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ABSTRACT
Advanced failure recovery strategies in HPC system bene-
fit tremendously from in-place failure recovery, in which the
MPI infrastructure can survive process crashes and resume
communication services. In this paper we present the ratio-
nale behind the specification, and an effective implementa-
tion of the Revoke MPI operation. The purpose of the Re-
voke operation is the propagation of failure knowledge, and
the interruption of ongoing, pending communication, under
the control of the user. We explain that the Revoke opera-
tion can be implemented with a reliable broadcast over the
scalable and failure resilient Binomial Graph (BMG) over-
lay network. Evaluation at scale, on a Cray XC30 super-
computer, demonstrates that the Revoke operation has a
small latency, and does not introduce system noise outside
of failure recovery periods.

CCS Concepts
•Computing methodologies → Distributed algorithms;
•Computer systems organization→Reliability; Fault-
tolerant network topologies; •Software and its engi-
neering → Software fault tolerance; Ultra-large-scale sys-
tems;

1. INTRODUCTION
As the number of components comprising HPC systems

increases, probabilistic amplification entails that failures are
becoming a common event in the lifecycle of an application.
Currently deployed petascale machines, like Titan or the
K-computer, experience approximately one failure every 10
hours [24], a situation which is expected to worsen with the
introduction of exascale systems in the near future [2]. Coor-
dinated Checkpoint/Restart (CR), either at the application
or the system level, is currently the most commonly deployed
mechanism to circumvent the disruptions caused by failures.
It can be implemented without meaningful support for fault
tolerance in the Message Passing Interface (MPI). However,
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models and analysis [16, 8] indicate that the status-quo is not
sustainable, and either CR must drastically improve (with
the help of in-place checkpointing [5, 22], for example), or
alternative recovery strategies must be considered. The va-
riety of prospective techniques is wide, and notably includes
checkpoint-restart variations based on uncoordinated roll-
back recovery [9], replication [16], or algorithm based fault
tolerance —where mathematical properties are leveraged to
avoid checkpoints [13, 10]. A common feature required by
most of these advanced failure recovery strategies is that,
unlike historical rollback recovery where the entire applica-
tion is interrupted and later restarted from a checkpoint,
the application needs to continue operating despite proces-
sor failures, so that, whatever the recovery procedure, it can
happen in-line and in-place. The User Level Failure Miti-
gation (ulfm) proposal [6] is an effort to define meaningful
semantics for restoring MPI communication capabilities af-
ter a failure.

One of the most important features provided by the ulfm
interface is the capability to interrupt ongoing MPI opera-
tions, in order for the application to stop the normal flow
of processing, and regroup in a recovery code path that per-
forms the application directed corrective actions. The ulfm
API exposes that operation to the users, through a function
named MPIX_COMM_REVOKE, so that applications can selec-
tively trigger this interruption only when the recovery strat-
egy is collective, and on the scope of the communication
objects that need to be repaired. In this paper, we investi-
gate an effective implementation of such a Revoke operation,
based on the Binomial Graph topology [3].

The contribution of this paper is threefold: In Section 2,
we present the rationale for non-uniform error reporting in
MPI operations, and thereby infer the specification of an ex-
plicit failure propagation routine that can interrupt a failed
communication plan; in Section 3 we lay down the require-
ments of the proposed Revoke operation in terms of a reliable
broadcast with relaxed properties, expose that the BMG
overlay broadcast has the desired resiliency while remaining
scalable, and describe important implementation features
of the BMG based Revoke operation; then in Section 4 we
present the performance of the BMG based Revoke on a
Cray supercomputer, which is, to our knowledge, the first
practical evaluation of a reliable broadcast at such a large
scale. We then discuss, in Section 5, how these contribu-
tions contrast with, and complement related works, before
we conclude.
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2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.
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Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

R
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Figure 1: The transitive communication pattern in
plan A must be interrupted before any process can
switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-
sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.

An additional criterion to consider is that some MPI op-
erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input buffer can be reused.

