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Linear Algebra on small problems  
are needed in many applications: 

Without MAGMA Batched          with MAGMA Batched 

Large matrices 

•  Machine learning, 
•  Data mining, 
•  High-order FEM,  
•  Numerical LA, 
•  Graph analysis, 
•  Neuroscience, 
•  Astrophysics, 
•  Quantum chemistry, 
•  Multi-physics problems, 
•  Signal processing, 

and more 
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    Batched vs. standard LA techniques 
	
  	
  	
   Batched	
  	
  

(for	
  small	
  problems)	
  
	
  Standard	
  	
  

(for	
  large	
  problems	
  )	
  

  
Basic Linear Algebra 
Subprograms (BLAS) 

 
Batched BLAS 

(no scheduling overheads) 

 
      Vendor optimized BLAS 

(e.g., CUBLAS, Intel MKL) 

 
      Advanced routines: 
•  Linear system solvers 
•  Eigensolvers & SVD 

 
•  Built on Batched BLAS 
•  GPU-only (no comm.) 
•  Batch-aware algorithms 
•  Batch-scheduled  

 
•  Built on BLAS 
•  Hybrid CPU + GPU 
•  High-level algorithms 
•  DAG scheduling 
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Code Generation
C++11 features will be used as much as possible. Additional 
needs will be handled by defining a domain specific embedded 
language (DSEL). This technique is used in C++ to take advantage 
of DSL features while using the optimizations provided by a 
standard compiler. It will handle the generation of versions (index 
reordering, next) to be empirically evaluated and be part of the 
autotuning framework. 

 

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi, 
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of 
generic versions are developed and parametrized for 
performance. The parameters are autotuned (empirically) to find 
“best” kernels for specific size.  

 

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with 
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where 

Take the nq x nd matrix                          and                                          
Then,                                                       , or omitting the E subscript                       
                     .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is 
dense O(pd) x O(pd) matrix. 

If the FE basis and the quadrature rule have tensor product 
structure, we can decompose dofs and quadrature point indices in 
logical coordinate axes
                   i = (i1, …, id),    j = (j1, …, jd),    k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd. 

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below  
● Evaluations of M times V, referred as equations (3) & (4) below 

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM 
simulations, can be expressed through tensors. Examples are 
computation of FE matrices and SpMV products expressed as 
generalized tensor contractions. Contractions by the first index 
can often be represented as tensor index reordering plus gemm, 
which is a key factor to achieve high-performance. We present 
ongoing work on the design of a high-performance package in 
MAGMA for Tensor algebra that includes techniques to organize 
tensor contractions, data storage, and parametrization related to 
batched execution of large number of small tensor contractions. 
We apply auto-tuning and code generation techniques to provide 
an architecture-aware, user-friendly interface.

Motivation 
Numerous important applications can be expressed through 
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g., 

sub-vector/warp size)
● Must determine (in software) if possible to do it through 

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface 
To provide various interfaces, including one using C++11. 
Top level design to provide features similar to the 
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every 
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir  =  j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise 
contractions. There is enough complexity here to search for 
something better: code generation, index reordering, and 
autotuning will be used, e.g., contractions (3a) - (4f) can be 
implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
  Tensor<2,5,2> ts;
  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
  Tensor<2,5,5,gpu_> d_ts;
  // Call a thrust function to set values to 9
  thrust::fill(d_ts.begin() , d_ts.end() , 9);
  // Send back values to the cpu tensor
  ts = d_ts ;
  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
  view<2,10>  mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure: 
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance 
CUBLAS for “small” sizes, currently 
tuned for above 32. Current work is 
concentrated on kernels for fixed 
smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

Need of Tensor contractions  
for FEM simulations 
[ collaboration with LLNL on BLAST package and Inria, France ] 
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can often be represented as tensor index reordering plus gemm, 
which is a key factor to achieve high-performance. We present 
ongoing work on the design of a high-performance package in 
MAGMA for Tensor algebra that includes techniques to organize 
tensor contractions, data storage, and parametrization related to 
batched execution of large number of small tensor contractions. 
We apply auto-tuning and code generation techniques to provide 
an architecture-aware, user-friendly interface.
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Numerous important applications can be expressed through 
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[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)
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User-friendly interface 
To provide various interfaces, including one using C++11. 
Top level design to provide features similar to the 
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every 
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir  =  j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise 
contractions. There is enough complexity here to search for 
something better: code generation, index reordering, and 
autotuning will be used, e.g., contractions (3a) - (4f) can be 
implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
  Tensor<2,5,2> ts;
  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
  Tensor<2,5,5,gpu_> d_ts;
  // Call a thrust function to set values to 9
  thrust::fill(d_ts.begin() , d_ts.end() , 9);
  // Send back values to the cpu tensor
  ts = d_ts ;
  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
  view<2,10>  mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure: 
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance 
CUBLAS for “small” sizes, currently 
tuned for above 32. Current work is 
concentrated on kernels for fixed 
smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

