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Abstract. As modern hardware keeps evolving, an increasingly effective ap-
proach to develop energy efficient and high-performance solvers is to design
them to work on many small size and independent problems. Many applica-
tions already need this functionality, especially for GPUs, which are currently
known to be about four to five times more energy efficient than multicore
CPUs. We describe the development of the main one-sided factorizations
that work for a set of small dense matrices in parallel, and we illustrate our
techniques on the QR factorization based on Householder transformations.
We refer to this mode of operation as a batched factorization. Our approach
is based on representing the algorithms as a sequence of batched BLAS rou-
tines for GPU-only execution. The hybrid CPU-GPU algorithms rely heavily
on using the multicore CPU for specific part of the workload. But in order
to benefit from the GPU’s significantly higher energy efficiency, the primary
design goal is to avoid the use of the multicore CPU and to exclusively rely on
the GPU. Additionally, this will result in the removal of the costly CPU-to-GPU
communication. Furthermore, we do not use a single symmetric multiproces-
sor (on the GPU) to factorize a single problem at a time. We illustrate how
our performance analysis and the use of profiling and tracing tools guided
the development and optimization of batched factorization to achieve up to
2-fold speedup and 3-fold better energy efficiency compared to our highly
optimized batched CPU implementations based on the MKL library (when
using two sockets of Intel Sandy Bridge CPUs). Compared to a batched QR
factorization featured in the CUBLAS library for GPUs, we achieved up to 5
speedup on the K40 GPU.

1 Introduction

Accelerators and coprocessors have enjoyed widespread adoption in computational
science, consistently producing many-fold speedups across wide range of scientific
disciplines and important applications [13]. The typical method of utilizing the
GPU accelerators is to increase the scale and resolution of an application, which
in turn increases its computational intensity; this tends to be a good match for
the steady growth in performance and memory capacity of this type of hardware.



Unfortunately, there are many important application types for which the standard
approach turns out to be a poor strategy for improving hardware utilization⁴.
Numerous modern applications tend to be cast in terms of a solution of many
small matrix operations, e.g., computations that require tensor contraction such as
quantum Hall effect, astrophysics [28], metabolic networks [26], CFD and result-
ing PDEs through direct and multifrontal solvers [45], high-order FEM schemes
for hydrodynamics [10], direct-iterative preconditioned solvers [20], and some im-
age [29] and signal processing [5]. That is, at some point in their execution, such
programs must perform a computation that is cumulatively very large, but whose
individual parts are very small; these parts cannot be efficiently mapped as separate
individuals on to the modern accelerator hardware. Under these circumstances,
the only way to achieve good performance is to find a way to group these small
inputs together and run them in large “batches.”

The emergence of large-scale, heterogeneous systems with GPU accelerators
and coprocessors has made the near total absence of linear algebra software for such
small matrix operations especially noticeable. Due to the high levels of parallelism
they support, accelerators or coprocessors, like GPUs, efficiently achieve very high
performance on large data parallel computations, so they have often been used
in combination with CPUs, where the CPU handles the small and difficult to par-
allelize tasks. Moreover, by using efficient batched codes, small problems can be
solved on GPUs with four to five times more energy efficiency than one can get
from multicore CPUs alone. For both of these reasons, and given the fundamental
importance of numerical libraries to science and engineering applications of all
types [25], the need for software that can perform batched operations on small
matrices is acute. This work is towards filling this critical gap, both by providing a
library that addresses a significant range of small matrix problems, and by driving
progress toward a standard interface that would allow the entire linear algebra
(LA) community to attack them together.

for Ai ∈ A1,A2, . . . ,Ak do
GenerateSmallLinearSystem(Ai )

for Ai ∈ A1,A2, . . . ,Ak do
Factorize(Ai )

Fig. 1. Batched computation example.

To better understand the problem,
consider Figure 1 that shows a sim-
ple batched computation that factorizes
a sequence of small matrices Ai . The
word small is used in relative terms as
the beneficial size of Ai will depend
on the circumstances. A straightforward
guideline to determine this size is the
ability of processing the matrices in par-
allel rather then sequentially. To achieve this goal it is necessary to co-locate a batch
of Ai in a fast GPU store – a cache or shared memory – and process it there with a
better use of parallel execution units.