As a consequence, in ulfm, the reporting of errors has a lo-
cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an effective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk−1, then sends a message to Pk+1 (when



such processes exist). Let’s observe the effect of introducing
a failure in plan A, and consider that P1 has failed. As only
P2 communicates directly with P1, other processes do not
detect this condition, and only P2 is informed of the fail-
ure of P1. The situation at P2 now raises a dilemma: P3

waits on P2, a non-failed process, therefore the operation
must block until the matching send is posted at P2; how-
ever, P2 knows that P1 has failed, and that the application
should branch into its recovery procedure plan B ; if P2 were
to switch abruptly to plan B, it would cease matching the
receives P3 posted following plan A. At this point, P2 needs
an effective way of interrupting operations that it does not
intend to match anymore, otherwise, the application would
reach a deadlock: the messages that P3 to Pn are waiting for
will never arrive. The proposed solution to resolve this sce-
nario is that, before switching to plan B, the user code in P2

calls MPIX_COMM_REVOKE, a new API which notifies all other
processes in the communicator that a condition requiring
recovery actions has been reached. Thanks to this flexibil-
ity, the cost associated with consistency in error reporting
is paid only after an actual failure has happened, and only
when necessary to the algorithm, and applications that do
not need consistency, or in which the user can prove that
the communication pattern remains safe, can enjoy better
recovery performance.

3. THE REVOKE OPERATION
When a process of the application calls MPIX_COMM_REVOKE

(similar operations exist for windows and files, we will, with-
out loss of generality, reason in the case of communicators),
all other alive processes in the communicator eventually re-
ceive a notification. The MPIX_COMM_REVOKE call has an ef-
fect on the entire scope of the communicator, without re-
quiring a collective or matching call at any participant. In-
stead, the effect of the Revoke operation is observed at other
processes during non-matching MPI communication calls:
when receiving this notification, any communication on the
communicator (ongoing or future) is interrupted and a spe-
cial error code returned. Then, all surviving processes can
safely enter the recovery procedure of the application, know-
ing that no alive process belonging to that communicator
will deadlock as a result.

After a communicator has been revoked, its state is defini-
tively altered and it can never be used again to communi-
cate. This alteration is not to be seen as the (direct) con-
sequence of a failure, but as the consequence of the user
explicitly calling a specific operation on the communicator.
In a sense, Revoking a communicator explicitly achieves the
propagation of failure knowledge that has intentionally not
been required, but is provided when the user deems neces-
sary. Because the object is discarded definitively, any stale
message matching the revoked object is appropriately ig-
nored without modifications in the matching logic, and mul-
tiple processes may simultaneously Revoke the same com-
municator without fears of injecting delayed Revoke noti-
fications, thereby interfering with post-recovery operations.
In order to restore communication capacity, ulfm provides
the repair function MPIX_COMM_SHRINK, which derives new,
fresh communicators that do not risk intermixing with pre-
failure operations or delayed notifications.

3.1 A Resilient, Asynchronous Broadcast
The revocation notification needs to be propagated to all

alive processes in the specified communicator, even when
new failures happen during the Revoke propagation. There-
fore, it is in essence a reliable broadcast. Among the four
defining qualities of a reliable broadcast usually considered
in the literature (Termination, Validity, Integrity, Agree-
ment) [19], the non-uniform variants of the properties are
sufficient, and the integrity criteria can be relaxed in the
context of the Revoke algorithm.

First, the agreement and validity properties ensure that
if a process broadcasts a value v, all processes deliver v. In
the uniform-agreement case, that property extends to failed
processes: if a failed process had delivered the value, then
it must be delivered at all correct processes. In the Revoke
operation, if failures kill the initiator as well as all the al-
ready notified processes, the Revoke notification is indeed
lost, and surviving processes may never receive the notifi-
cation. However, either correct processes are not expecting
messages from the set of dead processes, therefore no oper-
ation can deadlock, or at least a correct process is directly
trying to exchange messages with a dead process and will de-
tect its failure, which means that its blocking operations will
complete in error, and leave the opportunity for the appli-
cation to reissue the Revoke operation. In all cases, a non-
uniform reliable broadcast is sufficient to ensure deadlock
free operation. This is of practical significance, because the
reliable broadcast respecting the uniform-agreement prop-
erty requires that the system is free of send-omission fail-
ures (that is, a send has completed, but the receiver does not
receive the message) [19]. In MPI, when a send operation
completes, it does not mean that the receiver has delivered
the message; the message may still be buffered on the sender
process, and when that process is the victim of a crash fail-
ure, it may thereby simultaneously commit a send-omission
failure. Ensuring that the network is free of send-omission
failures requires the acknowledgement of sent messages, or
additional rounds of message exchanges before delivering the
reliable broadcast. As Revoke can be implemented with a
non-uniformly agreeing reliable broadcast, that extra cost is
spared.