•  Contractions can often be implemented as index reordering 
plus batched GEMM (and hence, be highly efficient)      
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Need of Batched routines for Numerical LA 
[ e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.; ] 

�  LU, QR, or Cholesky  
on small diagonal matrices 

Sparse / Dense Matrix 
System 

�  TRSMs, QRs, or LUs   

�  TRSMs, TRMMs 

�  Updates (Schur complement)  
GEMMs, SYRKs, TRMMs 

DAG-based factorization 
To capture main LA patterns needed in a 

numerical library for Batched LA  

•  Example matrix from Quantum chromodynamics 
•  Reordered and ready for sparse direct multifrontal solver 
•  Diagonal blocks can be handled in parallel through batched 

LU, QR, or Cholesky factorizations  



Convolution operation: 
•  For every filter Fn and every channel, the computation for every  

pixel value On,k  is a tensor contraction: 

•  Plenty of parallelism; small operations that must be batched 
•  With data “reshape” the computation can be transformed 

into a batched GEMM (and hence, efficiently implemented; 
among other approaches)      

Examples 
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Need of Batched and/or Tensor contraction routines in machine learning 

Dk 

e.g., Convolutional Neural Networks (CNNs) used in computer vision  
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):     

Filters F 

Data D 

Fn 

     On 

n,kO

n,kO = k,iD
i
∑ n,iF

Output O 
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Multi-physics problems need Batched LA on small problems  

•  Many physical systems can be modeled by a fluid dynamics plus kinetic approximation 
e.g., in astrophysics, stiff equations must be integrated numerically:  

•  Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library) 
•  Explicitly; a new way to stabilize them with  Macro- plus Microscopic equilibration 
                         need batched tensor contractions of variable sizes 

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)      

Explicit vs. Implicit speedup on single network  

10x speedup on few hundred species  
(few hundred dof batched solve in implicit methods) 

Additional acceleration achieved through MAGMA Batched 

An additional 7x speedup over initially highly 
optimized explicit method implementation 



We	
  present	
  here	
  a	
  feasibility	
  design	
  study,	
  the	
  idea	
  is	
  to	
  target	
  the	
  new	
  	
  
high-­‐end	
  technologies.	
  

	
  
Key	
  observa+ons	
  and	
  current	
  situa+on:	
  

•  There	
  is	
  a	
  lack	
  of	
  HP	
  linear	
  algebra	
  so9ware	
  for	
  small	
  problems	
  especially	
  
for	
  GPU	
  

•  CPU:	
  this	
  can	
  be	
  done	
  easily	
  using	
  exisDng	
  soEware	
  infrastructure	
  

•  GPU:	
  are	
  efficient	
  for	
  large	
  data	
  parallel	
  computaDons,	
  and	
  therefore	
  have	
  
oEen	
   been	
   used	
   in	
   combinaDon	
  with	
   CPUs,	
  where	
   the	
   CPU	
  handles	
   the	
  
small	
  and	
  difficult	
  tasks	
  to	
  be	
  parallelized	
  

•  What	
  programming	
  model	
  is	
  best	
  for	
  small	
  problems?	
  

MAGMA Batched Computations 
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We	
  present	
  here	
  a	
  feasibility	
  design	
  study,	
  the	
  idea	
  is	
  to	
  target	
  the	
  new	
  	
  
high-­‐end	
  technologies.	
  

	
  
Our	
  goal:	
  

•  Develop a high-performance numerical library for batched linear algebra 
subroutines tuned for performance and energy efficiency on modern 
processor architectures	
  

•  Consider hardware specifics – the higher ratio of execution and the 
memory model – of the new  & emerging accelerators and coprocessors	
  

•  Define modular interfaces that allow code replacement techniques  
[ to provide the developers of applications, compilers, and runtime 
  systems with the option of expressing new, application-specific 
  batched computations ]	
  

MAGMA Batched Computations 
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•  Linear solver Ax=b follow the LAPACK-style  
algorithmic design 

•  Two distinctive phases 

•  panel factorization: latency-bound workload 

•  trailing matrix update:  compute-bound operation  

Hardware characteristics and limitations to consider: 

•  GPU memory is limited (48KB of shared per SMX, limited number of register) 

•  Prefer implementation that extensively uses large number of thread/block (a warp 
is 32 threads) 