Now this kind of optimization cannot bemade by the compiler alone for two pri-
mary reasons: the lack of standardized interfaces and the opaque implementation
of the factorization routine. The former derives from the fact that, until recently,

⁴ Historically, similar issues were associated with strong scaling [14] and were attributed
to a fixed problem size.



batched computations were not the primary bottleneck for scientific codes because
it was large size problems that posed a performance challenge. Once appreciable
increases in the processing power and memory capacity of GPUs removed this bot-
tleneck, the small size problems became prominent in the execution profile because
they significantly increased the total execution time. The latter is a simple conse-
quence of separation of concerns in the software engineering process whereby the
computational kernels are packaged as standalone modules that are highly opti-
mized and cannot be inlined into the batched loop in Figure 1. What we propose
is to define the appropriate interfaces so that our implementation can seamlessly
work with the compiler and use the code replacement technique so that the user
has an option of expressing the computation as the loop shown in the figure or a
single call to a routine from the new standard batch library.

Against this background, the goal of this work is two-fold: first, to deliver a
high-performance numerical library for batched linear algebra subroutines tuned
for themodern processor architecture and system designs. The library must include
LAPACK routine equivalents for many small dense problems as well as routines for
many small sparse matrix solvers, that must be constructed as much as possible
out of calls to batched BLAS routines and their look-alikes required in sparse
computation context. Second, and just as importantly, it must define modular
interfaces so that our implementation can seamlessly work with the compiler and
use code replacement techniques. This will provide the developers of applications,
compilers, and runtime systems with the option of expressing computation as a
loop (as shown in the figure), or a single call to a routine from the new batch
operation standard.

As might be expected, batched BLAS form the foundation of the framework for
batched algorithms proposed, with other tasks building up in layers above. The goal
of this approach is to achieve portability across various architectures, sustainability
and ease of maintenance, as well as modularity in building up the framework’s
software stack. In particular, on top of the batched BLAS (by algorithmic design),
we illustrate the building of a batched LAPACK. The new batched algorithms are
implemented and currently released through the MAGMA 1.6.1 library [21]. The
framework will allow for future work extension to batched sparse linear algebra,
and application-specific batched linear algebra. Finally, all the components are
wrapped up in a performance and energy autotuning framework.

In terms of the framework’s sustainability, it is important to note that batched
operations represent the next generation of software that will be required to effi-
ciently execute scientific compute kernels on self-hosted accelerators that do not
have accompanying CPUs such as the next generation of Intel Xeon Phi processors,
and on accelerators with a very weak host CPUs, e.g., various AMD APUmodels and
NVIDIA Tegra platforms. For such hardware, performing any non-trivial work on
the host CPU would slow down the accelerator dramatically, making it essential to
develop new batched routines as a basis for optimized routines for accelerator-only
execution.



2 Related work

There is a lack of numerical libraries that cover the functionalities of batched
computation for GPU accelerators and coprocessors. NVIDIA started to add cer-
tain batch functions in their math libraries; NVIDIA’s CUBLAS 6.5 [36] includes
batched Level 3 BLAS for gemm and trsm (triangular matrix solver), the higher-
level (LAPACK) LU and QR factorizations, matrix inversion, and a least squares
solver. All of these routines are for uniform size matrices. AMD and Intel’s MKL
do not provide batched operations yet. For higher-level routines, NVIDIA provides
four highly-optimized LAPACK-based routines, but they do not address the vari-
able sizes, extended functionality, portability and device-specific redesigns of the
LAPACK algorithms. Our initial proof-of-concept work shows the potential of ad-
dressing these issues, e.g., as illustrated in this paper by our 3× speedup compared
to the batch-optimized QR in CUBLAS.

