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Abstract. We study the performance of dense symmetric indefinite fac-
torizations (Bunch-Kaufman and Aasen’s algorithms) on multicore CPUs
with a Graphics Processing Unit (GPU). Though such algorithms are
needed in many scientific and engineering simulations, obtaining high
performance of the factorization on the GPU is difficult because the piv-
oting, required to ensure the numerical stability of the factorization, leads
to frequent synchronizations and irregular data accesses. As a result, un-
til recently, there has not been any implementation of these algorithms
on hybrid CPU/GPU architectures. To improve their performance on the
hybrid architecture, we explore different techniques to reduce the expen-
sive communication and synchronization between the CPU and GPU, or
on the GPU. We also study the performance of an LDL” factorization
with no pivoting combined with the preprocessing technique based on
Random Butterfly Transformations. Though such transformations only
have probabilistic results on the numerical stability, they avoid the piv-
oting and obtain a great performance on the GPU.

Keywords: dense symmetric indefinite factorization, communication-
avoiding, randomization, GPU computation.

1 Introduction

A symmetric matrix A is called indefinite when its quadratic form 27 Az can take
both positive and negative values. Dense linear systems of equations with sym-
metric indefinite matrices appear in many studies of physics, including physics
of structures, acoustics, and electromagnetism. For instance, such systems arise
in the linear least-squares problem for solving an augmented system [15, p. 77],
or in the electromagnetism where the discretization by the Boundary Element
Method results in linear systems with dense complex symmetric (non Hermi-
tian) matrices [21]. The efficient solution of these linear systems demands a high
performance implementation of a dense symmetric indefinite solver that can effi-
ciently use the current hardware architecture. In particular, the use of accelera-
tors has become pervasive in scientific computing due to their high-performance



capabilities. To achieve the performance, however, the algorithms must be de-
signed for high parallelism, high flops to data ratio, and be architecture-aware.
A dense symmetric indefinite solver which can efficiently use the GPU’s high
computing power could lead to new discoveries in the field of physics. The use
of the GPU is also motivated by its low energy consumption. Currently for ex-
ample, a single K40 NVIDIA GPU has a double precision peak of 1,689 Gflop/s
for a thermal design power (TDP) of 235 W. Optimized large dense matrix com-
putations, e.g., matrix-matrix multiplications, reach 1,200 Gflop/s for a power
draw of about 200 W, i.e., =~ 6 Gflop/W. In contrast, two Sandy Bridge E5-2670
CPUs have about the same TDP (2 x 115 = 230 W) as the K40 but for a peak
of 333 Gflop/s, which translates to only 1.4 Gflop/W.

To solve a symmetric indefinite linear system of equations, Az = b, a classical
method decomposes the matrix A into an LDLT factorization,

PAPT = LDLT, (1)

where L is unit lower triangular, D is block diagonal with either 1-by-1 or 2-
by-2 diagonal blocks, and P is a permutation matrix to ensure the numerical
stability of the factorization. Then the solution x is computed by successively
solving the triangular and block-diagonal systems. The pivoting strategies to
compute the permutation matrix P for the LDLT factorization include com-
plete pivoting (Bunch-Parlett algorithm) [11], partial pivoting (Bunch-Kaufman
algorithm) [12], rook pivoting (bounded Bunch-Kaufman) [4, p. 523], and fast
Bunch-Parlett [4, p. 525]. In particular, the Bunch-Kaufman and rook pivot-
ing are implemented in LAPACK [2], a set of dense linear algebra routines on
multicore CPUs that are extensively used in many scientific and engineering
simulations. These routines implemented in LAPACK are based on block algo-
rithms that can exploit the memory hierarchy on modern architectures, using
BLAS-3 matrix operations.