•  Prefer coalescent memory access (32 threads can read in parallel 32 elements) 

P
a
n
e
l

Pi

Trailing 
matrix
update

Factored part of A

Algorithmic basics 
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Classical strategies design  

•  For large problems the strategy is to prioritize the data-intensive  
operations to be executed by the accelerator and keep the small 
(often memory-bound) ones for the CPUs since the hierarchical  
caches are more appropriate to handle it 

 
Challenges 

•  Cannot be used here since matrices are very small  
and communication becomes expensive 

Proposition 

•  Develop a GPU-only implementation 
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MAGMA Batched Approach 
Hybrid CPU+GPU algorithms 
(small tasks for multicores and  
large tasks for GPUs) 
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Classical strategies design  

•  For large stand-alone problems performance is driven by the  
update operations 

 

Challenges 

•  For batched small matrices it is more complicated and requires both 
phases to be efficient 

Proposition 

•  Redesign both phases in a tuned efficient way 

MAGMA Batched Approach 
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Classical strategies design  

•  A recommended way of writing efficient GPU kernels is to use the GPU’s 
shared memory – load it with data and reuse that data in computations 
as much as possible. 

 
Challenges 

•  Our study and experience shows that this procedure provides very good 
performance for classical GPU kernels but is not that appealing for 
batched algorithm for different reasons. 

MAGMA Batched low-level strategies 

14 / 37 



Challenges 

•  Completely saturating the shared memory per SMX can decrease the 
performance of memory bound operations, since only one thread-
block will be mapped to that SMX at a time (low occupancy)  

•  due to a limited parallelism in the panel computation, the number of 
threads used in the thread block will be limited, resulting in low 
occupancy, and subsequently poor core utilization 

•  Shared memory is small (48KB/SMX) to fit the whole panel 

•  The panel computation involves different type of operations: 
•  Vectors column (find the max, scale, norm, reduction) 
•  Row interchanges (swap) 
•  Small number of vectors (apply)  

Proposition: custom design per operations type  

MAGMA Batched low-level strategies 

15 / 35 



MAGMA Batched Computations 
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Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Consider the LU factorization 

16 / 35 



swap kernel 60%

gemm kernel 15%

Profile and trace to find bottlenecks 
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swap kernel 60%

gemm kernel 15%

classical swap: 

How does the swap work? 
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swap kernel 60%

gemm kernel 15%

gemm kernel 30%

swap kernel 10%

Parallel swap: 

Classic swap: 
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MAGMA Batched Computations 
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Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

20 / 35 



panel: classical getf2 38%

Bottlenecks:
•  nb large:  panel get slower  

--> very bad performance. 
•  nb small:  panel get faster but the update is not anymore 

  efficient since dealing with gemm’s of small sizes 
         --> very bad performance. 

•  trade-off ? No effect, since we are talking about small size. 

Proposition:
•  We propose to develop two layers blocking: a recursive and 

nested blocking technique that block also the panel. 

P
a
n
e
L

Trailing 
matrix
update

Factored part of A

32

MAGMA Batched Computations 

Panel factorization  
classic dgetf2: 
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MAGMA Batched Computations 

(e.g., size less than 32⇥ 8) Thus, one can expect that this is the most time consuming
part of the panel factorization.

Our analysis using the NVIDIA Visual Profiler [32] shows that a large fraction of
even a highly optimized batched factorization is spent in the panels, e.g., 40% of the
time for the QR decomposition. The profiler reveals that the larf kernel requires more
than 75% of the panel time by itself. The inefficient behavior of these routines is also
due to the memory access. To resolve this challenge, we propose to improve the ef-
ficiency of the panel and to reduce the memory access by using a two-level nested
blocking technique as depicted in Figure 3. First, we recursively split the panel to an
acceptable block size nb as described in Figure 3a. In principle, the panel can be blocked
recursively until a single element. Yet, in practice, 2-3 blocked levels (an nb = 32 for
double precision was the best) are sufficient to achieve high performance. Then, the rou-
tine that performs the panel factorization (geqr2) must be optimized, which complicates
the implementation. This optimization can bring between 30% to 40% improvement de-
pending on the panel and the matrix size. In order to reach our optimization goal, we
also blocked the panel routine using the classical blocking fashion to small blocks of
size ib (ib = 8 was the optimized choice for double precision) as described in Figure 3b.
More than 25% boost in performance is obtained by this optimization.

P!
a!
n!
e!
L!

Trailing !
matrix!
update!

sub panel 1a!

Factored part of A!

128!

sub trailing m
atrix 1b!

sub trailing m
atrix 2b!

sub panel 2a!

64!

32! 32!

sub trailing m
atrix 1b!