Second, the integrity property states that a message is de-
livered once at most, and variants with additional ordering
properties exist, like FIFO or causal ordering between the
delivery of different broadcasts. In the case of a Revoke no-
tification, the first Revoke message to reach the process has
the effect of immutably altering the state of the communi-
cator. Supplementary deliveries of Revoke messages for the
same communicator have no effect. Similarly, if multiple ini-
tiators concurrently broadcast a Revoke notification on the
same communicator, the order in which these notifications
are delivered has no importance, as the final outcome is al-
ways a switch to an immutable revoked state. Therefore, we
can retain a non-ordered, relaxed integrity reliable broad-
cast, in which we allow multiple out-of-order deliveries, but
retain the reasonable assumption that Revoke messages do
not appear out of “thin air”. Then, as long as the algorithm
still ensures the non-uniform agreement property, there are
no opportunities for inconsistent views.

These simplified requirements are crucial for decreasing
the cost of the Revoke operation, as the size of the messages
and the number of message exchanges rounds can be dras-
tically increased when one needs to implement an ordered,
uniform reliable broadcast. Given the non-uniform agree-
ment, the no-ordering, and loose integrity properties, in the



Revoke reliable broadcast, a process that receives its first
Revoke message can perform a single round of emissions to
all its neighbors, with a constant message size, and then de-
liver the Revoke notification immediately, without further
verifications.

The last important aspect is the topology of the overlay
network employed to perform the broadcast operation. In
the reliable broadcast algorithm, when a process receives a
broadcast message for the first time, it immediately broad-
casts that same message to all its neighbors in the over-
lay graph. The agreement property can be guaranteed only
when failures do not disconnect the overlay graph. In early
prototype versions of the ulfm implementation, the reliable
broadcast procedure employed a fully connected network
(which guarantees that disconnected cliques never form).
Obviously, this method scales poorly as, with the number
or processes, the graph degree is linear, and the number of
exchanged messages is quadratic. In practice, at scale, the
large graph degree resulted in the application aborting due
to resource exhaustion (too many open channels simultane-
ously, not enough memory for unexpected messages, etc.).
Therefore, one needs to consider a more scalable overlay
topology with a low graph degree that can yet maintain
connectivity when nodes are suppressed.

3.2 Binomial Graph Overlay Topology
The Binomial Graph (BMG), introduced in [3], is a topol-

ogy that features both opposing traits of a small degree, yet
a strong resistance to the formation of disconnected cliques
when nodes fail. A BMG is an undirected graph G = (V,E),
where the vertices V represent a set of processes, and the
edges E are a set of links forming an overlay network be-
tween these processes. Each vertex v ∈ V is given an unique
identifier in [0 . . . n − 1], where n = |V | (i.e. the rank of
the process). For each vertex v, there is a link to a set of
vertices W = {v± 1, v± 2, . . . , v± 2k|2k ≤ n}. Intuitively, a
binomial graph can be seen as the union of all the binomial
trees rooted at all vertices.

The BMG topology is proven to feature several desirable
properties. It is a regular graph topology, in which all nodes
have the same degree, even in graphs with unremarkable
number of vertices (e.g. when n 6= 2i, etc.). The degree,
δ = 2 × dlog2ne, is logarithmic with the number of nodes,
therefore scalable. Meanwhile, it retains a small diameter
and a small average distance (in number of hops) between
any two nodes (also logarithmic). In addition, a binomial
broadcast tree rooted at any node can be naturally extracted
from a BMG. Such an extracted broadcast tree is symmetric
in terms of performance, in the sense that the broadcast
duration for a short message is λ× log2n, where λ is the link
latency, whatever the node selected as the root.

Last, the BMG topology has a high node-connectivity —
the minimum number of nodes whose removal can result in
disconnecting the network—, which is equal to the degree
δ. As a consequence the BMG is δ − 1 node fault tolerant
in all cases (an optimal result for a graph of degree δ). The
probability distribution for the formation of a disconnected
graph when δ or more failures happen is very favorable (the
failures have to strike a particular set of nodes, in a variant
of the generalized birthday problem). Indeed, model evalu-
ations have observed that when less than 50% of randomly
distributed nodes have failed, the disconnection probability
is well under 1% [4].