To solve the symmetric indefinite linear system, another promising method is
the Aasen’s method [1] that computes the LT LT factorization of the matrix A,

PAPT = LTL”, 2)

where T is now a symmetric tridiagonal matrix. The right-looking formulation
of the algorithm requires about the same number of floating point operations
(flops) as that needed to compute the LDLT factorization. A block algorithm
for computing the LT LT factorization was also proposed [23]. Though the block
implementation performs slightly more flops, it can exploit the memory hierarchy
on modern computers and obtain a similar performance as the Bunch-Kaufman
algorithm implemented in LAPACK.

To maintain the numerical stability, the pivoting techniques mentioned above
involve between O(n?) and O(n3) comparisons to search for pivots and possi-
ble interchanges of selected columns and rows. This leads to synchronization and
data movement at each step of the factorization, which have become significantly
more expensive compared to the arithmetic operations on modern computers.



Furthermore, due to the symmetric storage used to store A, the symmetric piv-
oting requires irregular data accesses. This increases dramatically the cost of
the data movement, making it difficult to obtain the higher performance of the
symmetric indefinite factorization. Recently, a communication-avoiding variant
of the Aasen’s algorithm has been proposed [9], which can compute the factor-
ization with a minimum amount of communication. However, the pivoting must
be still symmetrically applied, leading to irregular data accesses. Due to these
performance challenges, ScaLAPACK [10], which is the extension of LAPACK
on a distributed-memory computer, does not support the symmetric indefinite
factorization, and until recently, there were no implementations of the algorithm,
that can exploit a GPU. This motivated our efforts to review the different fac-
torization algorithms, develop their efficient implementations on multicores with
a GPU, that address the current limitations, and show the new state-of-the-art
outlook for this important problem. Another technique studied in this paper is a
symmetric version of the Random Butterfly Transformations (RBT) [22] on the
GPU. RBT can be combined with an LDL? factorization to probabilistically
improve the stablity of the factorization without pivoting. The performance of
RBT has been studied on multicores [8] and distributed-memory system [6], but
its performance has not been investigated on the GPU.

This paper is organized as follows. Section 2 describes three methods for
solving dense symmetric indefinite systems (Bunch-Kaufman and Aasen’s al-
gorithms, random butterfly transformations) and their implementation for hy-
brid CPU/GPU architectures. Section 3 presents performance results for the
factorizations using the above algorithms and how they compare with the LU
factorization. Section 4 contains concluding remarks.

2 Symmetric Indefinite Factorizations with a GPU

2.1 Bunch-Kaufman Algorithm

The most widely used algorithm for solving a symmetric indefinite linear
system is based on the block LDL” factorization (1) with the Bunch-Kaufman
algorithm [12], which is also implemented in LAPACK [2]. The pseudocode of
the algorithm is shown in Figure la. To select the pivot at each step of the
factorization, it scans two columns of the trailing submatrix, and depending on
the numerical values of the scanned matrix entries, it uses either 1-by-1 or 2-
by-2 pivot. The algorithm is backward stable subject to the growth factor [20,
p. 219]. In certain rare cases, the growth factor may be unbounded, leading to
the numerical instability of the factorization [4, p. 515]. To avoid this numerical
issue, another algorithm, commonly known as “rook pivoting” is proposed [4,
p. 523], which is now implemented in LAPACK. However, depending on the
matrix, the rook pivoting method could perform O(n?) comparisons, each of
which requires expensive synchronization. Hence, in this paper, we focus on the
Bunch Kaufman algorithm as a baseline for our performance comparison.

Our first implementation of the Bunch-Kaufman algorithm is based on a
hybrid CPU/GPU programming paradigm where the block column (commonly
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(a) Bunch-Kaufman.

(b) Communication-avoiding Aasen’s.

