batched LA

EZ) e LU, QR, or Cholesky
on small diagonal matrices

|:> e TRSMs, QRs, or LUs

|::> e TRSMs, TRMMs

Updates (Schur complement)
GEMMs, SYRKs, TRMMs

Example matrix from Quantum chromodynamics
Reordered and ready for sparse direct multifrontal solver
Diagonal blocks can be handled in parallel through batched
LU, QR, or Cholesky factorizations
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Examples

Need of Batched and/or Tensor contraction routines in machine learning

e.g., Convolutional Neural Networks (CNNs) used in computer vision
Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Convolution Pooling Convolution Pooling Fully Fully Output Predictions

OUtQUt (0) Connected Connected
O

Data D

n
dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Convolution operation:
 Forevery filter F, and every channel, the computation for every
pixel value O, is a tensor contraction:

On,k - EDk,iFn,i

 Plenty of parallelism; small operations that must be batched

« With data “reshape” the computation can be transformed
into a batched GEMM (and hence, efficiently implemented;
among other approaches)

m:UNIVERSITYof
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Examples

Multi-physics problems need Batched LA on small problems
Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)

» Many physical systems can be modeled by a fluid dynamics plus kinetic approximation
e.g., in astrophysics, stiff equations must be integrated numerically:
 Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library)
» Explicitly; a new way to stabilize them with Macro- plus Microscopic equilibration
need batched tensor contractions of variable sizes

Explicit vs. Implicit speedup on single network Additional acceleration achieved through MAGMA Batched
8
15 7| Than Kepler K20 GPU pd
- B / Brock et al
. 2 6 (2015)
g Single % b
§ 10 network R Initial -
3 % version 1~
i S g. S /‘/H Batched with
X [0} 13 ,J)
L E L L improved sum |
= | i
IJJ r*—‘”*J’_J_HK
0 1 e, — Haidar et al
A — JK—’I
0 100 200 300 400 N — o1
0 100 200 300 400 500 600 700 800
Number species Concurrent networks
10x speedup on few hundred species An additional 7x speedup over initially highly
(few hundred dof batched solve in implicit methods) optimized explicit method implementation
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MAGMA Batched Computations

We present here a feasibility design study, the idea is to target the new
high-end technologies.

Key observations and current situation:

* There is a lack of HP linear algebra software for small problems especially
for GPU

* CPU: this can be done easily using existing software infrastructure

* GPU: are efficient for large data parallel computations, and therefore have
often been used in combination with CPUs, where the CPU handles the
small and difficult tasks to be parallelized

* What programming model is best for small problems?
e[ NIVERSITYof
|C|-L TENNESSEE
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MAGMA Batched Computations

We present here a feasibility design study, the idea is to target the new
high-end technologies.

Our goal:

* Develop a high-performance numerical library for batched linear algebra
subroutines tuned for performance and energy efficiency on modern
processor architectures

* Consider hardware specifics - the higher ratio of execution and the
memory model - of the new & emerging accelerators and coprocessors

* Define modular interfaces that allow code replacement techniques
[ to provide the developers of applications, compilers, and runtime
systems with the option of expressing new, application-specific
batched computations |
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Algorithmic basics

* Linear solver Ax=b follow the LAPACK-style

. : : Factored part of A
algorithmic design ACHOTEE PO
P
« Two distinctive phases a
n o110
- panel factorization: latency-bound workload e Trailing
: matrix
- : : date
 trailing matrix update: compute-bound operation e
P;

Hardware characteristics and limitations to consider:
* GPU memory is limited (48KB of shared per SMX, limited number of register)

* Prefer implementation that extensively uses large number of thread/block (a warp
is 32 threads)

* Prefer coalescent memory access (32 threads can read in parallel 32 elements)

ICLL m:UNIVERSITYof
11/35 VATIVE TENNESSEE

COMF‘UTING LABORATORY d C p er Sciel e




MAGMA Batched Approach

Hybrid CPU+GPU algorithms

(small tasks for multicores and

large tasks for GPUs)
Classical strategies design 'Q — '
T SEEEREN
GPU
 For large problems the strategy is to prioritize the data-intensive '®<
operations to be executed by the accelerator and keep the small
(often memory-bound) ones for the CPUs since the hierarchical l o
caches are more appropriate to handle it V
Challenges Critical Path
« Cannot be used here since matrices are very small (==

and communication becomes expensive "I | "B |
T CEITIEEEY

_HE_ErEEN
Proposition
* Develop a GPU-only implementation

ICLL m:UNIVERSITYof
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MAGMA Batched Approach

Classical strategies design

» For large stand-alone problems performance is driven by the
update operations

Challenges

* For batched small matrices it is more complicated and requires both
phases to be efficient

Proposition

+ Redesign both phases in a tuned efficient way

e JNIVERSITYof
icLd>
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MAGMA Batched low-level strategies

Classical strategies design

* A recommended way of writing efficient GPU kernels is to use the GPU’s
shared memory - load it with data and reuse that data in computations
as much as possible.