3.3 Implementation
The Revoke operation is implemented in the ulfm MPI

library [7], which is a fork from Open MPI 1.6. Its algo-
rithm is a non-uniform, non-ordered reliable broadcast span-
ning on a BMG overlay network. When a process invokes
MPIX_COMM_REVOKE, first the communicator is locally marked
as revoked, then the initiator process sends a message to
all its neighbors in the BMG overlay. Revoke messages are
sent using the low-level Byte Transport Layer (BTL) inter-
face of Open MPI. The BTL layer is the springboard upon
which the MPI communication operations are implemented,
so reusing that infrastructure provides a portable access to
all the high performance networks supported by Open MPI.
Unlike MPI communications, a BTL communication has no
matching receive. Instead, it is active message based: the
sender tags outgoing messages, the reception of a message
of a particular tag triggers the execution of a corresponding
registered callback routine at the receiver, with the message
payload as a parameter. The Revoke tag is distinct from
the active message tags employed for MPI communications,
which ensures a clear separation and avoids polluting the
MPI matching logic with special cases for Revoke. With
this low level interface, receptions do not need to be pre-
posted and are always an unexpected event, and a message
sent to a failed peer is silently dropped. As a consequence,
failure detection is not forced and neighbors in the Revoke
overlay topology do not need to be monitored. The message
itself contains the communicator’s context identifier and an
epoch. Overall, a Revoke message is 24 bytes long, BTL pro-
tocol header included. When the active message is received,
it triggers the Revoke forwarding callback. This callback
is executed within the context of the Open MPI progress
engine and has access to the internal structures of the im-
plementation.

The callback first seeks the communicator associated with
the context identifier. A technical difficulty arises here: 1)
in Open MPI, context identifiers are actually indices in an
array, and for performance reasons it is desirable to reuse
lower indices as soon as the related communicator is freed,
rather than increase the size of the communicator associa-
tive array; 2) MPI_COMM_FREE is not synchronizing. As a
consequence, in some cases, a message may arrive after the
associated communicator has been freed locally, and it is im-
portant to verify that the operation has no side effects on an
unrelated communicator reusing that context identifier. In
more details, imagine that, in plan A, Pr posts a reception
from Ps; meanwhile, process Pk revokes the communicator,
which interrupts the reception at Pr. Now, imagine that the
delivery of the revoke notification is unusually slow at Ps,
which then proceeds to send its message to Pr, unaware (yet)
that it is following a revoked communication plan. As long
as Pr does not free the communicator, the normal matching
logic of MPI will correctly dispatch this stall message to the
revoked communicator, where it will thereafter be appropri-
ately discarded. However, when Pr frees the communicator,
the context identifier becomes available for reuse, and if Pr

creates a new communicator (as an example, a duplicate
of MPI_COMM_SELF, which requires no communication), then
that stall message could incorrectly be delivered in the newly
created communicator. To avoid this caveat without impact-
ing the MPI matching logic, yet still allow for the reuse of
the communicator identifiers, the MPI_COMM_FREE function
needs to become loosely synchronizing.



The MPI_COMM_FREE function is defined as a collective op-
eration whose implementation is likely to be local, that is,
it usually requires no communication. In order to minimize
the performance impact, we designed a fault tolerant barrier
that can progress in the background, so that it doesn’t inflict
a significant duration increase on the MPI_COMM_FREE call it-
self. The deallocation of the communicator then becomes
lazy, when the application calls MPI_COMM_FREE, the com-
municator is marked for deallocation (and the user handle
can be destroyed immediately), however, the internal rep-
resentation of the communicator is deallocated only when
it is safe, after the background barrier completes. Simi-
larly to the Revoke operation, this barrier is implemented
at the BTL level and essentially performs a binomial reduce-
broadcast sequence. When a process receives the broadcast
direction message, it can infer that every process invoked
MPI_COMM_FREE on that communicator, hence all communi-
cation on the communicator completed1 (either successfully,
or in error when a participant died, or the revoked operation
was interrupted).

