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ABSTRACT
The mixed-precision Cholesky QR (CholQR) can orthogonalize the
columns of a dense matrix with the minimum communication cost.
Moreover, its orthogonality error depends only linearly to the con-
dition number of the input matrix. However, when the desired
higher-precision is not supported by the hardware, the software-
emulated arithmetics are needed, which could significantly increase
its computational cost. When there are a large number of columns
to be orthogonalized, this computational overhead can have a sig-
nificant impact on the orthogonalization time, and the mixed-precision
CholQR can be much slower than the standard CholQR. In this
paper, we examine several block variants of the algorithm, which
reduce the computational overhead associated with the software-
emulated arithmetics, while maintaining the same orthogonality
error bound as the mixed-precision CholQR. Our numerical and
performance results on multicore CPUs with a GPU, as well as a
hybrid CPU/GPU cluster, demonstrate that compared to the mixed-
precision CholQR, such a block variant can obtain speedups of up
to 7.1× while maintaining about the same order of the numerical
errors.

1. INTRODUCTION
Orthogonalization of dense vectors plays a critical role in many

scientific and engineering computation (in terms of numeric and
performance). For example, subspace projection methods are widely-
used methods for solving a large-scale linear system of equations [9]
or solving a large-scale eigenvalue or singular value problem [10].
Both performance and numerical stability of these solvers depend
critically on those of the orthogonalization procedure that gener-
ates the basis vectors of the projection subspace. Another impor-
tant application of an orthogonalization procedure is a least-squares
solution of an overdetermined system of equations [3].

The modified Gram Schmidt (MGS) [2] is a well-studied pro-
cedure for orthogonalizing the columns of a dense matrix. The
norm of its orthogonality error depends only linearly to the condi-
tion number of the input matrix. However, to orthogonalize each
column, it requires a couple of global all-reduces among the par-
allel processes, and each process performs its local computation
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for j = 1,2, . . . ,nt do
R1: j−1, j := QT

1: j−1X j
X j := X j−Q jR1: j−1, j
[Q j,R j, j] := TSQR(X j)

end for
(a) Block CGS.

for j = 1,2, . . . ,nt do
[Q j,R j, j] := TSQR(X j)
R j, j+1:nt := QT

j X j+1:nt

X j+1:nt := X j+1:nt −Q jR j, j+1:nt
end for

(b) Block MGS.

Figure 1: Block GS algorithms, where nt is the number of
block columns in the input matrix X , and [Q j,R j, j] =TSQR(X j)

returns the QR factorization of X j such that QT
j Q j = I, R j, j is

upper-triangular, and Q jR j, j := X j.

based on BLAS-1 and BLAS-2. On the other hand, to orthogo-
nalize all these columns, the Cholesky QR (CholQR) [11] requires
only one global all-reduce, while performing most of its local com-
putation using BLAS-3. On a modern computer, the communi-
cation has become significantly more expensive compared to the
arithmetic operations, where the communication includes the data
movement or synchronization between parallel processes, as well
as data movement between the levels of the local memory hierar-
chy. As a result, compared to other orthogonalization procedures,
CholQR obtains an excellent performance on such computers. Un-
fortunately, in a finite precision, the orthogonality error of CholQR
depends quadratically to the condition number of the input matrix,
potentially leading to a large numerical error for an ill-conditioned
input matrix.

To reduce the numerical error of CholQR, we recently used the
doubled-precision for a half of the arithmetic operations required
by CholQR [14]. The orthogonality error of this mixed-precision
CholQR (mCholQR) depends only linearly to the condition number
of the input matrix. Unfortunately, when the desired higher preci-
sion is not supported by the hardware, the software-emulated arith-
metics are needed, which can significantly increases its computa-
tional cost. This could become an intolerable overhead, especially
when there are a large number of vectors to be orthogonalized, and
the orthogonalization time depends greatly on the computational
cost of the algorithm. Randomized algorithms to compute or up-
date the low-rank approximation of a large-scale matrix are exam-
ples that often require to orthogonalize a large number of dense
basis vectors of their projection subspaces [4, 8, 12].

To reduce this computational overhead associated with the software-
emulated arithmetics of mCholQR, in this paper, we combine mCholQR
with a block variant of MGS (BMGS), and use mCholQR to or-
thogonalize the columns within each block column. This variant
of BMGS only requires a couple of global all-reduces to orthogo-
nalize each block column, while most of the local computation can



Name Description
CholQR standard CholQR
mCholQR mixed-precision CholQR
BMGS once CholQR for TSQR
B2MGS twice CholQR for TSQR
mBMGS once mCholQR for TSQR
mB2MGS twice mCholQR for TSQR
mB1.5MGS mCholQR followed by CholQR for TSQR

Figure 2: Orthogonalization algorithms studied in this paper.

be performed using BLAS-3. In addition, though to maintain the
numerical stability, BMGS requires to reorthogonalize each block
column, compared to mCholQR, the computational overhead as-
sociated with the software-emulated arithmetics can be greatly re-
duced (i.e., by the factor of the number of block columns). Our nu-
merical results show that when combined with mCholQR, BMGS
can obtain similar numerical errors as mCholQR, while our perfor-
mance results on multicore CPUs with a GPU, as well as a hybrid
CPU/GPU cluster, demonstrate the speedups of up to 7.1×.

