Flexible Linear Algebra Development and Scheduling with Cholesky
Factorization

Azzam Haidar
University of Tennessee, Knoxville, USA
haidar@eecs.utk.edu

Chongxiao Cao
University of Tennessee, Knoxville, USA
ccaol @vols.utk.edu

Stanimire Tomov
University of Tennessee, Knoxville, USA
tomov@eecs.utk.edu

Abstract

Modern high performance computing environments
are composed of networks of compute nodes that often
contain a variety of heterogeneous compute resources,
such as multicore-CPUs, GPUs, and coprocessors. One
challenge faced by domain scientists is how to efficiently
use all these distributed, heterogeneous resources. In
order to use the GPUs effectively, the workload paral-
lelism needs to be much greater than the parallelism
for a multicore-CPU. On the other hand, a Xeon Phi
coprocessor will work most effectively with degree of
parallelism between GPUs and multicore-CPUs. Ad-
ditionally, effectively using distributed memory nodes
brings out another level of complexity where the work-
load must be carefully partitioned over the nodes. In this
work we are using a lightweight runtime environment
to handle many of the complexities in such distributed,
heterogeneous systems. The runtime environment uses
task-superscalar concepts to enable the developer to
write serial code while providing parallel execution.
The task-programming model allows the developer to
write resource-specialization code, so that each resource
gets the appropriate sized workload-grain. Our task-
programming abstraction enables the developer to write
a single algorithm that will execute efficiently across the
distributed heterogeneous machine. We demonstrate
the effectiveness of our approach with performance re-
sults for dense linear algebra applications, specifically

Asim YarKhan
University of Tennessee, Knoxville, USA
yarkhan@eecs.utk.edu

Piotr Luszczek
University of Tennessee, Knoxville, USA
luszczek @eecs. utk.edu

Jack Dongarra
University of Tennessee, Knoxville, USA
Oak Ridge National Laboratory, USA
University of Manchester, UK
dongarra@eecs.utk.edu

the Cholesky factorization.

1. Introduction

The scientific, technical, and HPC communities
are increasingly turning to computers containing a
combination of heterogeneous hardware resources.
Modern compute platforms augment their multicore
CPUs with one-or-more GPUs or coprocessors like the
Intel Xeon Phi (MIC - Many Integrated Cores). We be-
lieve that the compute nodes of large-scale machines
will contain a mixed-core approach to hardware, com-
bining multicores and GPUs or coprocessors, each
of which appropriate for various work granularities.
These mixed-core nodes will be connected together
via high-speed networks to create large powerful dis-
tributed memory installations. However, it remains
an open question of how to use these mixed-core
compute resources efficiently. No current approach
is designed to adapt to the available resources in a
transparent manner. We examine an approach that
builds on the strengths of all the hardware resources,
combining them when appropriate, and using them
separately when the appropriate task granularity re-
quires it. In order to accomplish this we extend the
work described in our earlier paper [17], where we
designed a mixed-core approach for a single node.

The extension includes a number of new contributions
varying from the way data is stored and moved to the
way algorithms are split into tasks and scheduled for
execution. Our approach targets the development of
high-performance dense linear algebra (DLA), and
we demonstrate it for the case of the Cholesky factor-
ization.

2. Background and Related Work

The desire for faster computers and greater im-
mersive experiences has led hardware designers to
push beyond the constraints of Moore’s Law. Ma-
chines are designed with increasing numbers of cores
and specialized accelerators that provide enormous
performance boosts for the right kind of computation.
In response to this, computer scientists are designing
algorithms, software and frameworks that can take
advantage of these highly parallel resources. Algo-
rithms need to be restructured to allow greater levels
of asynchronous parallelism and workloads need to
be tailored to match the available hardware, where
the hardware can include multicore CPUs, GPUs, and
other accelerators or coprocessors.

Dense linear algebra libraries are at the core
of a substantial number of scientific codes across
science domains. The traditional approach to ex-
tracting high linear algebra performance from the
hardware resources is by relying on highly tuned,
platform-specific optimized libraries, such as the Ba-
sic Linear Algebra Subroutines (BLAS). The scientific
codes are then constructed as a sequence of calls to
an optimized library. However, this can result in a
fork-join style execution where highly tuned parallel
code is interleaved with code that achieves very low
parallelism. Newer alternatives to extracting paral-
lelism from available hardware have been advocat-
ing a higher level approach [11]. This approach is
a task-based dataflow approach where precedence-
constrained tasks are executed asynchronously and
in parallel.