Fig. 1: Symmetric indefinite factorization algorithm.

referred to as a panel) is factorized on the CPU (e.g., using the threaded MKL
library [3]), while the trailing submatrix is updated on the GPU. This is often an
effective programming paradigm for many of the LAPACK subroutines because
the panel factorization is based on BLAS-1 or BLAS-2, which can be efficiently
implemented on the CPU, while BLAS-3 is used for the submatrix updates,
which exhibits high data parallelism and can be efficiently implemented on the
GPU [24]. Unfortunately, at each step of the panel factorization, the Bunch
Kaufman algorithm may select the pivot from the trailing submatrix. Hence,
though copying the panel from the GPU to the CPU can be overlapped with
the update of the rest of the trailing submatrix on the GPU, the look-ahead — a
standard optimization technique to overlap the panel factorization on the CPU
with the trailing submatrix update on the GPU — is prohibited. In addition,
when the pivot column is on the GPU, this leads to the expensive data transfer
between the GPU and the CPU at each step of the factorization. To avoid
this expensive data transfer, our second implementation performs the entire
factorization on the GPU. Though the CPU may be more efficient performing
the BLAS-1 and BLAS-2 based panel factorization, this implementation often
obtains higher performance by avoiding the expensive data transfer.

When the entire factorization is implemented on the GPU, to select a pivot
at each step of the Bunch-Kaufman algorithm, up to two columns of the trailing



submatrix must be scanned — the current and the one with index corresponding
to the row index of the element with the maximum modulus in the first column.
This not only leads to the expensive global reduce on the GPU, but also to
irregular data accesses since only the lower-triangular part of the submatrix
is stored. This makes it difficult to obtain high performance on the GPU. In
the next two sections, we describe two other algorithms (i.e., communication-
avoiding and randomization algorithms) that aim at reducing this bottleneck.

2.2 Aasen’s Algorithm

To solve a symmetric indefinite linear system, Aasen’s algorithm [1] factorizes
A into an LTLT decomposition. The left-looking algorithm takes advantage of
the symmetry of A and performs %n?’ + O(n?) flops, which is the same flop
count as that of the Bunch-Kaufman algorithm. In addition, like the Bunch-
Kaufman algorithm, it is backward stable subject to a growth factor. To main-
tain the stability, at each step of the factorization, it uses the largest element
of the current column being factorized as the pivot, leading to more regular
data access compared to the Bunch-Kaufman. To exploit the memory hierarchy
on a modern computer, a blocked version of the algorithm was developed [23],
which is based on a left-looking panel factorization, followed by a right-looking
trailing submatrix update using BLLAS-3 routines. In comparison to the column-
wise algorithm, this blocked algorithm performs slightly more flops, requiring
1+ nib)n?’ + O(n®ny) flops with a block size np, but BLAS-3 can be used to
perform most of these flops, often requiring much shorter factorization time on
modern computers. However, the panel factorization is still based on BLAS-1
and BLAS-2, which often obtains only a small fraction of the peak performance.
To improve the performance of the panel factorization, another variant of the
algorithm was proposed [9]. It computes an LTLT factorization of A, where T
is a banded matrix with its half-bandwidth equal to the block size ny, and then
uses a banded matrix solver to compute the solution. This algorithm factor-
izes each panel using an existing LU factorization algorithm, such as recursive
LU [16,19, 25] and communication-avoiding LU (CALU) [17, 18]. In comparison
with the panel factorization algorithm used in the block Aasen’s algorithm, these
LU factorization algorithms reduce communication, and are likely to speed up
the whole factorization process. This is referred to as a communication-avoiding
(CA) variant of the Aasen’s algorithm, and its pseudocode is shown in Figure 1b.