The rest of the paper is organized as follows. In Section 2, we
first describe the orthogonalization algorithms studied in this paper.
Then, in Section 3, we compare the numerical errors of different al-
gorithms. Next, in Section 4, we present the implementation and
performance of the GPU kernels required to implement the orthog-
onalization algorithms on a hybrid CPU/GPU architecture. Finally,
in Section 5, we show the performance of the orthogonalization al-
gorithms on the hybrid architecture. The final remarks are listed in
Section 6.

2. ALGORITHMS
We study various algorithms to orthogonalize the columns of an

m-by-n dense matrix X based on its QR factorization,

QR := X ,

where X is a tall-skinny matrix (i.e., m� n), Q is an m-by-n or-
thonormal matrix (i.e., QT Q= I), and R is an n-by-n upper-triangular
matrix.

2.1 Classical and modified Gram Schmidt
The Gram Schmidt (GS) [3] is a widely-studied orthogonaliza-

tion procedure. For example, the classical GS (CGS) orthonormal-
izes each column against the previously-orthognoalized columns,
at once. Unfortunately, its local computation is based on BLAS-2
and BLAS-1, and it requires O(n) all-reduces among the parallel
processing units. In addition, compared to CholQR, it has a much
greater bound on its orthogonalization error (i.e., ‖I −QT Q‖ =
O(εκ(X)n), where ε is the machine epsilon and κ(X) is the condi-
tion number of X).

The modified GS (MGS) reduces the orthogonality error of CGS
and has the same error bound as the mixed-precision CholQR (i.e.,
‖I−QT Q‖= O(εκ(X))). However, it orthogonalizes each column
against each of the previous columns at a time, and its local com-
putation is still based on BLAS-2 and BLAS-1. Like CGS, MGS
requires O(n) all-reduces among the parallel processing units.

2.2 Mixed-precision Cholesky QR
For our implementation of CholQR on multicore CPUs with a

GPU [11], we first compute the Gram matrix B of the input ma-
trix X using the GPU (i.e., B := XT X). Then, the Gram matrix

for j = 1,2, . . . ,nt do
[Q j,R j, j] = mCholQR(X j)
B j = QT

j Q j

R̂ j, j = chol(B j)

R j, j = R̂ j, jR j, j
R j, j+1:nt := QT

j X j+1:nt

R j, j+1:nt := R̂−T
j, j R j, j+1:nt

Tj, j+1:nt := R̂−1
j, j R j, j+1:nt

X j+1:nt := X j+1:nt −Q jTj, j+1:nt
end for

Figure 3: Block GS algorithms, where the matrix Q j is kept in
the implicit form of Q jR̂ j.

is copied to the CPUs, where we compute its Cholesky factor-
ization (i.e., RRT := B). Finally, the upper-triangular factor R is
copied back to the GPU, where we orthogonalize X through trian-
gular solves (i.e., Q := XR−1). Hence, CholQR performs most of
its computation using BLAS-3, exploiting the high compute power
and memory bandwidth of the GPU. The implementation can be
easily extended to utilize a hybrid CPU/GPU cluster, where we
would require only one global all-reduce among the MPI processes
to form the Gram matrix, and each MPI process would redun-
dantly compute the Cholesky factor on the CPU [13]. Though
CholQR obtains an excellent performance on modern computers,
the condition number of the Gram matrix B is the square of the
condition number of X . As a result, the orthogonality error of
CholQR depends quadratically to the condition number of X (i.e.,
‖I−QT Q‖2 < O(εκ(X)2)). In fact, when the condition number
of X is greater than the reciprocal of the square-root of the ma-
chine epsilon (i.e., κ(X) > ε−1/2), the Cholesky factorization of
the Gram matrix can fail.

To reduce the orthogonality error of CholQR in finite precision,
we used the doubled-precision for computing and factorizing the
Gram matrix [14]. When the condition number of X is less than the
reciprocal of the machine epsilon, the orthogonality error of this
mixed-precision CholQR (mCholQR) depends linearly to the con-
dition number of X (i.e., ‖I−QT Q‖2 < O(εκ(X)) when κ(X) <
ε−1). This is the same bound as that of MGS.

When the desired doubled-precision is not supported by the hard-
ware, the implementation of mCholQR requires software emulation
for the higher precision arithmetics. Since CholQR performs about
a half of the total flops computing the Gram matrix, the use of the
software-emulated arithmetics for computing the Gram matrix may
significantly increase the total computational cost of the orthgonal-
ization process. For instance, in our previous studies [14], we used
the double-double arithmetics [5] to emulate the quadruple preci-
sion for the working double precision. This increases the required
arithmetic instruction count by a factor of 8.5×. However, the in-
put matrix X is still read in the working precision, while on average,
CholQR performs n flops for each numerical value read. On a mod-
ern computer, the data movement is significantly more expensive
compared to the arithmetic operations. As a result, when the input
matrix has only a small number of columns, the orthogonalization
times of both CholQR and mCholQR are bounded by the memory
bandwidth. Hence, mCholQR may not be significantly slower than
CholQR. For instance, in our previous studies on two eight-core
Intel SandyBridge CPUs with an NVIDIA Kepler GPU, mCholQR
was only 1.7× slower than CholQR when the input matrix has less
than 20 columns (i.e., n≤ 20).



