
Batched Matrix Computations on Hardware
Accelerators Based on GPUs	

Innovative Computing Laboratory
Department of Computer Science
University of Tennessee, Knoxville

SIAM LA 2015
Atlanta, GA
October 29, 2015
	

w/ Azzam Haidar, Ahmad Ahmad, Piotr Luszczek, and Jack Dongarra

Stan	
 Tomov	

Outline

2 / 35

•  Motivation
•  Current approaches and challenges
•  MAGMA Batched computations

–  Algorithmic basics
–  Design and optimizations for batched computations
–  LU, QR, and Cholesky
–  Performance results
–  Variable size
–  Energy efficiency

•  Future direction

Motivation

3 / 35

Linear Algebra on small problems
are needed in many applications:

Without MAGMA Batched with MAGMA Batched

Large matrices

•  Machine learning,
•  Data mining,
•  High-order FEM,
•  Numerical LA,
•  Graph analysis,
•  Neuroscience,
•  Astrophysics,
•  Quantum chemistry,
•  Multi-physics problems,
•  Signal processing,

and more

Expected
acceleration

ranges

 Batched vs. standard LA techniques
	
 	
 	
 Batched	
 	

(for	
 small	
 problems)	

	
 Standard	
 	

(for	
 large	
 problems	
)	

Basic Linear Algebra
Subprograms (BLAS)

Batched BLAS

(no scheduling overheads)

 Vendor optimized BLAS

(e.g., CUBLAS, Intel MKL)

 Advanced routines:
•  Linear system solvers
•  Eigensolvers & SVD

•  Built on Batched BLAS
•  GPU-only (no comm.)
•  Batch-aware algorithms
•  Batch-scheduled

•  Built on BLAS
•  Hybrid CPU + GPU
•  High-level algorithms
•  DAG scheduling

4

LA problems
Techniques

small 128

>5x

>10x

small 128

Motivation …

4 / 35

Examples

5 / 35

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

Need of Tensor contractions
for FEM simulations
[collaboration with LLNL on BLAST package and Inria, France]

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

•  Contractions can often be implemented as index reordering
plus batched GEMM (and hence, be highly efficient)

1 119 233 348 464 589 707 837 950

1

119

233

348

464

589

707

837

950

nz = 6716

Examples

6 / 35

Need of Batched routines for Numerical LA
[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;]

�  LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

�  TRSMs, QRs, or LUs

�  TRSMs, TRMMs

�  Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization
To capture main LA patterns needed in a

numerical library for Batched LA

•  Example matrix from Quantum chromodynamics
•  Reordered and ready for sparse direct multifrontal solver
•  Diagonal blocks can be handled in parallel through batched

LU, QR, or Cholesky factorizations

Convolution operation:
•  For every filter Fn and every channel, the computation for every

pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed

into a batched GEMM (and hence, efficiently implemented;
among other approaches)

Examples

7 / 35

Need of Batched and/or Tensor contraction routines in machine learning

Dk

e.g., Convolutional Neural Networks (CNNs) used in computer vision
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F

Data D

Fn

 On

n,kO

n,kO = k,iD
i
∑ n,iF

Output O

Examples

8 / 35

Multi-physics problems need Batched LA on small problems

•  Many physical systems can be modeled by a fluid dynamics plus kinetic approximation
e.g., in astrophysics, stiff equations must be integrated numerically:

•  Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library)
•  Explicitly; a new way to stabilize them with Macro- plus Microscopic equilibration
 need batched tensor contractions of variable sizes

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)

Explicit vs. Implicit speedup on single network

10x speedup on few hundred species
(few hundred dof batched solve in implicit methods)

Additional acceleration achieved through MAGMA Batched

An additional 7x speedup over initially highly
optimized explicit method implementation

We	
 present	
 here	
 a	
 feasibility	
 design	
 study,	
 the	
 idea	
 is	
 to	
 target	
 the	
 new	
 	

high-­‐end	
 technologies.	