Developing linear algebra algorithms for today’s
heterogeneous machines requires a level of complex-
ity that was not required in homogeneous environ-
ments. Each different type of hardware is likely to
have a different workload-grain size for optimal per-
formance. For example, for matrix-matrix multiplica-
tion, a GPU will require large matrix sizes in order
to achieve high performance, whereas a CPU can
achieve its best performance at much smaller sizes.
Furthermore, in a distributed memory environment,
the data needs to be partitioned among the nodes
to enable load balance and scalability. If the nodes

have varying capabilities, then the algorithm needs
to allow different workloads to be allocated to each
node.

This paper presents research in designing the
algorithms and the programming model for high-
performance DLA in distributed-memory heteroge-
neous environments. The compute nodes in these
environments can be composed of a mix of multi-
core CPUs, GPUs, and MICs, all of which may have
varying capabilities and different optimal workload
granularity. While the main goal is to obtain as high
fraction of the peak performance as possible for the
entire system, a competing secondary goal is to pro-
pose a programming model that would simplify the
development. To this end, we propose and develop a
new distributed-memory lightweight runtime environ-
ment, and describe the construction of DLA routines
based on it. We demonstrate the new heterogeneous
runtime environment and its programming model us-
ing the Cholesky factorization. The design of this new
environment considers our experience [17], as well
as other state-of-the-art developments in the area,
summarized as follows, to extract and develop the
techniques best suited for DLA on distributed hetero-
geneous systems.

There has been a lot of effort on enabling
DLA libraries to run on heterogeneous systems.
Vendors such as NVIDIA, Intel, and AMD pro-
vide their own numerical libraires, such as
cuBLAS/cuSolver/cuSparse [21], MKL [19], and
clMath [3], respectively. LAPACK is provided in
MAGMA [26] for heterogeneous systems with GPUs
(in CUDA and OpenCL) or Xeon Phi coprocessors,
and in CULA [18] for Nvidia GPUs. These libraries do
not include implementations for distributed-memory
systems yet.

Song et al. [23] describe distributed-memory,
multi-GPU linear algebra algorithms that use a static
multi-level block-cyclic data partitioning. The static
data layout allows the distributed nodes to sched-
ule communication events without coordination. The
multi-level data scheme enables CPUs and GPUs to
partition work to handle the workload imbalance be-
tween the resources. This approach does not provide
for GPUs of different strengths and for the addition
of other resources such as MICs.

Ayguade et al. have created StarSS [7], a pro-
gramming model that uses compiler directives to an-
notate code in order to allow task superscaler exe-
cution via a specialized runtime. The directives can
specify that functions should be executed using spe-
cific hardware (e.g. GPU, Cell, SMP) rather than using
CPUs. The superscalar execution allows the host CPU

and additional hardware to run in parallel. Some
versions of StarSS support distributed execution but
the data movement must be explicitly specified by the
user [16]. Many of the ideas in StarSS have been in-
corporated in the implementation of Task Parallelism
in the OpenMP 4.0 specification [14], however the
OpenMP standard [15] does not include distributed-
memory execution.

Augonnet [5] and the INRIA Runtime team have
developed StarPU [6], which is a dynamic scheduling
runtime that uses superscalar execution methods to
run sequential task-based code on parallel resources.
StarPU uses a history-based scheduling mechanism to
transparently schedule tasks on heterogeneous mul-
ticore and GPU resources, with extensions that al-
low StarPU to execute in distributed-memory envi-
ronments. StarPU has been used as a runtime in
MAGMA to implement the Cholesky, QR, and LU fac-
torizations [2].

The SuperMatrix runtime system for linear al-
gebra [12] was extended to execute on multi-
core and GPUs in a shared-memory environment
[22]. The SuperMatrix approach requires that the
task-dependencies be substantially exposed before
scheduling and that the GPU take the burden of the
computation, not using available multicore CPUs for
complex computational tasks.

Bosilca et al. [10] have developed PARSEC, a
distributed task-based runtime environment using
Parameterized Task Graphs (PTGs). PARSEC has been
applied to DLA [9], however it remains challenging
to implement complex algorithms using PARSEC.

3. Algorithmic Advancements

We extend the classical Lapack algorithms [4]
into heterogeneous algorithms for distributed systems
and give a description for the case of the Cholesky
factorization. We designed a two-level block-cyclic
distribution method to support the heterogeneous
algorithms, as well as an adaptive task scheduling
method to determine the splitting of work over the
devices.