nb BCGS B2CGS mBCGS mB2CGS mB1.5CGS
1 3.8×10−6 3.9×10−6 4.2×10−6 3.9×10−6 4.2×10−6

32 4.0×10−7 4.8×10−7 4.7×10−7 4.8×10−7 4.8×10−7

64 3.5×10−7 2.8×10−7 2.8×10−7 2.8×10−7 2.8×10−7

128 2.1×10−7 2.1×10−7 2.5×10−7 2.1×10−7 2.1×10−7

256 7.7×10−8 3.5×10−11 8.6×10−9 3.8×10−11 3.8×10−11

512 1.6×10−5 2.6×10−15 2.8×10−12 2.3×10−16 2.3×10−15

(a) Orthogonality error ‖I−QT Q‖2 of BCGS’s.

nb BCGS B2CGS mBCGS mB2CGS mB1.5CGS
1 1.3×10−13 1.1×10−13 1.1×10−13 1.2×10−13 1.2×10−13

32 1.2×10−13 1.1×10−13 1.3×10−13 1.2×10−13 1.2×10−13

64 1.2×10−13 1.4×10−13 1.3×10−13 1.4×10−13 1.4×10−13

128 1.1×10−13 1.2×10−13 1.1×10−13 1.2×10−13 1.2×10−13

256 1.1×10−13 1.2×10−13 1.0×10−13 1.0×10−13 1.0×10−13

512 2.1×10−13 2.2×10−13 2.1×10−13 2.0×10−13 2.0×10−13

(b) Backward error ‖X−QR‖2 of BCGS’s.

nb BMGS B2MGS mBMGS mB2MGS mB1.5MGS
1 5.0×10−11 5.8×10−11 5.8×10−11 5.8×10−11 5.8×10−11

32 7.8×10−9 3.3×10−11 3.1×10−9 3.3×10−11 3.3×10−11

64 1.5×10−8 1.8×10−11 3.6×10−9 1.8×10−11 1.8×10−11

128 3.8×10−8 2.7×10−11 6.3×10−9 2.7×10−11 2.7×10−11

256 7.7×10−8 3.5×10−11 8.6×10−9 3.8×10−11 3.8×10−11

512 1.6×10−5 2.6×10−15 2.8×10−12 2.3×10−15 2.3×10−15

(c) Orthogonality error ‖I−QT Q‖2 of BMGS’s.

nb BMGS B2MGS mBMGS mB2MGS mB1.5MGS
1 2.1×10−13 2.0×10−13 2.0×10−13 2.0×10−13 2.0×10−13

32 1.9×10−13 1.9×10−13 2.0×10−13 1.9×10−13 1.9×10−13

64 1.9×10−13 1.9×10−13 1.8×10−13 1.9×10−13 1.9×10−13

128 1.6×10−13 1.5×10−13 1.5×10−13 1.5×10−13 1.5×10−13

256 1.1×10−13 1.2×10−13 1.0×10−13 1.0×10−13 1.0×10−13

512 2.1×10−13 2.2×10−13 2.1×10−13 2.0×10−13 2.0×10−13

(d) Backward error ‖X−QR‖2 of BMGS’s.

Figure 4: Numerical error of BGS’s for 1024-by-512 matrix X = (I +αH1)MH2 with κ(X) = 3.5×106.

2.3 Mixed-precision Block Gram Schmidt
As the number of columns in X increases, the performance of

CholQR starts to be bounded less by the memory bandwidth but
more by the computation capacity of the hardware. As a result, with
a large enough number of columns to be orthogonalized, mCholQR
becomes significantly slower than CholQR since mCholQR per-
forms 8.5× more arithmetic instructions.

To reduce the computational overhead of mCholQR, we examine
alternative orthogonalization procedures based on block variants of
CGS or MGS (BCGS and BMGS, respectively). In these block al-
gorithms, the j-th block column X j of X is recursively orthogonal-
ized by first orthogonalizing it against the previous block columns
(for j = 1,2, . . . ,nt , where nt is the number of the block columns
in X),

X j := (I−Q1: j−1QT
1: j−1)X j (in BCGS) or,

:= (I−Q1QT
1 ) . . .(I−QkQT

k )X j (in BMGS),

followed by the tall-skinny QR (TSQR) factorization of X j,

Q jR j := X j.

Figure 1 shows the pseudocodes of these block orthogonalization
processes.