Batched LA ideas can be applied to multicore CPUs as well. Indeed, small
problems can be solved efficiently on single core, e.g., using vendor supplied
libraries such asMKL [23] or ACML [4], because the CPU’s memory hierarchywould
back a “natural” data reuse (small enough problems can fit into small fast memory).
Besides memory reuse, to further speedup the computation, vectorization can be
added to use SIMD processor supplementary instructions—either explicitly as in
the Intel Small Matrix Library [22], or implicitly through the vectorization in BLAS.
Batched factorizations can then be efficiently computed for multicore CPUs by
having a single core factorize a single problem at a time. However, as we show,
the energy consumption is higher than the GPU-based factorizations and that our
GPU-based routine is about 2 times faster than the multicore implementation.

Despite the lack of support for batched operations, applications developers
implemented particular routines for certain cases, trying various approaches. For
example, targeting very small problems (of size up to 128), Villa et al. [37,38]
obtained good results for batched LU developed entirely for GPU execution, where
a single CUDA thread, or a single thread block, was used to solve one system at
a time. Similar techniques, including the use of single CUDA thread warp for sin-
gle factorization, were investigated by Wainwright [43] for LU with full pivoting
on matrices of size up to 32. Although the problems considered were often small
enough to fit in the GPU’s shared memory, e.g., 48 KB on a K40 GPU, and thus
able to benefit from data reuse, the results showed that the performance in these
approaches, up to about 20Gflop/s in double precision, did not exceed the per-
formance of memory bound kernels like gemv (which achieves up to 46Gflop/s
on a K40 GPU). Batched-specific algorithmic improvements were introduced for
the Cholesky factorization [9] and the LU factorization [8,17] that exceed in per-
formance the memory bound limitations mentioned above. Here we further de-
velop and conceptualize an approach based on batched BLAS plus a number of
batched-specific algorithmic innovations to significantly improve in performance
the previously published results on batched linear algebra.



3 Methodology and Algorithmic Design

In a number of research papers [9,8,19], we have shown that high-performance
batched algorithms can be designed so that the computation is performed by calls
to batched BLAS kernels, to the extent possible by the current BLAS API. This is
important since the use of BLAS has been crucial for the high-performance sustain-
ability of major numerical libraries for decades, and therefore we can leverage the
lessons learned from that success too. To enable the effective use of a batched BLAS
based approach, there is a need to develop highly efficient and optimized batched
BLAS routines that are needed by many high-level linear algebra algorithms such
as Cholesky, LU, and QR, either in batched or classical fashion.

�  LU, QR, or Cholesky  
on small diagonal matrices 

Sparse / Dense Matrix 
System 

�  TRSMs, QRs, or LUs   

�  TRSMs, TRMMs 

�  Updates (Schur complement)  
GEMMs, SYRKs, TRMMs 

DAG-based factorization Batched LA 

And many other BLAS/LAPACK, e.g., for application 
specific solvers,  preconditioners, and matrices 

Fig. 2. Direct sparse or dense factorizations—a DAG approach that needs efficient compu-
tation of many small linear algebra tasks.

To put the proposed methodology in context, Figure 2 shows an illustration of
our work on direct linear system solvers, be it sparse or dense, for many-core het-
erogeneous architectures. To provide parallelism in these solvers, the computation
can be expressed as a Directed Acyclic Graph (DAG) of small tasks with labeled
edges designating data dependencies, which naturally leads to the need to handle
many small LA problems in parallel. Our work through vendor recognition centers,
the efforts with collaborators from the HPC community, and the engagement with
applications developers has resulted in the accumulation of expertise, technologies,
and numerical software [6,27,42,31,1,42,40,41,32,3,30,12,7,15] that can be directly
leveraged in the development of state-of-the-art, portable, cross-platform batched
BLAS. The objective of our methodology is to minimize the development effort
and have a parametrized kernels that can be used for tuning on different kind of
architecture without the need to re-implement the kernel.

3.1 Algorithmic Baseline

The QR factorization of an m-by-n matrix A is of the form A = QR, where Q is
anm-by-m orthonormal matrix, and R is anm-by-n upper-triangular matrix. The
LAPACK routine GEQRF implements a right-looking QR factorization algorithm,
whose first step consists of the following two phases:



1) Panel factorization: The first panelA:,1 is transformed into an upper-triangular
matrix.
1. GEQR2 computes an m-by-m Householder matrix H1 such that HT

1 A:,1 =(
R1,1
0

)
, and R1,1 is an nb -by-nb upper-triangular matrix.