Algorithm 1 shows the starting point of our algo-
rithmic considerations. The decomposition of the in-
put matrix across both rows and columns is matched
by the decomposition in double-nested loop to al-
low for static mapping to the hardware and flexible
scheduling at runtime. This two-fold decomposition
in the data domain and the algorithmic domain serves
as facility of introducing lookahead [24, 25] to in-
crease efficiency through temporal and spacial overlap
of communication, computation, and the mix thereof.

Algorithm 1: Right-looking blocked and tiled
Cholesky factorization with a fixed blocking
factor ny.

Input :A—Symmetric positive definite
Input :n,—Blocking factor
Output : L—Lower triangular
for Ai,i € {AL],Az’z,Ag,g, .. .A*,*} do
Ai,i € R™>mp
L; ; < UnblockedCholesky (A; ;)
for Aj; € {Aiv1,i,Aiv2,i,Air3is. . . Ay i} dO
Aj,i € R™*mp
L Aj,i — Ll_j XAJ',,'
for A; i where j,k > i do
Aj,k € R™>*mp
L Ajk —Ajk—LjiXLig

Through this partitioning, we can take this concept
beyond its inception and apply it in both domains
(across matrix dimensions and loop nests) simultane-
ously. The proper tracking of these, admittedly more
complex, dependences is offloaded to the runtime
and thus only a minor burden is left to the algorithm
developer - the custodial task of invoking the runtime
and informaing it about the dataflow structure.

3.1. Data Distribution

We use a multi-level hierarchy of data blocking
rather than fixed blocking across nodes, cores, and
devices. At the coarsest (global distributed) level we
employ a 2D block cyclic distribution [13], the main
reasons being scalability and load balance, both of
which are of concern at the level of parallelism and
hardware size that we target. Within a single node,
the amount of concurrency can still be staggering,
especially when we count CUDA cores, floating-point
ALUs, and hyper-threading contexts. More appropri-
ate, however, is modeling the single node hardware
unit as a moderately parallel entity with at most tens
of computational units, be it GPU cores (NVIDIA’s
SMX or AMD compute units) or CPU cores (often
multi-way hyper-threaded). For such a hardware
model, a 1D cyclic distribution is adequate to bal-
ance the load while still scaling efficiently. This 1D
distribution has some additional benefits for match-
ing the data layout to the panel-update style linear
algebra algorithm.

to parallel (distributed and heterogeneous)
LAPACK algorithms
for(j=0, j<n; j+=nb) {
jb =min(nb, n-j);
zpotrf(MagmaUpperStr, &jb, work, §jl
If (j#ib) < n){
zpotrf(MagmaUpper broadcast_column_procs(A(j,j))
If G+ib) <n) { ztrsm(MagmalLeft, MagmaUpper,
e dAGij#+ib), Idda, que
zherk(MagmaU;Jper broadcast_specific_proc(A(j,j));
Jb, j, one, dA(0 broadcast_multi-devices(A(j,j));
magma_zherk(MagmaUpper,
Zgemm(MagmaCo one, dA(j), ldda, q
dAD) d magma_zgemm(MagmaConjTrang]
} dA(0,), Idda, dA(0,j4

From sequential

LAPACK wmp

for(j=0, j<n; j+=nb) {
jb=min(nb, n-j);

<>

. ©®e
@<D) FQ&; g|->ln '_SYBK: fine graifi®
on accelerators ~__on multicore g,
S 7\ @ S
h (X)

=

Figure 1. Algorithms look like LAPACK (left), while a task superscalar runtime executes the underlying distributed algo-
rithm (right). The execution can be viewed as a DAG with the tasks executed on nodes where the 2D block-cyclic data is
located. A matrix consisting of 5x5 block-cyclic distributed tiles is executed on four distributed nodes, marked by differ-
ent colors. MPl communication tasks, not shown for simplicity, are between nodes of different colors. One SYRK task is
shown having adaptive grain sizes, depending on the hardware that the task is assigned to (CPU, GPU, Phi).

3.2. Two Communication Layers

Our goal is to provide a level of abstraction that
delivers portable performance on many kinds of het-
erogeneous systems. To that end, we propose a
new methodology that avoids the all too common
issue of the classical distributed programming model
— the “bulk-synchronous” [28, 27] lock-step execution,
which was used by ScaLapack. This model does not
cope productively with the heterogeneity of the cur-
rent processing units (large core-count manycore and
heterogeneous systems), and neither can they overlap
the communication nor account for the variability in
runtime performance behavior.