However, Revoke notification messages are not posted un-
der the control of the user, and therefore they are not com-
pleted before MPI_COMM_FREE. Thus, it is still possible that
some continue to be delivered after the loosely synchronizing
MPI_COMM_FREE has completed. In order to discriminate be-
tween different communicators using the same index, the Re-
voke message compounds the index with the epoch number,
representing how many times this index has been allocated.
This compound key is then used to perform the communi-
cator lookup (in the case of Revoke messages only, normal
MPI messages still employ the normal MPI matching with
context identifiers only). If a communicator does not exist
anymore (the message epoch is lower than the index epoch),
the Revoke message is dropped; this is safe, as when the com-
municator doesn’t exist anymore, the loosely synchronized
MPI_COMM_FREE guarantees that it has been freed at every
other process too. When the communicator with the cor-
rect epoch exists, there are two cases; 1) the communicator
had already been revoked, then the callback drops the mes-
sage and returns; 2) the communicator is not yet revoked,
then it is revoked immediately and the Revoke message is
broadcast to all neighbors.

When a communicator is revoked for the first time, the
list of pending MPI requests is traversed to mark all re-
quests on that communicator as completed in error. Their
status is set to the special error code MPIX_ERR_REVOKED,
pending RDMA operations are cancelled, and the memory
registrations are withdrawn. In addition, the unexpected
and matching queues of the communicator are also traversed
to discard incoming message fragments.

4. EXPERIMENTAL EVALUATION
The experimental evaluation of the Revoke operation is

conducted on the Darter platform, a Cray XC30 supercom-
puter hosted at the National Institute for Computational
Science (NICS). Each of the 724 compute nodes features
Two 2.6 GHz Intel 8-core XEON E5-2600 (Sandy Bridge) Se-

1Freeing a communicator that still has pending messages is
standard compliant, but strongly discouraged: as the com-
municator is not available anymore, if the operation must
report an error, it triggers the default MPI_ERRORS_ABORT
error handler, which effectively makes such an application
inherently non-fault tolerant.
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Figure 2: The Revoke Benchmark: a process re-
vokes plan A during a collective communication. As
soon as plan A is interrupted, every process switches
to plan B, a similar communication plan, with the
same collective operation, but on a distinct, dupli-
cate communicator.

ries processors, and is connected via a Cray Aries router with
a bandwidth of 8GB/sec. We employ the ulfm Open MPI
fork, with the“tuned”collective communication module, the
“uGNI” transport module between nodes, and the “SM” trans-
port module for inter-core, shared-memory communication.

4.1 Benchmark
Because of its asymmetrical nature, the impact of the Re-

voke call cannot be measured directly. At the initiator, the
call only starts a non-synchronizing wave of token circula-
tion, and measuring the very short duration of the call is
not representative of the actual time required for the Revoke
call to operate at all target processes. Measuring the time
needed for a particular operation to be interrupted gives a
better estimate of the propagation time of a Revoke notifica-
tion. However, the overall impact remains underestimated
if one doesn’t account for the fact that even after all pro-
cesses have successfully delivered a Revoke notification, the
reliable broadcast algorithm continues to emit and handle
Revoke messages in the background for some time.

The benchmark we designed measures both the duration
and the perturbation generated by the progress of a Revoke
operation on the network. The benchmark comprises two
communication plans (illustrated in Figure 2). Plan A is a
loop that performs a given collective operation on a com-
municator that spans on all available processes (commA). At
some iteration, an initiator process does not match the col-
lective operation, but, instead, invokes MPIX_COMM_REVOKE

on commA, which effectively ends plan A. Plan B is a similar
loop performing the same collective operation in a duplicate
communicator (commB) that spans on the same processes as
commA. However, because it is a distinct communicator, op-
erations on commB do not match operations on commA; in par-
ticular, the Revoke operation on commA has no effect on the
semantic of collective operations posted in commB, all ranks
need to match the operation, and it completes normally. We
consider that the duration of a particular collective opera-
tion is the maximum latency across all ranks, and we then
compute the average over 2,000 repetitions of the bench-
mark. We report the latency of operations on commA before
it is revoked, and when one rank does not match the oper-
ation and instead invokes MPIX_COMM_REVOKE; this Revoked
collective communication gives an estimate of the Revoke
propagation time. Last, we report the latency of the first op-



�
��
�
��
�
�
�

���������������������

�������������������������������������������������

������������������
���������������
�����������������������
�����������������������
�����������������������

��

��

���

���

���

���

���

���

���

���

���

�� �� �� �� �� �� ��

Figure 3: Revoke cost in Barrier depending on the
initiator rank calling MPIX_COMM_REVOKE (6,000 pro-
cesses).

erations posted on commB until the typical latency becomes
similar to pre-Revoke operations on commA.