2. LARFT computes a block representation of the transformation H1, i.e.,
H1 = I −V1T1V

H
1 , where V1 is an m-by-nb matrix and T1 is an nb -by-nb

upper-triangular matrix.
2) Trailing submatrix update: LARFB applies the transformation computed by

GEQR2 and LARFT to the submatrix A:,2:nt :(
R1,2:nt
Â

)
:= (I −V1T1V

H
1 )

(
A1,2:nt

A2:mt ,2:nt

)
.

Then, the QR factorization of A is computed by recursively applying the same
transformation to the submatrix Â. The transformationsVj are stored in the lower-
triangular part of A, while R is stored in the upper-triangular part. Additional
m-by-nb storage is required to store Tj .

3.2 Optimized and parametrized batched BLAS kernels

We developed the most needed and performance-critical Level 3 and Level 2
batched BLAS routines. Namely, we developed the batched gemm (general matrix-
matrix multiplication), trsm (triangular matrix solver), and gemv (general matrix-
vector product) routines, as well as a number of Level 1 BLAS such as the dot
product, the norm functionality and the scal scaling routine. There are a number
of feasible design choices for batched BLAS, each best suited for a particular case.
Therefore, to capture as many of them as possible, we propose to build a design
space for batched BLAS that will include parametrized algorithms that are tuned
for modern and future hardware and take into account the matrix size. We also
propose a parametrized-tuned approach to find the optimal implementation within
the confines of the said design space.

We developed a parametrized basic kernel, that uses multiple levels of blocking,
including shared memory and register blocking as well as double buffering tech-
niques to hide the data communication with the computation. This kernel served
us to optimize and tune the MAGMA gemm routine for large matrix sizes originally
for Fermi GPUs [32], and lately for Kepler architectures. Recently, we extended it to
a batched gemm [19,18], now released through MAGMA 1.6.1 [21]. The extension
was done by autotuning the basic kernel and adding one more thread dimension
to account for the batch count. Our strategy is to develop optimized components
that can be used easily as plug-in device routine to provide many of the Level 3
and Level 2 BLAS routines. Following these techniques, we also developed our trsm
kernel. It consists of a sequence of calls to invert a 16×16 diagonal block followed
by a call to the gemm components which are already optimized and tuned.

Moreover, we developed the batched equivalent of LAPACK’s geqr2 routine to
perform the Householder panel factorizations. For a panel of nb columns, it con-
sists of nb steps where each step calls a sequence of the larfg and the larf routines.



At every step (to compute one column), the larfg involves a norm computation
followed by a scal that uses the results of the norm computation in addition to
some underflow/overflow checking. These Level 1 BLAS kernels have been devel-
oped as device component routine to plug them easily when needed. The norm
computation is a sum reduce and thus a synchronization step. To accelerate it,
we implemented a two-layer tree reduction where for sizes larger than 32, all 32
threads of a warp progress to do a tree reduction similar to the MPI_REDUCE op-
eration, and the last 32 elements are reduced by a single thread. Our parametrized
technique let us run our autotuner and tune these kernels. As a result, custom
batched implementations of both larfg and the larf have been developed. When
the panel size is small enough, we use the shared memory to load the whole panel
and to perform its computation in fast memory. For larger panel sizes, we load
only the vector that is annihilated at each step meaning that the norm, scal, and
thus the larfg computation operate on data in shared memory, as well as the larf
read data from shared memory but write data in main memory since it cannot fit
into the shared memory. When the panel is very large, and here it becomes out
of the context of batched small matrices, the BLAS kernel operates using many
thread-blocks and an atomic synchronization.

3.3 Development of Batched LAPACK algorithms

The development of batched LAPACK algorithms and implementations is our main
example of how to use the batched BLAS for higher-level algorithms. Section 1
highlighted the main challenges and describes how our work overcomes them
through new algorithmic designs and use of high-performance batched BLAS. In
particular, we overcome the memory bound limitations that previous developers
had on small problems, and exceed the performance of even state-of-the-art vendor
implementations by up to 3×. Similarly to the batched BLAS, we build a design
space for batched LAPACK that will include parametrized algorithms that are ar-
chitecture and matrix size aware. An autotuning approach is used to find the best
implementation within the provisioned design space.