In a distributed memory environment, explicit
data movement tends to be the source of many par-
allel, and thus hard to find, bugs. To alleviate the
issue and to keep the overall ease of use and consistent
notion of task-based programming, we propose encap-
sulating MPI communication calls inside tasks. This
turns the message passing primitives into data sources
and sinks, which in turn makes it possible to ease
the burden of manual tracking of asynchronous calls
throughout the code and ensuring proper progress
of the communication protocol. Additionally, the run-
time provides basic flow control to limit the number
of outstanding asynchronous events, which dovetails
the issue of how many such non-blocking calls are
acceptable for a given MPI implementation — a purely

software engineering limitation that could potentially
be hard to accommodate if done manually across a
number of open source and vendor MPI libraries.
Our runtime system has already been success-
fully used for multicore-only workloads from dense
linear algebra [20] and as such it enables various ad-
vanced scheduling techniques but at its core it enables
concurrent execution of tasks across available cores.
The situation changes only slightly when one of the
cores is devoted to only handle MPI-related activi-
ties. On occasion, the communication core might go
underutilized due to high computation demand and
low communication load but in the overall hardware
mix with tens of cores per core, this does not pose
an appreciative loss in total achieved performance.
On the contrary, at the periods of heavy communi-
cation, the thread is either busy queueing new asyn-
chronous sends and/or receives or providing progress
opportunity to already executing MPI calls. With this
scheme we achieve on-demand communication be-
tween nodes from the single message passing thread
and shared memory concurrency within the node.

3.3. Task Superscalar Runtime System

The increasing complexity of multicore heteroge-
neous systems has made problem of efficient work as-
signment ever more difficult. An effort to address this
difficulty has led to the increased use of dynamic run-

time environments to manage the resources. These
runtime environments can dynamically assign work
when hardware resources complete earlier tasks and
become available, enabling a simple form of load bal-
ancing.

Task superscalar runtime environments further
lighten the burden of parallel programming. In addi-
tion to managing the hardware resources, task super-
scalar environments handle the data hazards between
tasks, releasing tasks for execution after all the data
dependencies are met.

The net effect of this is that we can program
a serial sequence of tasks and transparently obtain
parallel (and distributed) execution. Each task has
to mark its parameters as read or read/write, and
the runtime will enforce any implied data hazards
(read after write — RAW, write after read — WAR, and
write after write — WAW) between tasks and provide
a correct parallel execution.

This enables us to express the Cholesky code as
a block-structured code as it is implemented in La-
pAck and obtain a parallel execution. Using the block-
structured algorithm allows us to express algorithms
in the same structure as LAPACK, unlike most other
task based linear algebra libraries that required a re-
structured tile based algorithm working on a tiled
data layout [1, 8].

For this work we are utilizing the QUARK task
superscalar runtime system [29] which provides sev-
eral advanced features that make our implementation
easier. QUARK has been shown to provide good per-
formance and scalability for PLASMA, a task-based
linear algebra library for multicore architectures [20].
However, in essence other task-based superscalar run-
time systems could provide similar capabilities for the
methodology we are presenting.

3.4. Advanced Scheduling Techniques

When scheduling the tasks on a single shared
memory node consisting of multicore CPUs, GPUs,
and accelerators, we use the runtime system’s ability
to do priority-based task scheduling. The algorithm
provides priority information with the tasks so that
the critical path is processed faster and additional
parallelism is exposed earlier. For Cholesky, we prior-
itize the diagonal tasks to expose the outer loop for
the next iteration as soon as possible. This form of
lookahead attempts to increase available parallelism
and tasks, keeping the computational resources busy.

The runtime system provides task-to-thread lock-
ing capabilities, so MPI communication tasks are at-
tached to specific threads. Similarly, GPU control

tasks can be locked to a specific thread. Other tasks
are scheduled to a specific thread (based on criteria
such as locality), but threads that have no scheduled
work may steal tasks from other threads.

4. Performance Results

4.1. Hardware Description and Setup

We conducted our experiments on two distributed
systems, featuring GPUs and MICs, respectively:
System A has 120 nodes connected with Mellanox
InfiniBand QDR. Each node has two Intel Xeon hexa-
core X5660 CPUs running at 2.8 GHz, and three
NVIDIA Fermi M2090 GPUs.