A few variants of BMGS and BCGS, that obtain the same or-
thogonality error bound as MGS, have been proposed [1, 7]. For in-
stance, if the orthogonality error of TSQR is bounded by O(ε), then
BMGS can be as stable as MGS [7]. This bound may be obtained
using CholQR or mCholQR. In particular, if the condition number
of X j is less than the reciprocal of the machine epsilon or less than
the reciprocal of the square-root of the machine epsilon, then the
respective orthogonality error of mCholQR or CholQR is in the or-
der of one (i.e., ‖I−QT Q‖< O(1)). Hence, after reorthogonaliza-
tion using the standard CholQR, the orthogonality error becomes
in the order of machine epsilon. As a result, by using CholQR
or mCholQR followed by the reorthogonalization by CholQR for
TSQR, BMGS may be able to obtain the same accuracy as MGS,
while performing most of its local computation using BLAS-3 and
reducing the number of all-reduces among the parallel processes by
the factor of the block size nb.

When the standard CholQR is used for TSQR, both BCGS and
BMGS perform the same number of flops as CGS or MGS (i.e., all
the algorithms perform total of about 2mn2 flops). Among these
flops, both BCGS and BMGS with the block size of nb perform
about 2mnnb flops for TSQR (i.e., about 1

nt
of total flops are for

TSQR). Hence, when we perform a full-reorthogonalization for
TSQR (i.e., CholQR twice), BCGS and BMGS would require (1+
1
nt
)× more flops. In addition since the mixed-precision mCholQR

performs 8.5× more instructions than the standard CholQR, when
TSQR is based on mCholQR followed by a full-reorthogonalization
based on either CholQR or mCholQR, compared to the standard
block algorithm, BCGS or BMGS performs about (1+ 8.5

nt
)× and

(1 + 16
nt
)× and more instructions, respectively. Alternately stat-

ing, they reduce the computational cost of mCholQR by the fac-
tors of about 2.1

nt
and 1.1

nt
, respectively, while maitaining the same

orthogonality bound. Table 2 lists the block Gram Schmidt that
uses different combinations of CholQR and mCholQR for TSQR.
For example, we refer to BMGS combined with mCholQR with
reorthogonalization using CholQR or mCholQR as mB1.5MGS or
mB2MGS, respectively.

For the upper-bound of mCholQR to hold, the condition number
of the input matrix X must be less than the reciprocal of the square-
root of the machine epsilon. Otherwise, the Cholesky factorization
of the Gram matrix in the double-double precision can fail. On the
other hand, B1.5MGS only requires the condition number of each
block column X j to be the reciprocal of the machine epsilon.

In this paper, we also examine an algorithmic variant of the block
Gram Schmidt, where the orthogonal block column Q j is not ex-
plicitly computed, but kept in an implicit form given by two matri-
ces X j and R̂ j, j such that Q j := X jR̂−1

j, j . For example, to orthogo-
nalize a new block column Xk against Q j, we now compute

Xk−X j(R̂−1
j, j (R̂

−T
j, j (X

T
j Xk))).

When the condition number of X j is O(1), then this variant of the
orthogonalization procedure can be as stable as the original proce-
dure that explicitly computes orthogonal matrix Q j. Figure 3 shows
this algorithmic variant, where Q j is kept in this implicit form af-
ter the reorthogonalization, and it should be as stable as explicitly
forming Q j when the condition number of X j is less than the re-
ciprocal of the machine epsilon. Moreover, besides CholQR, there
is a variant of the orthogonalization procedure, called the Singular
Value QR (SVQR) [11], which allows us to estimate the condi-
tion number of X j as a by-product of the orthogonalization process.
Specifically, SVQR computes the upper-triangular matrix R j, j by
first computing the SVD of the Gram matrix, UΣUT := B, fol-
lowed by the QR factorization of Σ

1
2 UT . Hence, using SVQR, it

is possible to adaptively decide if we can safely keep each block
column Q j in its implicit form at run time.



nb BCGS B2CGS mBCGS mB2CGS mB1.5CGS
1 4.9×10+1 5.1×10+1 4.6×10+1 5.4×10+1 5.5×10+1

10 1.0×10+1 1.0×10+1 1.0×10+1 1.0×10+1 1.0×10+1

20 4.1×10+0 4.0×10+0 4.0×10+0 4.0×10+0 4.1×10+0

40 2.0×10+0 2.0×10+0 2.0×10+0 2.0×10+0 2.0×10+0

100 4.5×10+0 9.4×10−3 1.0×10+0 1.0×10−2 1.0×10−2

200 – – 5.2×10−3 1.0×10−15 1.0×10−15

(a) Orthogonality error ‖I−QT Q‖2 of BCGS’s.

nb BCGS B2CGS mBCGS mB2CGS mB1.5CGS
1 2.2×10−10 2.3×10−10 2.2×10−10 2.2×10−10 2.2×10−10

10 2.8×10−10 2.9×10−10 2.9×10−10 3.0×10−10 2.8×10−10

20 3.5×10−10 3.4×10−10 3.4×10−10 3.5×10−10 3.5×10−10

40 4.5×10−10 4.3×10−10 4.4×10−10 4.5×10−10 4.5×10−10

100 6.6×10−10 6.9×10−10 6.3×10−10 6.5×10−10 6.5×10−10

200 – – 8.8×10−10 1.0×10−9 1.0×10−9

(b) Backward error ‖X−QR‖2 of BCGS’s.

nb BMGS B2MGS mBMGS mB2MGS mB1.5MGS
1 6.1×10−3 5.5×10−3 6.9×10−3 6.7×10−3 6.9×10−3