We developed the performance-critical LAPACK routines to solve small dense
linear systems or least squares problems. Namely, we developed the LU, and
Cholesky factorizations in [9,8,19], and we present in detail our progress and
development for the QR decomposition in this paper.

We developed technologies for deriving high-performance entirely GPU imple-
mentations to solve sets of small linear algebra problems (as in LAPACK) in parallel.
Note that entirely GPU implementations have been avoided up until recently in nu-
merical libraries, especially for small and difficult to parallelize tasks like the ones
targeted by the batched factorization. Indeed, hybridization approaches were in
the forefront of developing large scale solvers as they were successfully resolving
the problem by using CPUs for the memory bound tasks [40,2,44,11,16]. For large
problems, the panel factorizations (the source of memory bound, not easy to paral-
lelize tasks) are always performed on CPU. For small problems, however, this is not
possible, and our experience has shown that hybrid algorithms would not be as ef-
ficient as they are for large problems. Therefore, we developed an approach based



on a combination of 1) batched BLAS, 2) batched-specific, and 3) architecture-
aware algorithmic improvements. Batched-specific algorithms that were different
from LAPACK were needed since we could not outperform the NVIDIA-optimized
LAPACK-based implementation by only using our own aggressive optimizations
on top of the standard LAPACK algorithm. In particular, for our QR decompo-
sition, besides high-performance batched BLAS, we also used batch-specific and
architecture-aware algorithmic advances described below.

Recursive Multilevel Nested Blocking. The panel factorizations (geqr2) de-
scribed above factorize the nb columns one after another, similarly to the LAPACK
algorithm. At each of the nb steps, a rank-1 update is required to update the vectors
to the right of the factorized column i. This operation is done by the larf kernel.
Since we cannot load the entire panel into the shared memory of the GPU, the
columns to the right are loaded back and forth from the main memory at every
step except for the very small size cases (e.g., size less than 32×8) Thus, one can
expect that this is the most time consuming part of the panel factorization.

Our analysis using the NVIDIA Visual Profiler [33] shows that a large fraction
of even a highly optimized batched factorization is spent in the panels, e.g., 40% of
the time for the QR decomposition. The profiler reveals that the larf kernel requires
more than 75% of the panel time by itself. The inefficient behavior of these routines
is also due to the memory access. To resolve this challenge, we propose to improve
the efficiency of the panel and to reduce the memory access by using a two-level
nested blocking technique as depicted in Figure 3. First, we recursively split the
panel to an acceptable block size nb as described in Figure 3a. In principle, the
panel can be blocked recursively until a single element. Yet, in practice, 2-3 blocked
levels (an nb = 32 for double precision was the best) are sufficient to achieve high
performance. Then, the routine that performs the panel factorization (geqr2) must
be optimized, which complicates the implementation. This optimization can bring
between 30% to 40% improvement depending on the panel and the matrix size.
In order to reach our optimization goal, we also blocked the panel routine using
the classical blocking fashion to small blocks of size ib (ib = 8 was the optimized
choice for double precision) as described in Figure 3b. More than 25% boost in
performance is obtained by this optimization.

Block Recursive dlarft Algorithm. The larft is used to compute the upper trian-
gular matrixT that is needed by the QR factorization in order to update either the
trailing matrix or the right hand side of the recursive portion of the QR panel. The
classical LAPACK computes T column by column in a loop over the nb columns
as described in Algorithm 1. Such implementation takes up to 50% of the total
QR factorization time. This is due to the fact that the kernels needed – gemv and
trmv – require implementations where threads go through the matrix in different
directions (horizontal vs. vertical, respectively). An analysis of the mathematical
formula of computing T allowed us to redesign the algorithm to use Level 3 BLAS
and to increase the data reuse by putting the column of T in shared memory.
One can observe that the loop can be split into two loops – one for gemv and
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(b) Classical blocking fashion.