System B has 48 nodes connected by an FDR Infini-
Band interconnect providing 56 Gb/s of bi-directional
bandwidth. Each node features two 8-core Intel Xeon
E5-2670 CPUs (Sandy Bridge), running at 2.6 GHz,
and two Intel Xeon Phi 5110P coprocessors with 8 GiB
of GDDR memory each.

A number of software packages were used for the
experiments. On the CPU side, we used MKL (Math
Kernel Library) [19] with the Intel icc compiler ver-
sion 2013.sp1.2.144 and on the GPU accelerators we
used CUDA version 6.0.

4.2. Experimental Data and Discussion

Getting high performance across accelerators re-
mains a challenging problem that we address with the
algorithmic and programming techniques described
in this paper. These efficient strategies are used to ex-
ploit parallelism and hide both inter-nodal and intra-
nodal communication. We highlighted this through a
set of experiments that we performed on our systems.
The data is distributed among the nodes of the cluster
using the classical 2D fashion and within a node the
data is adaptively distributed among the available
resources as described in Section 3.1. We performed
a set of strong and weak scalability experiments. We
use weak scalability to evaluate the capability of our
algorithm to solve potentially larger problems when
more computing resources are available. In a manner
commonly accepted for weak scalability, we increase
the input size accordingly when we increase the num-
ber of CPU cores and GPUs such a way to have fixed
amount of work per node.

We evaluated our unified programming model
on two distributed memory machines. Figure 2 illus-
trates the performance of the Cholesky factorization
on System A — distributed platform with GPU accelera-
tors. We plotted the best performance obtained by the

state-of-the-art ScALAPACK software as implemented
by the Intel MKL, and tuned for the best blocking
factor n; across multiple runs. We also plotted the
performance obtained by our algorithm when using
only the CPUs. This allowed us to compare fairly
with the Scalapack approach. We can see that our
implementation is between 15% to 20% faster than
its ScaLarack counterpart and we achieved perfect
weak scaling — a result we were expecting. The ScaLa-
pack approach follows the classical “bulk-synchronous”
technique, meaning that, at every phase of the fac-
torization there is a synchronization. Thus, there
is a synchronization between the three phases of
the Cholesky algorithm. Cholesky algorithm is quite
special since only the factorization of the diagonal
tile (xpotrf task) is sequential while the xtrsm and
xgemm/xsyrk are naturally parallel. Consequently, the
bottleneck of the Scal.apack approach compared to
our proposed dynamic technique can be summarized
by the following observations:

* during the diagonal tile factorization, only one
processor is working in Scalapack while in our
technique, when a processor is performing the
diagonal factorization of step i, the other proces-
sors are still applying updates from step i — 1.

* Scalarack cannot hide the overhead of the com-
munication because it issues only blocking mes-
sage passing calls, while in our approach, the
communication is hidden since it is handled by a
separate thread and thus when a communication
is in progress, the other threads are busy with
computational kernels.

¢ close to the end of the factorization, there is
not enough work to keep the processors fully
occupied, this is a bottleneck for the ScaLAapack
approach, while its effect is minimized for the
algorithm we proposed because of the multi-
dimensional lookahead technique.

However, since there is only one diagonal tile to be
factorized per step, and since the elapsed time to fac-
torize it is very small compared to the time required
by the update phase, the scalability of the ScALapack
is expected to be acceptable. Thus, a 20% speedup
over ScaLAPACK is considered to be a viable improve-
ment.

Figure 3 shows the performance obtained per
node by each implementation. Note that, a perfect
scalability means that the performance per node for
certain devices, remains stable when we increase the
number of nodes (a flat line indicates perfect scaling).
The performance achieved by our algorithm on 100
nodes is about 10.2 Tflop/s which translates to about
102 Gflop/s per node as shown in Figure 3, while the

—&—Our algo 3 Nvidia M2090

|| —&— Our algo 2 Nvidia M2090

—©—Our algo 1 Nvidia M2090
Ouralgo 12 CPUs cores

6017 —6—Scalapack 12 CPUs cores

Performance Tflop/s
5
3

1 5 36 64 160
Nodes

Figure 2. Weak scalability (horizontal reading) strong scal-

ability (vertical reading) of the distributed multi-device

Cholesky factorization on System A.