Challenges

* QOur study and experience shows that this procedure provides very good
performance for classical GPU kernels but is not that appealing for
batched algorithm for different reasons.

e[ NIVERSITYof
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MAGMA Batched low-level strategies

Challenges

* Completely saturating the shared memory per SMX can decrease the
performance of memory bound operations, since only one thread-
block will be mapped to that SMX at a time (low occupancy)

* due to a limited parallelism in the panel computation, the number of
threads used in the thread block will be limited, resulting in low
occupancy, and subsequently poor core utilization

* Shared memory is small (48KB/SMX) to fit the whole panel

* The panel computation involves different type of operations:
* Vectors column (find the max, scale, norm, reduction)
* Row interchanges (swap)
*  Small number of vectors (apply)

Proposition: custom design per operations type

mElUNIVERSITYof
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MAGMA Batched Computations

Consider the LU factorization

Batched dgetrf count = 2000
240 T T I I
—#— Magma v1: classic blocked algorithm
220| —A— CuBLAS N

200 m

180 m

160

140 |

Gflops/s
X,
o
I
|

100

60 / |

» 2x8-core Intel Xeon E5-2670 Sandy Bridge socket
* NVIDIA Kepler K40 GPU

20

0 100 200 300 400 500 600
matrix size

I c Lb e iva v nons 1 0F
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Profile and trace to find bottlenecks

swap kernel 60%

gemm kernel 15%

ms[UNIVERSITYof
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swap kernel 60%

classical swap

gemm kernel 15% [

How does the swap work?

NIVERSITYof
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Classic swap:

swap kernel 60%

Parallel swap:

gemm kernel 30%

% Swap kernel 10%
ICLéur ruUNIVERSIT Yof

19135 NNOVATVE  AEMRESEE




MAGMA Batched Computations

Gflops/s

240

220

200

180

160

140

100

80

60

40

20

Batched dgetrf count = 2000

I

I

—»— Magma v2: parallel swap

—A— CuBLAS

—#— Magma v1: classic blocked algorithm

* NVIDIA Kepler K40 GPU

» 2x8-core Intel Xeon E5-2670 Sandy Bridge socket

00 100 200 300 400 500 600
matrix size
Ic Lb sniva v oo 1 0f
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MAGMA Batched Computations

Panel factorization
classic dgetf2:

panel: classical getf2 38%

—

(1L ot genm Kemel. 1 ® Voidbtch gemm keme.. 1) oidbath gemm k.

Factored part of A

Bottlenecks:
* nb large: panel get slower
--> very bad performance.
* nb small: panel get faster but the update is not anymore

efficient since dealing with gemm'’s of small sizes
--> very bad performance.
» trade-off ? No effect, since we are talking about small size.

Proposition:
« We propose to develop two layers blocking: a recursive and
nested blocking technique that block also the panel.

e JNIVERSITYof
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MAGMA Batched Computations

Two-layers blocking:

:
2 | E
el = g
g d s z
//1 k4 = g E
Factored part of A g g 5
- £ :
® g g )
< b
=1 &
S
(a) Recursive nested blocking fashion. (b) Classical blocking fashion.

HE( UNIVERSITYof
icLdbur  ARUVERSITYS

22 /35



MAGMA Batched Computations

panel factorization
classical dgetf2: panel: classical getf2 38%

—=
1™ o batch gemm Vemelt. 1 ™)' Voidbatch gemm keme..” 1" " Voidbatch genm k...

Recursive blocking of

dgeth: panel: classical blocked
getf2 8%

- L -
|| voidbatch gemm kemell... void hatch gemm ker.. voilhatch gemm .. || | vodbatch ge.. |

ms[UNIVERSITYof
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MAGMA Batched Computations