Though the GPU has a greater memory bandwidth than the CPU, the mem-
ory accesses are still expensive compared to the arithmetic operations. Hence,
our implementation is based on the CA Aasen’s algorithm. Though this algo-
rithm performs most of the flops using BLAS-3, most of the operations are on
the submatrices of the block size ny. In order to exploit parallelism between the
small BLAS calls, we extensively use GPU streams. In addition, for an efficient
application of the symmetric pivots after the panel factorization, we apply the
pivots in two steps. The first step copies all the columns of the trailing subma-
trix, which need to be swapped, into an n-by-2n; workspace. Here, because of
the symmetry, the k-th block column consists of the blocks in the k-th block



row and those in the k-th block column. Then, in the second step, we copy the
columns of the workspace back to a block column of the submatrix after the
column pivoting is applied. The same pivoting strategy is used to exploit the
parallelism on multicore CPU [13]. We tested using the LU factorization with
partial pivoting as the panel factorization, either using the multithreaded MKL
library on the CPU or using its native GPU implementation of MAGMA on
GPU. Though the BLAS-1 and BLAS-2 based panel factorization may be more
efficient on the CPU, the second approach avoids the expensive data transfer to
copy the panel from the GPU to the CPU.

2.3 Random Butterfly Transformations

Random Butterfly Transformation (RBT) is a randomization technique initially
described by Parker [22] and recently revisited for dense linear systems, either
general [5] or symmetric indefinite [6]. It has also been applied recently to sparse
direct solver in a preliminary paper [7]. The procedure to solve Az = b, where
A is a symmetric indefinite matrix, using a random transformation and the
LDLT factorization is summarized in Algorithm 1. The random matrix U is
chosen among a particular class of matrices called recursive butterfly matrices.
A butterfly matriz is an n X n matrix of the form

B<n> — i Ry Ry
V2 [Ro — Ry

where Ry and R; are random diagonal § x § matrices. A recursive butterfly

matriz of size n and depth d is defined recursively as
d—1
Bl<n/2 >

W<n,d> _ . . W<n’d_1>, with W<n,1> _ B<n>

B<n/2d*1>
2d—1

where the Bfn/zd "> are butterflies of size n/2¢=1 and B<"> is a butterfly of
size n. The application of RBT to symmetric indefinite problems was studied
in [14] where it is shown that in practice, d = 1 or 2 gives satisfactory results
(possibly using a few steps of iterative refinement). It is also shown that random
butterfly matrices are cheap to store and apply (O(nd) and O(dn?) respectively).
An implementation for the multicore library PLASMA was described in [8].

Algorithm 1 Random Butterfly Transformation Algorithm
Generate recursive butterfly matrix U
Apply randomization to update the matrix A and compute the matrix 4, = UT AU
Factorize the randomized matrix using LDLT factorization with no pivoting
Compute right-hand side UTb, solve A,y = U”b, then z = Uy




For the GPU implementation, we use a recursive butterfly matrix U of depth
d = 2. Only the diagonal values of the blocks are stored into a vector of size 2 x N
as described in [5]. Applying the depth 2 recursive butterfly matrix U consists
of multiple applications of depth 1 butterfly matrices on different parts of the
matrix A. The application of a depth 1 butterfly matrix is performed using a
CUDA kernel where the computed part of the matrix A is split in blocks. For
each of these blocks, the corresponding part of the matrix U is stored in the
shared memory to improve the memory access performance. Matrix U is small
enough to fit into the shared memory due to its packed storage.

To compute the LDLT factorization of A, without pivoting, we implemented
a block factorization algorithm on multicore CPUs with a GPU. In our imple-
mentation, the matrix is first copied to the GPU, then the CPU is used to com-
pute the LDLT factorization of the diagonal block. Once the resulting LDLT
factors of the diagonal block are copied back to the GPU, the corresponding
off-diagonal blocks of the L-factor are computed by the triangular solve on the
GPU. Finally, we update each block column of the trailing submatrix calling a
matrix-matrix multiply on the GPU.

3 Experimental Results

NVIDIA K40c + two 8-core Intel Sandy Bridge CPUs

—v— Nopiv

—v— RBT + Nopiv

—e—LU (hybrid)

—5— Aasen (hybrid, nb=256)

—4A— Aasen (GPU, nb=256)
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—A— Bunch-Kaufman (hybrid)
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Fig. 2: Performance of symmetric factorization (double precision).