64!

(a) Recursive nested blocking fashion.

P!
a!
n!
e!
L!

32!

done!

4!

done!

sub trailing m
atrix !

done!

sub panel !

8!

sub trailing m
atrix !

sub panel !

8!

done!

sub panel !

4!

done!

done!

sub trailing m
atrix !

sub panel !

8!

8!

(b) Classical blocking fashion.

Fig. 3. The recursive two-level nested blocking fashion used in our implementation to achieve
high-performance batched kernels.

Block Recursive dlarft Algorithm. The larft is used to compute the upper triangular
matrix T that is needed by the QR factorization in order to update either the trailing
matrix or the right hand side of the recursive portion of the QR panel. The classical
LAPACK computes T column by column in a loop over the nb columns as described in
Algorithm 1. Such implementation takes up to 50% of the total QR factorization time.
This is due to the fact that the kernels needed – gemv and trmv – require implementa-
tions where threads go through the matrix in different directions (horizontal vs. vertical,
respectively). An analysis of the mathematical formula of computing T allowed us to
redesign the algorithm to use Level 3 BLAS and to increase the data reuse by putting

Two-layers blocking: 
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panel: classical getf2 38%
panel factorization  
classical dgetf2: 

panel: classical blocked 
getf2 8%

Recursive blocking of  
dgetf2: 

MAGMA Batched Computations 
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MAGMA Batched Computations 
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Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 
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batched dgemm

MAGMA Batched Computations 
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batched dgemm

0 32 64 128 160 192 256 384 448 512

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

 

 
Magma  batched    dgemm K=128
cuBLAS  batched    dgemm K=128
Magma   batched    dgemm K= 64
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cuBLAS batched    dgemm K= 32

MAGMA Batched Computations 

• NVIDIA Kepler K40 GPU 
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batched dgemm
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cuBLAS streamed dgemm K=128
Magma  batched    dgemm K=128
cuBLAS  batched    dgemm K=128
cuBLAS  streamed dgemm K= 64
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MAGMA Batched Computations 

•  NVIDIA Kepler K40 GPU 
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batched dgemm
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cuBLAS streamed dgemm K=128
Magma  batched    dgemm K=128
cuBLAS  batched    dgemm K=128
cuBLAS  streamed dgemm K= 64
Magma   batched    dgemm K= 64
cuBLAS  batched    dgemm K= 64  
cuBLAS streamed dgemm K= 32
Magma  batched    dgemm K= 32
cuBLAS batched    dgemm K= 32 

Bottlenecks:
•  Batched gemm kernel from cuBLAS and Magma 

are well suited for small matrix sizes (128) but 
stagnate for larger sizes (>128)

Proposition:
•  Streamed gemm can provide higher performance 

for large matrix size (>128) and thus we propose 
to use  both streamed and batched according to 
the size of the trailing  matrix

MAGMA Batched Computations 
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MAGMA Batched Computations 
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Magma v4: streamed/batched gemm
Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 
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MAGMA Batched Computations 
  Comparison to CPUs 
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GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Higher is better 
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MAGMA Batched QR 

•  Similar design and optimization methodology 

P
a
n
e
l

Pi

Trailing 
matrix
update

Factored part of A
•  Panel is recursive 

•  GEMMs in the update are similarly optimized and tuned 

•  Matrix update – apply  ( I − Vi Ti Vi
T ) to the trailing matrix 

–  T is triangular; computed column-by column (larft); memory bound;  
takes 50% of total factorization time 
 
 
 
 
 

–  Computation of T is replaced by a new Blocked algorithm leading to  
20-30% speedup 

•  Extra flops for higher performance (not all flops are =) 
–  T (upper triangular) is filled up with 0s in lower part and used 

with gemm (instead of trmm), bringing ~10% speedup 

( larfb )  
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MAGMA Batched QR 
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GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Higher is better 
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MAGMA Batched Cholesky 
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GPU: Magma
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Higher is better 
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MAGMA Variable size batched Cholesky 

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 
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DPOTRF on batch of 3000 (Gaussian distribution) 

Performance of vbatched 
fused kernels approach 

Crossover of fused vs. separate 
BLAS kernels 



Energy efficiency 

dgeqrf of 1000 batched matrices of size 1024x1024 

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

CPU	
  does	
  not	
  include	
  DRAM	
  power	
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Future Directions 

•  Extended functionality 
–  Variable sizes (work in progress) 
–  Mixed-precision techniques 
–  Sparse direct multifrontal solvers & preconditioners 
–  Applications 

•  Further tuning 
–  autotuning   

•  GPU-only algorithms and implementations 
•  MAGMA Embedded 
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