Gflops/s

240

2207

2007

180

160

140

100

80

60

40

20

Batched dgetrf count = 2000

T

T

—B— Magma v3: recursive blocking

—»— Magma v2: parallel swap
—#— Magma v1: classic blocked algorithm

—A— CuBLAS

» 2x8-core Intel Xeon E5-2670 Sandy Bridge socket

* NVIDIA Kepler K40 GPU

100

200

300

400

matrix size
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MAGMA Batched Computations

batched dgemm
[=] Streams
- Default 1] [N | PN | PR 1| YO | S| YW1 WO NN MW R RIAN
e JNIVERSITYof
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MAGMA Batched Computations

batched dgemm

=| Streams
- Default 901 11 PR |8 TN | || PO || RO | O | DV | N1 NN RN RD NI R
900 w ‘ ‘ ‘ ‘
- B - Magma batched dgemm K=128
@' cuBLAS batched dgemm K=128
800 - A-Magma batched dgemm K= 64
A cuBLAS batched dgemm K= 64
- % - Magma batched dgemm K= 32
700(| .. x . cuBLAS batched dgemm K= 32
600 R T P o
po-mC "
(‘Y L
2 500 K N N Acmmmemmm e - A----- A - A
=) S oA
G 400 ]
(O .
4
K e e e e e e e o ®
300+ SR AR paciitrastipfiorosfbulobefimestdustostefieforfiefin et stie st s
N RoORCR R R R R
R JURTPTRY ®o PO  SERRRRRRRRRRRRE: b SRR e X b
200~
"
100 *NVIDIA Kepler K40-GPU
\ \ \ \ \ \ \
0 32 64 128 160 192 256 448 512 e[ NIVERSITYof
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\S
I N\IO\IATIVE p of Electrical Engineering

COMPUTING LABORATORY

and Computer Science



MAGMA Batched Computations

batched dgemm
=] Streams
- Default (11 PR 1118 RN ||| NI ||| W | Wi | B N NN NR AT LD
900

—B— cuBLAS streamed dgemm K=128
- B - Magma batched dgemm K=128

800| 'O ' cuBLAS batched dgemm K=128 —E—
—A— cuBLAS streamed dgemm K= 64
-A-Magma batched dgemm K= 64

700 A cuBLAS batched dgemm K= 64
—— cuBLAS streamed dgemm K= 32
- % - Magma batched dgemm K= 32

600 % cuBLAS batched dgemmK=32 . _~~Z p---==--=-=----- H=-=-=-== H= === -0 b
oo | op
500 |
g_ -------------- A= === = D - - - - - A
2 -
3 400+ e -
---------------- K= == e === ==X i
300 RS o AR R - R R
S AENNE IR REEERERRRNERN B I SERRERRRRRRRRRE x
200 |
100 * NVIDIA Kepler K40 GPU n

| |
0 32 64 128 160 192 256 384 448 512
matrix m=n
27 135
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MAGMA Batched Computations

batched dgemm

(=] Streams

- Default | (11 PR 1118 RN ||| NI ||| W | Wi | B N NN NR AT LD

Bottlenecks:
* Batched gemm kernel from cuBLAS and Magma

0 mirs memmencgonis | R are well suited for small matrix sizes (128) but

- B -Magma batched dgemm K=128
800| O cuBLAS batched dgemm K=128 o - .

Brevetunpanai i stagnate for larger sizes (>128)
700 A cuBLAS batched dgemm K= 64 7

— =
CuBLAS streamed dgemm K= 32 R /\

= % = Magma batched dgemm K=32
600 ‘% cuBLAS batched dgemm K=32 |_ __
5=

Proposition:

¥ 5001
o * Streamed gemm can provide higher performance
N for large matrix size (>128) and thus we propose
200 N .
ol to use both streamed and batched according to
= L the size of the trailing matrix
0 32 64 128 160 192 256 384 448 512

UINTVEINOT T TY

matrix m=n I c Lb oF
28 /35 INNOVATIVE TENNESSEE
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MAGMA Batched Computations

Gflops/s

Batched dgetrf count = 2000

240 I \ \ \
—©6— Magma v4: streamed/batched gemm
2201 —8— Magma v3: recursive blocking A n
—»— Magma v2: parallel swap
200 —»— Magma v1: classic blocked algorithm .
—A— CuBLAS 0
180 n
160 n
140 |
120 " |
100~ n
80 n
40+ z ] N
A » 2x8-core Intel Xeon E5-2670 Sandy Bridge socket
20~ y: « NVIDIA Kepler K40 GPU
0 | | | | |
0 100 200 300 400 500 600
matrix size
——\LIN1V L I\NUL L Lof
ICLL TENNESSEE
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MAGMA Batched Computations

Com

parison to CPUs

batched dgetrf 2000

T T

320
300
280j
260

—8— GPU: Magma

—— GPU: CUBLAS
—O— CPU v2: 16 parallel facto using sequential MKL
—©— CPU v1: each matrix uses MKL multithread_16