10 7.8×10−3 9.4×10−3 7.7×10−3 5.6×10−3 5.9×10−3

20 6.8×10−3 6.2×10−3 7.4×10−3 7.7×10−3 7.4×10−3

40 3.8×10−2 6.9×10−3 8.7×10−3 7.8×10−3 8.2×10−3

100 4.5×10−0 9.4×10−3 1.0×10−0 1.0×10−2 1.0×10−2

200 – – 5.2×10−3 9.6×10−16 1.0×10−15

(c) Orthogonality error ‖I−QT Q‖2 of BMGS’s.

nb BMGS B2MGS mBMGS mB2MGS mB1.5MGS
1 8.8×10−10 8.7×10−10 9.3×10−10 8.8×10−10 9.6×10−10

10 8.0×10−10 7.8×10−10 8.7×10−10 9.3×10−10 8.5×10−10

20 8.8×10−10 8.9×10−10 8.6×10−10 8.3×10−10 7.8×10−10

40 8.1×10−10 8.1×10−10 8.0×10−10 7.9×10−10 7.8×10−10

100 6.6×10−10 6.9×10−10 6.3×10−10 6.5×10−10 6.5×10−10

200 – – 8.8×10−10 1.0×10−9 1.0×10−9

(d) Backward error ‖X−QR‖2 of BMGS’s.

Figure 5: Numerical error of BGS’s for 1089-by-200 matrix X = [X1,AX1, . . . ,A19X1], where A is 2D Laplacian and κ(X) = 7.5×1015.

nb BCGS B2CGS mBCGS mB2CGS mB1.5CGS
1 1.3×10+2 1.2×10+2 1.5×10+2 1.4×10+2 1.4×10+2

10 – 1.1×10+1 1.2×10+1 1.1×10+1 1.1×10+1

20 – 2.8×10+0 4.7×10−2 4.1×10−2 5.0×10−2

40 – – 2.8×10−2 1.8×10−2 2.4×10−2

100 – – 1.7×10−2 7.7×10−3 8.2×10−3

200 – – 1.1×10−2 9.3×10−16 1.2×10−15

(a) Orthogonality error ‖I−QT Q‖2 of BCGS’s.

nb BCGS B2CGS mBCGS mB2CGS mB1.5CGS
1 1.2×10−9 1.4×10−9 1.3×10−9 1.6×10−9 2.1×10−9

10 – 5.6×10−10 5.4×10−10 6.1×10−10 5.8×10−10

20 – 5.0×10−10 3.9×10−10 4.2×10−10 4.3×10−10

40 – – 5.1×10−10 5.6×10−10 5.1×10−10

100 – – 5.5×10−10 7.5×10−10 7.6×10−10

200 – – 7.7×10−10 1.2×10−9 1.2×10−9

(b) Backward error ‖X−QR‖2 of BCGS’s.

nb BMGS B2MGS mBMGS mB2MGS mB1.5MGS
1 8.6×10−3 9.6×10−3 8.6×10−3 8.4×10−3 9.3×10−3

10 – 8.6×10−3 1.0×10−0 8.5×10−3 8.8×10−3

20 – 2.3×10−0 8.0×10−3 7.2×10−3 7.6×10−3

40 – – 8.5×10−3 7.3×10−3 7.7×10−3

100 – – 1.7×10−2 7.7×10−3 8.2×10−3

200 – – 1.1×10−2 9.3×10−16 1.2×10−9

(c) Orthogonality error ‖I−QT Q‖2 of BMGS’s.

nb BMGS B2MGS mBMGS mB2MGS mB1.5MGS
1 7.9×10−10 7.8×10−10 7.9×10−10 7.8×10−10 7.9×10−10

10 – 5.8×10−10 6.1×10−10 6.1×10−10 6.3×10−10

20 – 6.1×10−10 5.7×10−10 5.9×10−10 6.0×10−10

40 – – 5.5×10−10 6.3×10−10 6.3×10−10

100 – – 5.5×10−10 7.5×10−10 7.6×10−10

200 – – 7.7×10−10 1.2×10−9 1.2×10−9

(d) Backward error ‖X−QR‖2 of BMGS’s.

Figure 6: Numerical error of BGS’s for 1089-by-200 matrix X = [X1,X2, . . . ,X20], where X j = [x j,Ax j, . . . ,A19x j], A is 2D Laplacian,
and κ(X) = 7.5×1015.

By keeping the orthogonal block column Q j in the implicit form X jR̂−1
j, j ,

the computational cost of CholQR to orthogonalize X j is reduced
in half (stable if κ(X j) = O(1)), while it reduces the computa-
tional cost of CholQR with reorthogonalization by 25% (stable if
κ(X j) < ε−1/2). In addition, by keeping the orthogonal columns
in this implicit form, the computational cost of mCholQR with re-
orthogonalization by CholQR can be reduced by 1

19 (stable when
κ(X j) < ε−1). Hence, the computational costs of B2MGS and
mB1.5MGS can be reduced by 1

4nt
and 1

19nt
, respectively, when all

the block columns are stored in this implicit form. This algorithmic
variant is useful when the orthogonal matrix Q does not have to be
explicitly formed. For instance, the matrix powers kernel [6] com-
putes the matrix powers from the initial orthogonal block column,
which is the last block column of the previously-generated basis
vectors. Hence, only the last block column needs to be explicitly
formed. Another potential application is the least-squares solution
of the overdetermined system, where after the QR factorization of
the coefficient matrix, we need to project the right-hand-sides onto
the orthogonal space, which can be done in the implicit form.