	

Key	
 observa+ons	
 and	
 current	
 situa+on:	

•  There	
 is	
 a	
 lack	
 of	
 HP	
 linear	
 algebra	
 so9ware	
 for	
 small	
 problems	
 especially	

for	
 GPU	

•  CPU:	
 this	
 can	
 be	
 done	
 easily	
 using	
 exisDng	
 soEware	
 infrastructure	

•  GPU:	
 are	
 efficient	
 for	
 large	
 data	
 parallel	
 computaDons,	
 and	
 therefore	
 have	

oEen	
 been	
 used	
 in	
 combinaDon	
 with	
 CPUs,	
 where	
 the	
 CPU	
 handles	
 the	

small	
 and	
 difficult	
 tasks	
 to	
 be	
 parallelized	

•  What	
 programming	
 model	
 is	
 best	
 for	
 small	
 problems?	

MAGMA Batched Computations

9 / 35

We	
 present	
 here	
 a	
 feasibility	
 design	
 study,	
 the	
 idea	
 is	
 to	
 target	
 the	
 new	
 	

high-­‐end	
 technologies.	

	

Our	
 goal:	

•  Develop a high-performance numerical library for batched linear algebra
subroutines tuned for performance and energy efficiency on modern
processor architectures	

•  Consider hardware specifics – the higher ratio of execution and the
memory model – of the new & emerging accelerators and coprocessors	

•  Define modular interfaces that allow code replacement techniques
[to provide the developers of applications, compilers, and runtime
 systems with the option of expressing new, application-specific
 batched computations]	

MAGMA Batched Computations

10 / 35

•  Linear solver Ax=b follow the LAPACK-style
algorithmic design

•  Two distinctive phases

•  panel factorization: latency-bound workload

•  trailing matrix update: compute-bound operation

Hardware characteristics and limitations to consider:

•  GPU memory is limited (48KB of shared per SMX, limited number of register)

•  Prefer implementation that extensively uses large number of thread/block (a warp
is 32 threads)

•  Prefer coalescent memory access (32 threads can read in parallel 32 elements)

P
a
n
e
l

Pi

Trailing
matrix
update

Factored part of A

Algorithmic basics

11 / 35

Classical strategies design

•  For large problems the strategy is to prioritize the data-intensive
operations to be executed by the accelerator and keep the small
(often memory-bound) ones for the CPUs since the hierarchical
caches are more appropriate to handle it

Challenges

•  Cannot be used here since matrices are very small
and communication becomes expensive

Proposition

•  Develop a GPU-only implementation

������

��	���

��
���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
��� ���
� � ���!
 "����
� "����
� "����
� "����
� "����
� "����
�

������

��	���

��
���
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
�
��� ���
� � ���!
 "����
� "����
� "����
� "����
� "����
� "����
�

MAGMA Batched Approach
Hybrid CPU+GPU algorithms
(small tasks for multicores and
large tasks for GPUs)

12 / 35

Classical strategies design

•  For large stand-alone problems performance is driven by the
update operations

Challenges

•  For batched small matrices it is more complicated and requires both
phases to be efficient

Proposition

•  Redesign both phases in a tuned efficient way

MAGMA Batched Approach

13 / 35

Classical strategies design

•  A recommended way of writing efficient GPU kernels is to use the GPU’s
shared memory – load it with data and reuse that data in computations
as much as possible.

Challenges

•  Our study and experience shows that this procedure provides very good
performance for classical GPU kernels but is not that appealing for
batched algorithm for different reasons.

MAGMA Batched low-level strategies

14 / 37

Challenges

•  Completely saturating the shared memory per SMX can decrease the
performance of memory bound operations, since only one thread-
block will be mapped to that SMX at a time (low occupancy)

•  due to a limited parallelism in the panel computation, the number of
threads used in the thread block will be limited, resulting in low
occupancy, and subsequently poor core utilization

•  Shared memory is small (48KB/SMX) to fit the whole panel

•  The panel computation involves different type of operations:
•  Vectors column (find the max, scale, norm, reduction)
•  Row interchanges (swap)
•  Small number of vectors (apply)

Proposition: custom design per operations type

MAGMA Batched low-level strategies

15 / 35

MAGMA Batched Computations

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

Magma v1: classic blocked algorithm
CuBLAS

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

Consider the LU factorization

16 / 35

swap kernel 60%

gemm kernel 15%

Profile and trace to find bottlenecks

17 / 35

swap kernel 60%

gemm kernel 15%

classical swap:

How does the swap work?