Fig. 3. The recursive two-level nested blocking fashion used in our implementation to achieve
high-performance batched kernels.

one for trmv. The gemv loop that computes each column of T̂ (see the notation
in Algorithm 1) can be replaced by one gemm to compute all the columns of T̂
if the triangular upper portion of A is zero and the diagonal is made of ones.
For our implementation that is already needed for the trailing matrix update in
order to use gemm in the larfb, and thus can be exploited here as well. For the
trmv phase, we load the T matrix into shared memory as this allows all threads to
read/write from/into shared memory during the nb steps of the loop. The redesign
of this routine is depicted in Algorithm 2. Since we developed recursive blocking
algorithm, we must compute the T matrix for every level of the recursion. Nev-
ertheless, the analysis of Algorithm 2 let us conclude that the portion of the T ’s
computed in the lower recursion level are the same as the diagonal blocks of theT
of the upper level (yellow diagonal blocks in Figure 4), and thus we can avoid their
(re-)computation. For that we modified Algorithm 2 in order to compute either the
whole T or the upper rectangular portion that is missed (red/yellow portions in
Figure 4). Redesigning the algorithm to block the computation using Level 3 BLAS,
accelerated the overall algorithm on average by about 20− 30% (depending on
various parameters).

for j ∈ {1,2, . . . ,nb} do
dgemv to compute T̂1:j−1, j =AHj :m,1:j−1×Aj :m, j

dtrmv to compute T1:j−1, j =T1:j−1,1:j−1×T̂1:j−1, j
T (j, j) = tau(j)
Algorithm 1: Classical implementation of the dlarft routine.

Trading extra computation for higher performance. The goal here is to replace
the use of low performance kernels with higher performance ones—often for the



dgemm to compute T̂1:nb,1:nb =A
H
1:m,1:nb ×A1:m,1:nb

load T̂1:nb,1:nb to the shared memory. for j ∈ {1,2, . . . ,nb} do
dtrmv to compute T1:j−1, j =T1:j−1,1:j−1×T̂1:j−1, j
T (j, j) = tau(j)

write back T to the main memory.

Algorithm 2: Block recursive dlarft routine.

level 2	

level 1	



level 3	



Fig. 4. The shape of the matrix T for different level of the recursion during the QR decom-
position.

cost of more flops, e.g., trmm used by the larfb can be replaced by gemm. The
QR trailing matrix update uses the larfb routine to perform A = (I −VTHV H )A.
The upper triangle of V is zero with ones on the diagonal and also the matrix T is
upper triangular. The classical larfb uses trmm to perform the multiplication with
T and with the upper portion of V . If one can guarantee that the lower portion
of T is filled with zeroes and the upper portion of V is filled with zeros and ones
on the diagonal, then the trmm can be replaced by gemm. Thus we implemented
a batched larfb that uses three gemm kernels by initializing the lower portion of
T with zeros, and filling up the upper portion of V with zeroes and ones on the
diagonal. Note that this brings 3nb3 extra operations. The benefits again depend
on various parameters, but on current architectures we observe an average of 10%
improvement, and see a trend where its effect on the acceleration grows from older
to newer systems.



4 Performance Results

4.1 Hardware Description and Setup

We conducted our experiments on an Intel two-socket multicore systemwith two 8-
core Intel Xeon E5-2670 (Sandy Bridge) processors, each running at 2.6GHz. Each
socket has 20MiB of shared Level 3 cache, and each core has a private 256KiB
Level 2 and 64KiB Level 1 cache. The system is equipped with the total of 52GiB
of main memory and the theoretical peak in double precision is 20.8Gflop/s per
core, i.e., 332.8Glop/s in total for the two sockets. It is also equipped with NVIDIA
K40c cards with 11.6GiB of GDDR memory per card running at 825MHz. The
theoretical peak in double precision is 1,689.6 Gflop/s per GPU. The cards are
connected to the host via two PCIe I/O hubs with 6GB/s bandwidth. A number of
software packages were used for the experiments. On the CPU side, we used MKL
(Math Kernel Library) [23] with the icc compiler (version 2013.sp1.2.144) and on
the GPU accelerator we used CUDA version 6.5.14.