=

8

3
T
I

—&— Our algo 3 Nvidia M2090
—&—Our algo 2 Nvidia M2090
~6&—Our algo 1 Nvidia M2090
Ouralgo 12 CPUs cores
—e—Scalapack 12 CPUs cores

<

3

8
T

2
g
3

@

2

3
T
I

Y

5

3
T
I

w

8

3
I

Performance per core Gflop/s

8

8

s
T
I

=
8

L I
14 9 16 25 36 64 100
Nodes

Figure 3. Weak scalability, performance per node on Sys-
tem A.

performance on one node is about 115 Gflop/s mean-
ing that our algorithm can be considered to have pro-
vided very good scalability with over 90% efficiency
calculated against the performance on a single node
multiplied by the number of nodes. The ScaLaprack
performance per node goes from 104 Gflop/s on one
node to about 87 Gflop/s on 64 nodes which is about
73% efficient. The effect of the scalability observed
in these results is mostly due to the effect of the com-
munication and the synchronization that does not
allow for application of the lookahead technique. The
behavior of the CPU performance on System B and
depicted in Figure 4 and Figure 5 is similar to the
one described for System A. The only difference being
that the network available here is not as fast as the
one available on System A, which leads to scalability
problems for ScALAPACK.

The main motivation of our programming model
is to have a simple and unified code that can achieve
high performance on homogeneous and heteroge-
neous system alike. To that end, we also conducted
experiments on the multi-GPU System A as well as on
the multi-Coprocessors System B. Figure 2 depicts the

weak scalability for our algorithm when adding either
1, 2, or 3 GPUs. The experiment demonstrates a good
weak scalability when using heterogeneous hardware.
Adding one GPU brings up the performance per core
(Figure 3) to about 302 Gflop/s on one node and
270 Gflop/s on 100 nodes. The algorithm showed
very good scalability even when using a single GPU
per node in combination with all of the CPU cores.
Enabling more GPUs on each node brought the per-
formance up in a proportionate fashion. The perfor-
mance obtained on 100 nodes using the 3 NVIDIA
GPUs was about 78 Tflop/s for a fixed problem size of
30000 per node. On 100 nodes when using 3 GPUs,
the performance per node is about 780 Gflop/s, as
shown in Figure 3. Our implementation showed a
very good scalability. Similarly, our experiments on
System B illustrates the same behavior. The drop in
performance per core when using 2 Xeon Phi is not
explicable. We verified using the execution trace that
on large number of nodes when using 2 or more Xeon
Phi coprocessors, one of them is slowing down on only
1 or 2 nodes — an issue related to overheating and
thermal throttling as we later found out. We believe
this is related to overheating of these nodes due to
malfunctioning ventilation. Previously, we observed
such behavior on a single node equipped with 4 Xeon
Phi coprocessors, when using all four of devices to
solve a single large problem. In the latter case, there
was a time period when the Xeon Phi positioned in the
middle of the motherboard would slow down due to
drastic temperature increase. Overall, our approach
exhibit a very good scalability. The performance per
node is stable as we increase the number of nodes
form 1 to 36.

=3

3

T T T
—&— Our algo 2 Xeon Phi 5110P
—6—Our algo 1 Xeon Phi 5110P

Ouralgo 16 CPUs cores -
—6—Scal.apack 16 CPUs cores

n
o

Performance Tflop/s
& 8
T T

=)
T

o
T

. . . .
1 4 9 16 25 36
Nodes

Figure 4. Weak scalability (horizontal reading) strong scal-
ability (vertical reading) of the distributed multi-device
Cholesky factorization on System B.

The strong scalability is defined as the speedup
that can be achieved to solve a problem of fixed size
while increasing the number computing units and

1200

T T
—4—Qur algo 2 Xeon Phi 5110P
—©—Our algo 1 Xeon Phi 5110P

1000+ Our algo 16 CPUs cores |-

—©—Scalapack 16 CPUs cores

@

=3

S
T

Performance per core Gflop/s
a @
3 =3
3 3
T
i i

N
=3
S

T

I

I I I
1 4 9 16 25 36
Nodes

>

c

Figure 5. Weak scalability, performance per node on Sys-
tem B.

the associated parallel resources. In our graphs, we
can evaluate the strong scalability of our algorithm
per node if we read the graph by scanning it along
the vertical direction. In other words, given particu-
lar nodes configurations, for example 1x 1 or 2x 2,
the vertical reading of the data shows the effect of
increasing the computing resources for a fixed-size
matrix. Figure 2 and Figure 4 show the strong scaling
of the Cholesky factorization on the tested systems
when increasing the number of GPUs (Figure 2) or
the number of Xeon Phi coprocessors (Figure 4). The
obtained strong scaling is nearly ideal. For example.
on 1 node, using 3 GPUs is about 3 times faster than
running with a single GPU.