18 / 35

swap kernel 60%

gemm kernel 15%

gemm kernel 30%

swap kernel 10%

Parallel swap:

Classic swap:

19 / 35

MAGMA Batched Computations

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

20 / 35

panel: classical getf2 38%

Bottlenecks:
•  nb large: panel get slower

--> very bad performance.
•  nb small: panel get faster but the update is not anymore

 efficient since dealing with gemm’s of small sizes
 --> very bad performance.

•  trade-off ? No effect, since we are talking about small size.

Proposition:
•  We propose to develop two layers blocking: a recursive and

nested blocking technique that block also the panel.

P
a
n
e
L

Trailing
matrix
update

Factored part of A

32

MAGMA Batched Computations

Panel factorization
classic dgetf2:

21 / 35

MAGMA Batched Computations

(e.g., size less than 32⇥ 8) Thus, one can expect that this is the most time consuming
part of the panel factorization.

Our analysis using the NVIDIA Visual Profiler [32] shows that a large fraction of
even a highly optimized batched factorization is spent in the panels, e.g., 40% of the
time for the QR decomposition. The profiler reveals that the larf kernel requires more
than 75% of the panel time by itself. The inefficient behavior of these routines is also
due to the memory access. To resolve this challenge, we propose to improve the ef-
ficiency of the panel and to reduce the memory access by using a two-level nested
blocking technique as depicted in Figure 3. First, we recursively split the panel to an
acceptable block size nb as described in Figure 3a. In principle, the panel can be blocked
recursively until a single element. Yet, in practice, 2-3 blocked levels (an nb = 32 for
double precision was the best) are sufficient to achieve high performance. Then, the rou-
tine that performs the panel factorization (geqr2) must be optimized, which complicates
the implementation. This optimization can bring between 30% to 40% improvement de-
pending on the panel and the matrix size. In order to reach our optimization goal, we
also blocked the panel routine using the classical blocking fashion to small blocks of
size ib (ib = 8 was the optimized choice for double precision) as described in Figure 3b.
More than 25% boost in performance is obtained by this optimization.

P!
a!
n!
e!
L!

Trailing !
matrix!
update!

sub panel 1a!

Factored part of A!

128!

sub trailing m
atrix 1b!

sub trailing m
atrix 2b!

sub panel 2a!

64!

32! 32!

sub trailing m
atrix 1b!

64!

(a) Recursive nested blocking fashion.

P!
a!
n!
e!
L!

32!

done!

4!

done!

sub trailing m
atrix !

done!

sub panel !

8!

sub trailing m
atrix !

sub panel !

8!

done!

sub panel !

4!

done!

done!

sub trailing m
atrix !

sub panel !

8!

8!

(b) Classical blocking fashion.

Fig. 3. The recursive two-level nested blocking fashion used in our implementation to achieve
high-performance batched kernels.

Block Recursive dlarft Algorithm. The larft is used to compute the upper triangular
matrix T that is needed by the QR factorization in order to update either the trailing
matrix or the right hand side of the recursive portion of the QR panel. The classical
LAPACK computes T column by column in a loop over the nb columns as described in
Algorithm 1. Such implementation takes up to 50% of the total QR factorization time.
This is due to the fact that the kernels needed – gemv and trmv – require implementa-
tions where threads go through the matrix in different directions (horizontal vs. vertical,
respectively). An analysis of the mathematical formula of computing T allowed us to
redesign the algorithm to use Level 3 BLAS and to increase the data reuse by putting

Two-layers blocking:

22 / 35

panel: classical getf2 38%
panel factorization
classical dgetf2:

panel: classical blocked
getf2 8%

Recursive blocking of
dgetf2:

MAGMA Batched Computations

23 / 35

MAGMA Batched Computations

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

24 / 35

batched dgemm

MAGMA Batched Computations

25 / 35

batched dgemm

0 32 64 128 160 192 256 384 448 512

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

Magma batched dgemm K=128
cuBLAS batched dgemm K=128
Magma batched dgemm K= 64
cuBLAS batched dgemm K= 64
Magma batched dgemm K= 32
cuBLAS batched dgemm K= 32