3. NUMERICAL RESULTS
We now compare the numerical errors of the different variants of

block Gram Schmidt. We performed all of our numerical experi-
ments in the working 64-bit double precision (i.e., ε = O(10−16)).

Table 4 compares the numerical errors of block Gram Schmidt
for a test matrix X defined as X = (I+αH1)MH2, where H1 and H2
are 1024-by-1024 and 512-by-512 random matrices with uniformly
distributed random numbers in the interval (−1,1), respectively,
and M is a 1024-by-512 matrix such that{

m1, j = 1, j = 1,2, . . . ,512,
mi, j = βδi−1, j, i = 2,3, . . . ,1024,

where α and β are constant scalars, and δi, j is a delta function such
that δi, j is one when i = j, and it is zero otherwise. In our experi-
ments, we set the constant scalars such that (α,β ) = (10−3,10−2).
This matrix was previously used in [7] to study the numerical accu-
racies of a BMGS. The condition number of the matrix (computed
using the SVD of LAPACK) is about 3.5× 106. With this rela-
tively small condition number of the input matrix (i.e., κ(X) <

ε−1/2), though CholQR has a greater orthogonality error bound
than mCholQR, after reorthogonalization, they both obtain the same
error bound (i.e., ‖I−QT Q‖2 < O(ε)). We can see this in the table
with nb = 512 (i.e., n= 512), where B2MGS obtains the same error
as both mB2MGS and mB1.5MGS.

The block size of one (i.e., nb = 1) with BCGS or BMGS cor-
responds to the column-wise CGS or MGS, respectively. As ex-
pected, in Table 4, we see that CGS has greater orthogonality er-
rors than MGS. In addition, mBCGS or mBMGS with nb = n cor-



nb B2MGS mB1.5MGS
1 8.6×10−11 6.8×10−11

32 9.5×10−11 1.5×10−10

64 3.1×10−11 1.6×10−10

128 1.2×10−10 1.5×10−10

256 1.5×10−10 2.4×10−10

512 3.9×10−15 3.0×10−15

(a) Orthogonal error ‖I−QT Q‖2.

nb B2MGS mB1.5MGS
1 2.2×10−13 2.0×10−13

32 2.0×10−13 2.0×10−13

64 2.2×10−13 1.9×10−13

128 2.2×10−13 1.7×10−13

256 2.3×10−13 1.4×10−13

512 2.1×10−13 1.9×10−13

(b) Backward error ‖X−QR‖2.

Figure 7: Numerical error with implicit Q for 1024-by-512
matrix X = (I +αH1)MH2 with κ(X) = 3.5×106.

nb B2MGS mB1.5MGS
1 8.4×10−3 1.0×10−2

10 1.5×10−0 1.1×10−2

20 2.8×10−0 9.4×10−3

40 −− 1.1×10−2

100 −− 1.6×10−2

200 −− 2.4×10−15

(a) Orthogonal error ‖I−QT Q‖2.

nb B2MGS mB1.5MGS
1 7.8×10−10 8.1×10−10

10 1.7×10−7 6.5×10−10

20 4.3×10−4 6.6×10−10

40 −− 7.0×10−10

100 −− 1.9×10−10

200 −− 1.1×10−9

(b) Backward error ‖X−QR‖2.

Figure 8: Numerical error with implicit Q for 1089-by-200
matrix X = [X1,X2, . . . ,X20], where X j = [x j,Ax j, . . . ,A19x j], A is
2D Laplacian, and κ(X) = 7.5×1015.

responds to mCholQR, which obtains about the same orthogonality
errors as that of MGS. With BCGS’s, a larger block size improved
the accuracy since CholQR used for TSQR has a lower orthogonal-
ity error bound than CGS. For BCGS, using the mixed-precision
or reorthogonalization for TSQR did not improve the numerical er-
rors. At the end, the orthogonality errors of all the BCGS-based
procedures were greater than those of MGS. For all the BMGS’s,
the error could increase with a larger block size, but both mB2MGS
and mB1.5MGS obtained the same order of errors as the column-
wise MGS. All the procedures were backward stable.

Tables 5 and 6 show the numerical errors for test matrices whose
condition numbers are greater than that of the matrix in Table 4.
The test matrices consist of block Krylov basis vectors, K20(A,X1),
where the coefficient matrix A is a 2D Laplacian matrix, and the
starting block X1 is 1089-by-10 columns with uniformly distributed
random number in the interval (−1,1). For Table 5, the input ma-
trix is X = [X1,AX1, . . . ,A19X1], while for Table 6, we reorder the
columns such that X j = [x j,Ax j, . . . ,A19x j], and x j is the j-th col-
umn of X1 used in Table 5. Hence, these two matrices are the same
matrix with different column permutations and have the same con-
dition number. However, the block columns of the matrix in Ta-
ble 6 have greater condition numbers than that in Table 5. We see
the benefits of using the mixed-precision arithmetic and reorthogo-
nalization in Table 6, but not in Table 5.