The collective communication patterns are inherited, with-
out modification, from the Open MPI non-fault tolerant
“tuned” module. The Cray optimized MPI can, in some
instances, achieve higher performance. For the purpose of
our evaluation, the tuned generic implementation, based on
MPI point-to-point message exchanges, is representative of
users’ communication patterns commonly found in typical,
portable HPC applications.

4.2 Initiator Location and Revoke Impact
Figure 3 presents the latency of Barriers on 6,000 pro-

cesses, depending on the rank of the initiator process that
invokes the MPIX_COMM_REVOKE operation. Thanks to the
symmetric nature of the BMG topology, the Revoked Bar-
rier latency is stable and independent of the initiator rank.
One can note that the time to complete a Revoked Bar-
rier is smaller than the time to complete a normal Barrier.
The normal Barrier has a strong synchronizing semantic:
the operation cannot complete before every process has en-
tered the barrier. A Revoked Barrier doesn’t enforce that
synchronization anymore and it can complete locally before
some processes have participated. Instead, the latency of the
Revoked operation denotes the time taken by the Revoke re-
silient broadcast to reach every rank for the first time; this
propagation latency is similar to the cost of a small message
Broadcast.

However, as stated before, when the Revoke notification
has been delivered to every rank, the reliable broadcast has
not terminated yet, and some Revoke token messages have
been freshly injected in the network (at the minimum, the
2log2(n) messages injected by the last rank to deliver the
Revoke notification are still circulating in the network). As

a consequence, the performance of the first post-Revoke col-
lective operation sustains some performance degradation re-
sulting from the network jitter associated with the circula-
tion of these tokens. This performance degradation is mod-
erate, with the latency approximately doubling. The jitter
noise is equally spread on the BMG topology, therefore, the
increased latency of the first (and the much reduced impact
on the 2nd to 5th) Barrier is also independent of the initia-
tors’ rank.

Although after the first post-Revoke Barrier, no new Re-
voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-
proximately 700µs), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

4.3 Scalability
Figure 4 presents the scalability of the Barrier (left) and

AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-
head from jitter, the 2nd post-Revoke AllReduce is only
mildly impacted and the 3rd AllReduce exhibit no signif-
icant difference from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm has
a lesser impact on this communication pattern. When the
number of processes increases, the impact of jitter —the
difference between the failure-free and the 1st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.

Last, while the implementations of the “tuned” collective
operations differ in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the revoked
operation is similar in both cases, illustrating that, as long
as MPI progress is triggered, the propagation latency of the
BMG reliable broadcast is independent from the communi-
cation plan being revoked.

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective

communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted before ex-
changing the entire communication volume, this behavior is
expected. For larger message sizes, however, the delivery of
the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; as these computa-
tions are progressing, the MPI progress engine is managing
them with maximum priority, and thus does not consider
incoming fragments for that time duration. As soon as one
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Figure 4: Impact of Revoke on collective communication patterns, depending on the number of processes.
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Figure 5: Impact of Revoke on AllReduce, depend-
ing on the message size (6,000 processes).

of these computation completes, the Revoke notification is
delivered, supplementary computation on pipelined blocks
are discarded, and further data transfers cancelled.

For post-Revoke AllReduce operations, the impact of jit-
ter on performance is visible only for small message opera-
tions. As soon as the message size is larger than 512 bytes,
the initial performance difference is absorbed in the cost of
the operation itself.

Interestingly, the standard deviation (between 2,000 runs)
for both Revoked and jitter-disturbed AllReduce operations
remains low, and of the same magnitude as the natural,
failure-free standard deviation of the operation.

5. RELATED WORKS
Any production distributed system needs a failure detec-

tion and propagation mechanism, if only for the platform job
manager to be able to cleanup a failed application and re-
lease the compute resources. This approach pairs well with
legacy coordinated checkpoint/restart, which is most appli-
cable to machines with a low failure rate, thus the central-
ized, slow handling of failure in the job manager is accept-
able in that case.