MAGMA Batched Computations

• NVIDIA Kepler K40 GPU

26 / 35

batched dgemm

0 32 64 128 160 192 256 384 448 512

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

cuBLAS streamed dgemm K=128
Magma batched dgemm K=128
cuBLAS batched dgemm K=128
cuBLAS streamed dgemm K= 64
Magma batched dgemm K= 64
cuBLAS batched dgemm K= 64
cuBLAS streamed dgemm K= 32
Magma batched dgemm K= 32
cuBLAS batched dgemm K= 32

MAGMA Batched Computations

•  NVIDIA Kepler K40 GPU

27 / 35

batched dgemm

0 32 64 128 160 192 256 384 448 512

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

cuBLAS streamed dgemm K=128
Magma batched dgemm K=128
cuBLAS batched dgemm K=128
cuBLAS streamed dgemm K= 64
Magma batched dgemm K= 64
cuBLAS batched dgemm K= 64
cuBLAS streamed dgemm K= 32
Magma batched dgemm K= 32
cuBLAS batched dgemm K= 32

Bottlenecks:
•  Batched gemm kernel from cuBLAS and Magma

are well suited for small matrix sizes (128) but
stagnate for larger sizes (>128)

Proposition:
•  Streamed gemm can provide higher performance

for large matrix size (>128) and thus we propose
to use both streamed and batched according to
the size of the trailing matrix

MAGMA Batched Computations

28 / 35

MAGMA Batched Computations

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

Magma v4: streamed/batched gemm
Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

29 / 35

MAGMA Batched Computations
 Comparison to CPUs

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60
80

100

120
140

160

180
200

220

240
260

280

300
320

matrix size

G
Fl

op
s/

s

batched dgetrf 2000

GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

Higher is better

30 / 35

MAGMA Batched QR

•  Similar design and optimization methodology

P
a
n
e
l

Pi

Trailing
matrix
update

Factored part of A
•  Panel is recursive

•  GEMMs in the update are similarly optimized and tuned

•  Matrix update – apply (I − Vi Ti Vi
T) to the trailing matrix

–  T is triangular; computed column-by column (larft); memory bound;
takes 50% of total factorization time

–  Computation of T is replaced by a new Blocked algorithm leading to
20-30% speedup

•  Extra flops for higher performance (not all flops are =)
–  T (upper triangular) is filled up with 0s in lower part and used

with gemm (instead of trmm), bringing ~10% speedup

(larfb)

31 / 35

MAGMA Batched QR

32 64 128 256 384 512 640 768 896 1024
0

50

100

150

200

250

300

350

matrix size

G
flo

ps
/s

Batched dgeqrf count = 2000

GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

Higher is better

32 / 35

MAGMA Batched Cholesky

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

matrix size

G
Fl

op
s/

s

Batched dpotrf count = 2000

GPU: Magma
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

Higher is better

33 / 35

MAGMA Variable size batched Cholesky

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

34 / 35

�

��

���

���

���

�
��
�

��
�

��
�

��
�

��
�

��
�

�
��
��
�

������� ������ ���� �� ��� �����

�������������� � �������� �������
����������� � �������� �������
��������������
�����������

�

��

���

���

���

���

���

���

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
��

�
��
��
�

������� ������ ���� �� ��� �����

����� �������
�������� �������
��������

DPOTRF on batch of 3000 (Gaussian distribution)

Performance of vbatched
fused kernels approach

Crossover of fused vs. separate
BLAS kernels

Energy efficiency

dgeqrf of 1000 batched matrices of size 1024x1024

•  2x8-core Intel Xeon E5-2670 Sandy Bridge socket
•  NVIDIA Kepler K40 GPU

CPU	
 does	
 not	
 include	
 DRAM	
 power	

35 / 35

Future Directions

•  Extended functionality
–  Variable sizes (work in progress)
–  Mixed-precision techniques
–  Sparse direct multifrontal solvers & preconditioners
–  Applications

•  Further tuning
–  autotuning

•  GPU-only algorithms and implementations
•  MAGMA Embedded

Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