Related to power, we note that in this particular setup the CPU and the GPU
have about the same theoretical power draw. In particular, the Thermal Design
Power (TDP) of the Intel Sandy Bridge is 115W per socket, or 230W in total,
while the TDP of the K40c GPU is 235W. Therefore, we roughly expect that a
GPU would have a power consumption advantage if it outperforms (in terms of
time to solution) the 16 Sandy Bridge cores. Note that based on the theoretical
peaks the GPU’s advantage should be about 4 to 5×. This is observed in practice
as well, especially for regular workloads on large data-parallel problems that can
be efficiently implemented for GPUs.

4.2 Performance results

Getting high performance across accelerators remains a challenging problem that
we address with the algorithmic and programming techniques described in this pa-
per. The efficient strategies used exploit parallelism and increase the use of Level 3
BLAS operations across the GPU. We highlighted this through a set of experiments
that we performed on our system. We compare our batched implementations with
the dgeqrfBatched routine from the CUBLAS [35] library. Our experiments were
performed on batches of 1,000 matrices of different sizes going from 32× 32 to
1024×1024.

We also compare our batched QR to two CPU implementations. First is the
simple CPU implementation which mean to go in a loop style to factorize matrix
after matrix, where each factorization is using the multi-thread version of the
MKL Library. This implementation is limited in terms of performance and does not
achieve more than 90Gflop/s. The main reason for this low performance is the fact
that the matrix is small – it does not exhibit parallelism and so the multithreaded
code is not able to feed with work all 16 threads used. For that we proposed
another version of the CPU implementation. Since the matrices are small (< 1024)
and at least 16 of them fit in the Level 3 cache, one of the best technique is to
use each thread to factorize independently a matrix. This way 16 factorizations



are conducted independently in parallel. We believe that this implementation is
one of the best optimized implementations for the CPU. This later implementation
is twice faster than the simple implementation. It reaches around 160Gflop/s in
factorizing 1,000 matrices of size 1024×1024.

The progress of our batched QR implementation over the different optimiza-
tions shows attractive behavior. For a 1000 matrix of size 512× 512 each, the
classical block implementation does not attain more than 55Gflop/s. The inner
panel blocking makes the performance reach around 70Gflop/s; and the recursive
blocking alone improves performance up to 108Gflop/s; combined, the two-level
blocking brings performance up to around 136Gflop/s. The optimized computa-
tion ofT draws it up to 195Gflop/s. The other optimizations (replacing dtrmm by
dgemm in both dlarft and dlarfb), combined with the streamed/batched dgemm
calls, bring the performance of the GPU implementation to around 221Gflop/s.
Despite the CPU’s hierarchical memory advantage, our experiments show that our
GPU batched QR factorization is able to achieve a speedup of 2× vs. the best CPU
implementation using 16 Sandy Bridge cores, and 4× vs. the simple one. More-
over, our algorithm reaches around 334Gflop/s for matrices of size 1024×1024,
which is between 5× to 20× faster than the CUBLAS implementation for matrices
in the range of 512 to 1024. We should mention that the CUBLAS implementation
is well suited for very small matrices such as matrices of size less than 64× 64.
The performance of CUBLAS for these sizes outperforms our proposed algorithm
as well as both of the CPU implementations.
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Fig. 5. Performance in Gflops/s of the GPU vs. the CPU versions of our batched QR decom-
position for different matrix sizes wherem = n.