240
220

GFlops/s
O Qe e = (¢ )
N A O O O N A O O O
O O O O O ©0 0o o o o
I I I I I I I I I I

o
o

4>
4>

O

4>

L,

Higher is better

DA v v = a o
/’( v v - - = = —
o V _ = + 2x8-core Intel Xeon E5-2670 Sandy Bridge socket|
O = © * NVIDIA Kepler K40 GPU
& \ \ \ \ \ \ \ \ \
100 200 300 400 500 600 700 800 900 1000
matrix size
\ e UNIVERSITYof
cLlur  FERNNESSEE
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MAGMA Batched QR

- Similar design and optimization methodology

Factored part of A
P
a
il Trailing
© matrix
! update
p | (larfb)

* Panel is recursive
« GEMMs in the update are similarly optimized and tuned

* Matrix update —apply (1-V,T;V.") to the trailing matrix
— Tis triangular; computed column-by column (larft); memory bound;
takes 50% of total factorization time
for j € {1,2,...,nb} do
dgemv to compute TIJ 1,j _A]mlj 1 XAjim,j s
dtrmv to compute  Ti:j—1,; = T1:j-1,1:j—1 X ?1;]'_1,]' ;
T(j,J) =tau(j) ;

—  Computation of T is replaced by a new Blocked algorithm leading to
20-30% speedup
» Extra flops for higher performance (not all flops are =)

— T (upper triangular) is filled up with Os in lower part and used
with gemm (instead of trmm), bringing ~10% speedup

ICLL m:UNIVERSITYof
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MAGMA Batched QR

Batched dgeqrf count = 2000 is better
350 I I I I I I I [
—8— GPU: Magma 3
—»— GPU: CUBLAS
3001 —A— CPU v2: 16 parallel facto using sequential MKL = i
—¥— CPU v1: each matrix uses MKL multithread_16 .
250 = -
o 200 -
@
o
]
O 1501 , \ .
100 2 A - _
50 S .
A ’ — * —— * % * x
0 — | | | | | | |
3264 128 256 384 512 640 768 896 1024
matrix size

+ 2x8-core Intel Xeon E5-2670 Sandy Bridge socket

* NVIDIA Kepler K40 GPU

32/35
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MAGMA Batched Cholesky

Batched dpotrf count = 2000 || /=[] f 0 e l=id =]

500 t
—8— GPU: Magma
—&o— CPU v2: 16 parallel facto using sequential MKL

450
S —A— CPU v1: each matrix uses MKL multithread_16

400

350

300

GFlops/s
N
an
o
I

N

(=}

[=)
I

150

100

50 "
» 2x8-core Intel Xeon E5-2670 Sandy Bridge socket

* NVIDIA Keﬁ)ler K40 GPU |

0 200 400 600 800 1000 1200
matrix size
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MAGMA Variable size batched Cholesky

Gflop/s

200 |

150 |

100 |

50 1

DPOTRF on batch of 3000 (Gaussian distribution)

350

ETM-aggressive + implicit sorting -
ETM-classic + implicit sorting -%
ETM-aggressive —+ 1
ETM-classic - 300
250
(2
'3 200
kel
6]
150 1
100 -
50t
i i i i i 0
Q Q Q Q Q Q
O P o ® & &

Maximum matrix size in the batch

Performance of vbatched
fused kernels approach

Fused Kemnels -
Separate Kernels —+
Combined X
Q Q Q \] Q Q Q Q Q Q
N Q Q)Q s (,30 Q)Q ,\Q %0 QQ \00

Maximum matrix size in the batch

Crossover of fused vs. separate
BLAS kernels

« 2x8-core Intel Xeon E5-2670 Sandy Bridge socket

* NVIDIA Kepler K40 GPU
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Energy efficiency

dgeqrf of 1000 batched matrices of size 1024x1024

300 T T I

% 150 CPU: 2108 joules
°
o

:
=

T T I I

CPU: 3905 joules

» 2x8-core Intel Xeon E5-2670 Sandy Bridge socket

CPU v1: each matrix uses MKL multithread 16

GREPMRG@Earliel facto using sequential MKL

* NVIDIA Kepler K40 GPU

| | | |
000) 10000 12000 14000 16000
mes (ms)

CPU does not include DRAM power

e JNIVERSITYof
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Future Directions

- Extended functionality
— Variable sizes (work in progress)
— Mixed-precision techniques
— Sparse direct multifrontal solvers & preconditioners
— Applications

* Further tuning

— autotuning
* GPU-only algorithms and implementations
* MAGMA Embedded

e JNIVERSITYof
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