Figures 7 and 8 show the numerical errors of BMGS-based or-
thogonalization procedures when the orthogonal matrix Q j is kept
in the implicit form of Q jR̂−1

j, j after the reorthogonalization. In both
tables, mB1.5MGS obtains the numerical errors similar to those
that explicitly form Q j in Figures 4 and 6. On the other hand,
for the ill-conditioned matrix in Figure 8, the numerical errors of
B2MGS were slightly greater because the condition numbers of the
block columns after the initial orthogonalization by CholQR can be
greater than O(1).

4. GPU KERNELS
Our implementations of the orthogonalization algorithms on a

hybrid CPU/GPU architecture require the following BLAS kernels
on a GPU:
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Figure 9: Batched SYRK kernel, where each thread block,
which consists of nt threads, multiplies mb-by-h and h-by-nb
submatrices of XT and X , respectively (arrows within the sub-
block shows data access by a thread).
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Figure 10: Performance of matrix-matrix multiply on Tesla
K40c using CUDA 7.0 (m = 100,000). Gflop/s is computed as
the ratio of the flops needed for general matrix-matrix multiply
over the time required in seconds.

• Symmetric matrix-matrix multiply either in the standard dou-
ble precision (dSYRK) or in the mixed-precision (mSYRK)
that reads the input matrix X in the standard double preci-
sion but internally accumulates the resulting matrix B in the
double-double precision. These two kernels are needed ei-
ther in CholQR or mCholQR, respectively.

• Triangular solves in the standard double precision (dTRSM),
which is needed in both CholQR and mCholQR.

• General matrix-matrix multiply in the standard double pre-
cision (dGEMM) which is needed to orthogonalize the re-
maining block columns with the current block column based
on block Gram Schmidt.

Figure 9 illustrates our GPU implementation of SYRK which
is based on a batched SYRK kernel [14]. In this implementa-
tion, each thread block first computes a partial result of an mb-
by-nb submatrix of the resulting matrix B by multiplying mb-by-
h and h-by-nb submatrices of XT and X , respectively. Then, the
final result B is computed through a binary reduction among the
thread blocks. Figure 10 compares the performance of our kernels
with that of CUDA 7.0. Our dSYRK improves the performance
of dGEMM by taking advantage of the symmetry of the matrices,
while our dGEMM obtains about the same performance as that of
CUBLAS. The performance of dSYRK in CUBLAS was signif-
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Figure 11: Performance of triangular solves on Tesla K40c
using CUDA 7.0 (m = 100,000).

icantly lower than that of dGEMM for these particular shapes of
the matrices1. Compared to dSYRK (or dGEMM), when n = 20
or n = 200, ddSYRK (or ddGEMM) was only about 3.5× or 5.9×
slower, respectively, though performing 16× more floating-point
instructions. This is because even with a relatively large number
of columns (e.g., n = 200), the performance of dSYRK can be still
largely influenced by the memory bandwidth, and it is a challenge
for dSYRK to obtain the double-precision peak performance of the
GPU (both dSYRK and ddSYRK read the input matrix X in the
double precision). However, with a larger number of columns, the
relative overhead of ddSYRK became greater.

For the block Gram Schmidt to orthogonalize X j against Q1:( j−1),
we call dGEMM twice (e.g., for BCGS, the first dGEMM computes
R1: j−1, j := QT

1:( j−1)X j, and the second dGEMM computes X j :=
X j−Q1:( j−1)R1:( j−1), j). In our experiments, we used our batched
GPU kernel for the first dGEMM, while CUBLAS dGEMM was
used for the second. These GPU kernels obtain excellent perfor-
mance for the shapes of the input matrices

Our implementation of dTRSM lets each thread independently
solve for a different right-hand-side [15]. To read the triangular
matrix only once for all the threads in the same thread block, the tri-
angular matrix is first loaded into shared memory. Figure 11 shows
the performance of the triangular solves. We see that our imple-
mentation obtained significant speedups over CUBLAS.

5. PERFORMANCE RESULTS
Figure 12 compares the performance of BCGS with that of BMGS.

While the left-looking BCGS has a good data locality to update
each block columns, right-looking BMGS can exploit the high data
locality during the update with each block column. In our exper-
iments, BMGS obtained about the same performance as BCGS,
while obtaining the lower orthogonality errors.

Figure 13 shows the breakdown of the orthogonalization time by
B1.5MGS, where we varied the numbers of columns to be orthogo-
nalized while fixing the block size to be twenty (i.e., n = 10∼ 200
and nb = 20). As the number of columns increases, B1.5MGS spent
more time in the working-precision triangular solve and matrix-
matrix multiply (i.e., dTRSM and dGEMM), indicating the de-

1We suspect CUBLAS dGEMM calls its batched kernel for this
particular shapes of the input matrices, while CUBLAS does not
support the batched dSYRK.
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Figure 12: Performance comparison of BMGS and BCGS on
two eight-core Intel SandyBridge CPUs with an NVIDIA Ke-
pler GPU (m = 100,000).

creasing overhead associated with the double-double arithmetics
(i.e., ddSYRK and ddPOTRF).