4.3 Energy Efficiency

For our energy efficiency measurements we use power and energy estimators
built into the modern hardware platforms. In particular, on the tested CPU, Intel
Xeon E5-2690, we use RAPL (Runtime Average Power Limiting) hardware coun-
ters [24,39]. By the vendor’s own admission, the reported power/energy numbers
are based on a model which is tuned to match well the actual measurements
for various workloads. Given this caveat, we can report that the idle power of
the tested Sandy Bridge CPU, running at fixed frequency of 2600MHz, consumes
about 20W of power per socket. Batched operations raise the consumption to
above 125÷ 140W per socket and the large dense matrix operations, that reach
the highest fraction of the peak performance, raise the power draw to about 160W
per socket. We should mention that the CPU measurement do not include the
power cost of the memory access while the GPU measurement includes it. In order
to include the power for the CPU, we had to change in the BIOS and we were not
allowed to do it on our testing machine. However, our previous results showed that
the power of the CPU memory access can be estimated to be 40W on average. On
some systems, energy consumption numbers do not include the power consumed
by the main memory as the memory modules do not report their voltage levels
to the CPU’s memory controller on those systems, which renders RAPL ineffective
for the purpose of estimating temporal power draw. However, based on estimates
from similarly configured systems, we estimate that the power consumption for the
main memory under load is between 30W and 40W depending on the memory
size and configuration.

For the GPU measurements we use NVIDIA’s NVML (NVIDIA Management
Library) library [34]. NVML provides a C-based programmatic interface for mon-
itoring and managing various states within NVIDIA Tesla GPUs. On Fermi and
Kepler GPUs (like the K40c used) the readings are reported to be accurate to
within +/-5% of current power draw. The idle state of the K40c GPU consumes
about 20W. Batched factorizations raise the consumption to about 150÷ 180W,
while large dense matrix operations raise the power draw to about 200W. For
reference, it is worth noting that the active idle state draws 62W.

We depict in Figure 6 the comparison of the power consumption required by
the three implementations of the batched QR decomposition: the best GPU and
the two CPU implementations. The problem solved here is about 1,000 matrices
of size 1024×1024 each. The green curve shows the power required by the simple
CPU implementation. In this case the batched QR proceeds as a loop over the 1,000
matrices where each matrix is factorized using the multithreaded dgeqrf routine
form the Intel MKL library on the 16 Sandy Bridge cores. The blue curve shows the
power required by the optimized CPU implementation. Here, the code proceeds by
sweep of 16 parallel factorizations each using the sequential dgeqrf routine form
the Intel MKL library. The red curve shows the power consumption of our GPU
implementation of the batched QR decomposition. One can observe that the GPU
implementation is attractive because it is around 2× faster than the optimized CPU
implementation, and moreover, because it consumes 3× less energy.



Fig. 6. Comparison of the power consumption for the QR decomposition of 1,000 matrices
of size 1024×1024.

According to the experiments we conduct to measure the power we found
that the GPU implementations of all of the batched one-sided factorizations reach
around 2× speedup over their best CPU counterpart and are 3× less expensive in
term of energy.

5 Conclusions an Future Work

Designing algorithms to work on small problems is a concept that can deliver higher
performance through improved data reuse. Many applications have relied on this
design concept to get higher hardware efficiency, and users have requested it as
a supported functionality in linear algebra libraries. Besides having the potential
to improve the overall performance of applications with computational patterns
ranging from dense to sparse linear algebra, developing these algorithms for the
new low-powered and power-efficient architectures can bring significant savings
in energy consumption as well, as we showed. Therefore, by solving the technical
issues and providing the needed batched LA tools, the future development on the
framework presented will also address the following long term goals: (1) Define a
new standard for the use of small matrix computations in applications; (2) Provide
a methodology to solve many small size LA problems and an initial implementation
that is portable at all levels of the platform pyramid, from embedded devices to
supercomputers; (3) Establish grounds for the next generation of innovations in
HPC applications and sustainability of high-performance numerical libraries.



Futurework extensions include building batched sparse, and application-specific
batched linear algebra capabilities. Of specific interest will be the effect of the
batched framework on high-performance numerical libraries and run-time sys-
tems. Current approaches, e.g., in dense tiled algorithms, are based on splitting
algorithms into small tasks that get inserted into, and scheduled for execution by,
a run-time system. This often amounts to splitting large gemms into many small
gemms, which is known to encounter overheads for scheduling and saving pa-
rameters (although most are the same). The batched approach, besides providing
high performance for small tasks, will be a natural fit to extend these and similar
libraries, as well as provide a new hierarchical scheduling model for queuing jobs,
organizing run-time systems, and interacting with accelerators/co-processors.
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