Figure 2 compares the performance of the symmetric indefinite factorizations
on multicores with a GPU, where the “Gflop/s” is computed as the ratio of the
number of flops required for the LDL” factorization over time in second for the
particular dimension of the matrix, n. The experiments were conducted on two
eight-core Intel SandyBridge CPUs with an NVIDIA K40c GPU. The code is
compiled using the GNU gcc version 4.4.7 and the nvcc version 7.0 with the
optimization flag -03 and linked with the Intel’s Math Kernel Library version
xe_2013_sp1.2.144. First, when the matrix size is large enough (e.g., n > 10,000),
the performance of the Bunch-Kaufman algorithm can be improved using the
GPU over the threaded MKL on 16 cores Sandy Bridge CPUs. In addition,
performing the panel factorization on the GPU avoids the expensive data transfer
between the CPU and GPU, and may improve the performance of the hybrid
CPU/GPU implementation. Next, the communication-avoiding variant of the
Aasen’s algorithm further improves the performance of the Bunch-Kaufman by
reducing the synchronization and communication costs required for selecting
the pivots. However, the performance of all the symmetric factorization with the
provable stability was lower than that of the LU factorization, demonstrating
the cost of the irregular data access associated with the symmetric storage.
In addition, though our current implementations of the Bunch-Kaufman and
Aasen’s algorithms were slower than the LU factorization, they preserve the
symmetry which can reduce the runtime or memory requirement for the rest of
the software (e.g., sparse symmetric factorization, or any simulation code). The
symmetric factorization also preserves the inertia of the coefficient matrix.

In some physical applications involving dense symmetric complex non-hermitian
systems, it is not necessary to pivot in the LDL” factorization (see [20, p. 61]
for more information on this class of matrices). These systems are classically
solved using an LU factorization since SCALAPACK does not provide symmet-
ric factorization for this type of matrices. We consider here test matrices (in
single complex precision) discretized by the boundary element method, used
to approximate the solution of harmonic acoustic problems. Tables 11 and 12
present numerical results for the solution based on our LDL7 factorization with
no pivoting on GPU, applied to two sample matrices with comparison to LU fac-
torization. Due to the smaller number of flops, our LDL” factorization enables
us to accelerate the calculation by about 48%, while keeping a similar accuracy,
expressed here by computing the scaled residual ||b — Az||oo /(N||A]|oo X ||Z||0o)-

Table 1: Human head (matrix size is 10,424 Table 2: Car motor (matrix size is 15,135

in single complex precision) in single complex precision)
Time (sec) Scaled residual Time (sec) Scaled residual
LU 1.34 1.44e-10 LU 3.74 7.46e-11

LDLT NoPiv  0.69 1.37e-10 LDLT NoPiv  1.93 9.28e-11




4 Conclusion

We presented the performance of symmetric indefinite factorizations on multi-
core CPUs accelerated by a GPU. The symmetric pivoting required to maintain
the numerical stability of the factorization leads to frequent synchronizations and
exhibits irregular memory accesses which are difficult to optimize on a GPU. As
a result, until recently, there were no implementations of the algorithms that
can utilize the GPU. To enhance performance, we investigated the sveral tech-
niques to reduce the expensive communication required for pivoting (e.g., native
GPU and communication-avoiding implementations). Unfortunately, the over-
head associated with the symmetric pivoting can be still significant. However,
these algorithms preserve the symmetry, which is required in several physical ap-
plications and reduces the runtime and memory requirement for the rest of the
application software. Though it only has a probablistic error bound, randomiza-
tion using RBT followed by an LDL” factorization without pivoting outperforms
other algorithms and is about twice faster than the LU factorization. Our cur-
rent implementations are based on standard BLAS/LAPACK routines, and we
are improving the performance of factorization by developing specialized GPU
kernels. These implementations will be integrated in a new release of MAGMA.
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