However, in a distributed infrastructure that aims to effec-
tively support machines with moderate to high failure rates,
the quick recovery of the communication infrastructure itself
is crucial. MapReduce [14] is often lauded for its capability
to gracefully tolerate failures; the runtime essentially decom-
poses the workload in a master-worker problem, in which
the handling of a failure is entirely localized at the mas-
ter process currently managing the failed worker, thereby
enabling the seemingly instantaneous recovery of the infras-
tructure. Although this operational mode is shared by some
HPC applications, many are tightly coupled, and require the
reestablishment of a consistent environment after a failure,
and thus failure knowledge propagation.

In FT-MPI [15], when the infrastructure detects a failure,



it repairs the state of MPI internally, according to the pre-
selected recovery mode. All nodes are notified of failures in
unison and collectively re-exit from the MPI_INIT function,
thereby requiring an implicit global propagation of failure
knowledge, inflexibly invoked from within the MPI library.
In PVM [18], while the triggering of the failure propaga-
tion remains implicit, the user code subscribes explicitly to
failure notifications, which could —in theory— restrict the
scope of the failure knowledge propagation to self-declared
interested parties. In GVR [12], users explicitly subscribe
to, and publish failure conditions. A local failure detection
can then be escalated by any node, by publishing a global
failure condition.

Compared to these interfaces, the Revoke operation is ex-
plicit at the publisher, but its subscriber scope is implicitly
derived from the communicator (or window, file) object on
which it operates. The pre-established subscriber set is ben-
eficial because it offers a static naming of processes and helps
build an efficient diffusion topology. For the propagation al-
gorithm itself, many approaches have been employed in the
past. Gossip [21] algorithms, or Chord/Tapestry-like topolo-
gies [25] have been considered to disseminate (or gather)
knowledge in peer-to-peer systems. These approaches have
to operate under a set of adverse constraints, where the net-
work topology and the unique process mapping have to be
established online. The reliable BMG broadcast exchanges
some of this flexibility for improved propagation latency, and
much less system noise (in effect, the total absence of system
noise during failure-free periods), which makes it a better
match for the Revoke operation.

In addition, a unique property of the Revoke operation
is to provide a clear specification of what is to happen to
in-flight operations that are pending on the corresponding
communication object when the error callback is triggered
at a subscriber.

6. CONCLUSIONS
Without a consistent view of the failed processes, some

tightly coupled, or transitively dependent communication
patterns prevent legitimate applications from deploying a
meaningful recovery strategy. When a process detects a fail-
ure, and thus switches to a recovery communication plan, it
takes the risk of leaving in a deadlock unmatched operations
at processes that are oblivious of the failure, and therefore
continue to follow the original communication plan. Un-
fortunately, providing a consistent common view of failure
knowledge at all times implies unnecessary, severe overheads
that should be reserved for cases where such knowledge is
imperative, and not imposed on all scenarios, especially the
failure-free case. Therefore, the propagation of the failure
knowledge must be provided as a separate construct that
can be triggered explicitly by the application, on a volun-
tary base, and only when necessary after some application
process effectively observed a failure.

We introduce the Revoke operation to enable interrupt-
ing a failed communication plan, and giving applications
the opportunity to regroup into a new, different communi-
cation plan, as needed by their recovery strategy. An effec-
tive implementation of the Revoke operation depends upon
a scalable, reliable broadcast algorithm, for which we have
delineated relaxed theoretical requirements, and have pro-
posed to deploy it over a BMG overlay network. The BMG
topology features both a low graph degree, a requirement for

scalability, yet a strong resistance to the formation of par-
titioned cliques that threaten the correctness of the reliable
broadcast.

We implemented and evaluated a Revoke reliable broad-
cast based on the BMG topology, and demonstrated that it
can effectively interrupt typical MPI communication plans
(as featured in commonly employed collective communica-
tion patterns) with a low latency and without incurring long-
lasting jitter. Experiments outline that after a short period
of time, of the same order of magnitude as a Broadcast com-
munication, the recovery communication plan can start, and
after a couple more Broadcast latencies, the post-Revoke
performance of this communication plan is free of jitter and
returns to the nominal, failure free latency.

The performance and scalability improvements provided
by the BMG reliable broadcast, which are demonstrated at
scale for the first time here, also have application beyond
the Revoke operation, and with minor adaptations can be
leveraged in other HPC contexts where the failure resistant
dissemination of information is essential, such as the inter-
ruption of failed transactions in transactional fault toler-
ance [20], or the propagation of failure conditions in PGAS
programming models [12].
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