5. Conclusions and Future Work

We have designed and implemented a program-
ming model that builds on task-based superscalar
runtime environments for implementing dense linear
algebra algorithms in distributed memory, multi-way
heterogeneous environments. We have presented a
methodology for managing the different granular-
ity requirements demanded by the various hetero-
geneous resources for achieving high performance.
Our task superscalar runtime environment allows sim-
ple serial algorithmic implementations that are flexi-
ble enough to allow high performance execution on
our complex distributed, heterogeneous test environ-
ments.

Acknowledgements

This material is based upon work supported by
the National Science Foundation under Grants ACI-
1339822 and 1137097, the Department of Energy,
and the NVIDIA and Intel Corporations. The results
were obtained in part with the financial support of the

Russian Scientific Fund, Agreement N14-11- 00190.

References

[1]

(2]

(3]
[4]

(5]

)

[7]

[8]

[9]

[10]

[11]

E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
J. Langou, H. Ltaief, P. Luszczek, and A. YarKhan.
PLASMA Users Guide. Technical report, ICL, Univer-
sity of Tennessee, 2010.

E. Agullo, J. Dongarra, R. Nath, and S. Tomov. A
Fully Empirical Autotuned Dense QR Factorization
for Multicore Architectures. In Proceedings of the
17th International Conference on Parallel Processing -
Volume Part II, Euro-Par’11, pages 194-205, Berlin,
Heidelberg, 2011. Springer-Verlag.

AMD. clmath libraries: clblas 2.2. https://github.
com/clMathLibraries/clBLAS, April 30 2015.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dem-
mel, J. J. Dongarra, J. Du Croz, S. Hammarling,
A. Greenbaum, A. McKenney, and D. Sorensen. LA-
PACK Users’ guide (third ed.). SIAM, Philadelphia, PA,
USA, 1999.

C. Augonnet. Scheduling Tasks over Multicore machines
enhanced with Accelerators: a Runtime System’s Per-
spective. Phd thesis, Universit‘e Bordeaux 1, December
2011.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier. StarPU: A Unified Platform for Task Scheduling
on Heterogeneous Multicore Architectures. In Pro-
ceedings of the 15th International Euro-Par Conference
on Parallel Processing, Euro-Par '09, pages 863-874,
Berlin, Heidelberg, 2009. Springer-Verlag.

E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta,
R. Mayo, and E. S. Quintana-Orti. An extension of the
starss programming model for platforms with mul-
tiple gpus. In Proceedings of the 15th International
Euro-Par Conference on Parallel Processing, pages 851—
862. Springer-Verlag, 2009.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge,
H. Haidar, T. Herault, J. Kurzak, J. Langou,
P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan, and
J. Dongarra. Distibuted Dense Numerical Linear Al-
gebra Algorithms on Massively Parallel Architectures:
DPLASMA. Technical report, Innovative Computing
Laboratory, University of Tennessee, apr 2010.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge,
H. Haidar, T. Herault, J. Kurzak, J. Langou,
P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra. Distributed-Memory Task Execu-
tion and Dependence Tracking within DAGuUE and
the DPLASMA Project. Technical Report 232, LAPACK
Working Note, Sept. 2010.

G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. DAGuE: A generic
distributed DAG engine for High Performance Com-
puting. Parallel Computing, 38(1-2):37-51, 2012.
A. Buttari, J. Dongarra, J. Kurzak, J. Langou,
P. Luszczek, and S. Tomov. The Impact of Multicore on

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Math Software. In B. Kdgstrom, E. Elmroth, J. Don-
garra, and J. Wasniewski, editors, Applied Parallel
Computing. State of the Art in Scientific Computing,
volume 4699 of Lecture Notes in Computer Science,
pages 1-10. Springer Berlin / Heidelberg, 2007.

E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and
R. van de Geijn. Supermatrix out-of-order scheduling
of matrix operations for SMP and multi-core architec-
tures. In Proceedings of the nineteenth annual ACM
symposium on parallel algorithms and architectures,
SPAA ’07, pages 116-125, New York, NY, USA, 2007.
ACM.