Figure 14 compares the performance of different variants of BMGS
with that of CholQR and mCholQR. First, at n = 20 and n = 200,
CholQR was about 2.7× and 7.1× faster than mCholQR respec-
tively. This is because though Figure 10 showed that ddSYRK
is only about 5.9× slower than dSYRK, for the large number of
columns, the sequential ddPOTRF of the Gram matrix on the CPU
can dominate the orthogonalization time (e.g., about 50% of the
time when n= 200). On the other hand, at n= 200, CholQR is only
about 1.7× and 2.1× faster than B1.5MGS and B2MGS, which
perform about 1.9× and 2.6× more floating-point instructions, re-
spectively (see Section 2.3 for their complexity analysis). In other
words, these BMGS’s reduce the computational overhead associ-
ated with the computation and factorization of the Gram matrix in
the double-double precision. For instance, the time for ddPOTRF is
insignificant in Figure 13 because with (n,nd)= (200,20), mB1.5MGS
computes 20-by-20 ddPOTRF ten times, which requires much less
computation than one 200-by-200 ddPOTRF required by mCholQR.
At the end, the total orthogonalization time by B1.5MGS can be
shorter than that by CholQR if CholQR requires a full-reorthogonalization
to obtain the desired orthogonality error, while B1.5MGS does not.

Figure 15 compare the performance of different variants of BMGS
when the orthogonal matrix Q is either implicitly or explicitly formed.
When n = 200, by storing Q in the implicit form, the computa-
tional costs were reduced only by 5%, 0.5%, and 0.3% in BMGS,
B2MGS, and mB1.5MGS, respectively. On the other hand, their
respective reductions in the execution times were 12.8%, 10.8%,
and 8.1%. This is because the triangular solve often obtain lower
performance compared to matrix-matrix multiply and can be more
dominant in the orthogonalization time.

We now studies the performance of BMGS on the Tsubame Com-
puter at the Tokyo Institute of Technology2. Each of its com-
pute nodes consists of two six-core Intel Xeon CPUs and three
NVIDIA Tesla K20Xm GPUs. Figure 16 shows the breakdown
of the orthogonalization time based on CholQR or mCholQR. We
clearly see that due to the computational overhead associated with
the software-emulated arithmetics, the time needed for ddSYRK
and ddPOTRF of mCholQR was much longer than that needed for
dSYRK and dPOTRF of CholQR, respectively. In addition, the se-
2http://tsubame.gsic.titech.ac.jp

http://tsubame.gsic.titech.ac.jp
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Figure 13: Breakdown of orthogonalization time by
mB1.5MGS(20) with m = 100,000, where dGEMM is the
double-precision matrix-matrix multiply to orthogonalize
against the previous blocks; dTRSM is the double-precision
triangular solve in mCholQR and CholQR; dPOTRF and
ddPOTRF are the Cholesky factorization of the Gram matrix
in the double-double and double precisions, respectively; and
dSYRK and ddSYTRK are the matrix-matrix multiply in the
double and double-double precisions, respectively, to form the
Gram matrix.

rial bottleneck of ddPOTRF became significant as the number of
GPUs increased. Finally, Figure 17 compares the parallel strong
scaling of CholQR, mCholQR, and BMGS. We clearly see that
though it has a greater communication latency overhead, BMGS
reduces the computational overhead associated with the software-
emulated arithmetics of mCholQR, and obtains the significant speedups
over mCholQR on the hybrid CPU/GPU cluster.

6. CONCLUSION
We studied the block orthogonalization procedure that combines

the block modified Gram Schmidt (BMGS) with the mixed-precision
Cholesky QR factorization (mCholQR). Compared to mCholQR,
this variant of BMGS significantly reduces the computational over-
head associated with the higher-precision arithmetics, while main-
taining the same numerical error bound. As the number of columns
to be orthogonalized increases, the orthogonalization time becomes
dominated more by the computation time. Hence, this BMGS can
obtain a significant speedup over mCholQR even though BMGS
has a greater communication latency overhead. Our numerical and
performance results on multicore CPUs with a GPU, as well as a
hybrid CPU/GPU cluster, demonstrated that the speedup 7.07× can
be obtained, while maintaining the same order of numerical errors.

We are working to further optimize the GPU kernels required
by BMGS (e.g., using Bench-testing Environment for Automated
Software Tuning (BEAST)3). These optimized kernels not only
would improve the performance of the orthogonalization processes,
but they also help us understand their performance differences through
a fair performance comparison. We are also working to integrate
these orthogonalization procedures into the higher-level solver such
as the randomized algorithm to compute or update the partial sin-
gular value decomposition [12]. Finally, we are performing more
extensive numerical studies of the mixed-precision algorithms with

3http://icl.utk.edu/beast/.
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Figure 14: ] Performance comparison of BMGS and CholQR
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parenthesis is the block size nb.
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the theoretical upper-bounds of their numerical errors.
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