J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. W.
Walker, and R. C. Whaley. A Proposal for a Set of Paral-
lel Basic Linear Algebra Subprograms. In Proceedings
of the Second International Workshop on Applied Par-
allel Computing, Computations in Physics, Chemistry
and Engineering Science, PARA '95, pages 107-114,
London, UK, UK, 1996. Springer-Verlag.

O. Consortium. OpenMP application pro-
gramming interface - version 4.0 july
2013. http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf, 2013.

L. Dagum and R. Menon. OpenMP: An Industry Stan-
dard API for Shared-Memory Programming. Compu-
tational Science Engineering, IEEE, 5(1):46 -55, 1998.
M. Garcia, J. Corbalan, R. Badia, and J. Labarta. A dy-
namic load balancing approach with smpsuperscalar
and mpi. In R. Keller, D. Kramer, and J.-P. Weiss, edi-
tors, Facing the Multicore - Challenge II, volume 7174
of Lecture Notes in Computer Science, pages 10-23.
Springer Berlin / Heidelberg, 2012. 10.1007/978-3-
642-30397-5.

A. Haidar, C. Cao, A. YarKhan, P. Luszczek, S. To-
mov, K. Kabir, and J. Dongarra. Unified development
for mixed multi-gpu and multi-coprocessor environ-
ments using a lightweight runtime environment. In
2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, USA, May 19-23,
2014, pages 491-500, 2014.

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L.
Paolini, and E. J. Kelmelis. Cula: hybrid gpu acceler-
ated linear algebra routines. In Proc. SPIE, volume
7705, pages 770502-770502-7, 2010.

Intel. Math kernel library. https://software.intel.
com/en-us/en-us/intel-mkl/.

J. Kurzak, P. Luszczek, A. YarKhan, M. Faverge, J. Lan-
gou, H. Bouwmeester, and J. Dongarra. Multithread-
ing in the PLASMA Library. In Handbook of Multi
and Many-Core Processing: Architecture, Algorithms,
Programming, and Applications, Computer and Infor-
mation Science Series. Chapman and Hall/CRC, April
26 2013.

Cublas library, 2008. NVIDIA Corporation, Santa
Clara, California.

G. Quintana-Orti, F. D. Igual, E. S. Quintana-Orti,
and R. A. van de Geijn. Solving dense linear systems
on platforms with multiple hardware accelerators.

https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clBLAS
https://software.intel.com/en-us/en-us/intel-mkl/
https://software.intel.com/en-us/en-us/intel-mkl/

[23]

[24]

[25]

[26]

[27]

(28]

[29]

SIGPLAN Not., 44:121-130, February 2009.

F. Song, S. Tomov, and J. Dongarra. Enabling and
scaling matrix computations on heterogeneous multi-
core and multi-gpu systems. In Proceedings of the 26th
ACM International Conference on Supercomputing, ICS
’12, pages 365-376, New York, NY, USA, 2012. ACM.
P. E. Strazdins. Lookahead and algorithmic blocking
techniques compared for parallel matrix factorization.
In 10th International Conference on Parallel and Dis-
tributed Computing and Systems, IASTED, Las Vegas,
USA, 1998.

P. E. Strazdins. A comparison of lookahead and al-
gorithmic blocking techniques for parallel matrix fac-
torization. Int. J. Parallel Distrib. Systems Networks,
4(1):26-35, 2001.

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense
linear algebra solvers for multicore with GPU accel-
erators. In Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, pages 1-8, April 2010.

L. G. Valiant. Bulk-synchronous parallel computers.
In M. Reeve, editor, Parallel Processing and Artificial
Intelligence, pages 15-22. John Wiley & Sons, 1989.
L. G. Valiant. A bridging model for parallel computa-
tion. Communications of the ACM, 33(8), Aug. 1990.
DOI 10.1145/79173.79181.

A. YarKhan, J. Kurzak, and J. Dongarra. QUARK Users’
Guide: QUeueing And Runtime for Kernels. Technical
report, Innovative Computing Laboratory, University
of Tennessee, 2011.

	Introduction
	Background and Related Work
	Algorithmic Advancements
	Data Distribution
	Two Communication Layers
	Task Superscalar Runtime System
	Advanced Scheduling Techniques

	Performance Results
	Hardware Description and Setup
	Experimental Data and Discussion

	Conclusions and Future Work

