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Abstract
Scientific applications require solvers that work on many small size problems that are independent from each other. At
the same time, the high-end hardware evolves rapidly and becomes ever more throughput-oriented and thus there is an
increasing need for an effective approach to develop energy-efficient, high-performance codes for these small matrix prob-
lems that we call batched factorizations. The many applications that need this functionality could especially benefit from the
use of GPUs, which currently are four to five times more energy efficient than multicore CPUs on important scientific
workloads. This paper, consequently, describes the development of the most common, one-sided factorizations,
Cholesky, LU, and QR, for a set of small dense matrices. The algorithms we present together with their implementations
are, by design, inherently parallel. In particular, our approach is based on representing the process as a sequence of
batched BLAS routines that are executed entirely on a GPU. Importantly, this is unlike the LAPACK and the hybrid
MAGMA factorization algorithms that work under drastically different assumptions of hardware design and efficiency of
execution of the various computational kernels involved in the implementation. Thus, our approach is more efficient than
what works for a combination of multicore CPUs and GPUs for the problems sizes of interest of the application use
cases. The paradigm where upon a single chip (a GPU or a CPU) factorizes a single problem at a time is not at all efficient
in our applications’ context. We illustrate all of these claims through a detailed performance analysis. With the help of
profiling and tracing tools, we guide our development of batched factorizations to achieve up to two-fold speedup and
three-fold better energy efficiency as compared against our highly optimized batched CPU implementations based on
MKL library. The tested system featured two sockets of Intel Sandy Bridge CPUs and we compared with a batched LU
factorizations featured in the CUBLAS library for GPUs, we achieve as high as 2.5 3 speedup on the NVIDIA K40 GPU.
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1. Introduction

An improved data reuse is what drives the design of
algorithms to work well on small problems, which, in
the end, delivers higher performance. When working
on small problems it is possible to improve the reuse as
the input data gets loaded into the fast memory, it can
be used presumably many times until the completion of
the task. Many numerical libraries as well as applica-
tions already use this functionality but it needs to be
further developed. For example, the tile algorithms
from the area of dense linear algebra (Agullo et al.,
2009), various register and cache blocking techniques
for sparse computations (Im et al., 2004), sparse direct
multifrontal solvers (Yeralan et al., 2013), high-order
finite element methods (FEM) (Dong et al., 2014), and

numerous applications including astrophysics (Messer
et al., 2012), hydrodynamics (Dong et al., 2014), image
processing (Molero et al., 2013), signal processing
(Anderson et al., 2012), are examples of this trend.

The lack of linear algebra software for small prob-
lems is especially noticeable for GPUs. The develop-
ment for CPUs, as pointed out in Sections 2 and 4.1,
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can be done easily using existing software infrastruc-
ture. On the other hand, GPUs, due to their
throughput-oriented design, are efficient for large data
parallel computations, and therefore have often been
used in combination with CPUs, where the CPU han-
dles the small and difficult to parallelize tasks. The
need to overcome the challenges of solving small prob-
lems on GPUs is also related to the GPU’s energy effi-
ciency often four to five times better than that for
multicore CPUs. To take advantage of it, codes ported
to GPUs must exhibit high efficiency. This is one of the
main goals of this work: to develop GPU algorithms
and their implementations on small problems in order
to outperform multicore CPUs in raw performance and
energy efficiency. In particular, we target the main one-
sided factorizations, LU, QR, and Cholesky, for a set
of small dense matrices of the same size.

Figure 1 gives a schematic view of the batched prob-
lem considered. Basic block algorithms, such as those in

LAPACK (Anderson et al., 1999), factorize at step i a

block of columns, denoted by panel Pi, followed by the

application of the transformations accumulated in the

panel factorization to the trailing sub-matrix Ai.
Interleaved with the algorithmic work are questions

on what programming and execution model is best for

small problems, how to offload work to the GPUs, and

what should be the interaction with the CPUs if any.

The offload-based execution model and the accompa-

nying terms host and device have been established by

the directive-based programming standards: OpenACC

(OpenACC Corporation, 2011) and OpenMP 4

(OpenMP Architecture Review Board, 2013). While

these specifications are host-centric, in the context of

dense linear algebra computations, we recognize three

distinctly different modes of operation: hybrid, native,

and batched execution. The first employs both the host

CPU and the device accelerator, be it a GPU or an

Intel coprocessor, that cooperatively execute a particu-

lar algorithm. The second offloads the execution com-

pletely to the accelerator. The third is the focus of this

article and involves execution of a multitude of small

problems on the accelerator while the host CPU only

sends the input data and receives the computed result

in a pipeline fashion to alleviate the overheads of the

dearth of PCIe bandwidth and comparatively long

latency of the transfers.

2. Related work

Small problems can be solved efficiently on a single
CPU core, e.g. using vendor supplied libraries such as
MKL (Intel Corporation, 2014a) or ACML (AMD
Corporation, 2014), because the CPU’s memory hierar-
chy would back a ‘‘natural’’ data reuse (small enough
problems can fit into small fast memory). In addition
to memory reuse, to further speedup the computation,
vectorization to use single input multiple data (SIMD)
processor supplementary instructions can be added
either explicitly as in the Intel Small Matrix Library
(Intel Corporation, 1999), or implicitly through the
vectorization in BLAS. Batched factorizations then can
be efficiently computed for multicore CPUs by having
a single core factorize a single problem at a time (see
Section 4.1). However, as we show, the energy con-
sumption is higher than the GPU-based factorizations.

For GPU architectures, prior work has been concen-
trated on achieving high-performance for large prob-
lems through hybrid algorithms (Tomov et al., 2014).
Motivation came from the fact that the GPU’s com-
pute power cannot be used on panel factorizations as
efficiently as on trailing matrix updates (Volkov and
Demmel, 2008). As a result, various hybrid algorithms
were developed where panels are factorized on the
CPU while the GPU is used for trailing matrix updates
(mostly GEMMs) (Agullo et al., 2010; Dongarra et al.,
2014). For large enough problems the panel factoriza-
tions and associated with it CPU–GPU data transfers
can be overlapped with GPU work. For small problems
however, this is not possible, and our experience has
shown that hybrid algorithms would not be as efficient
as they are for large problems.

Indeed, targeting very small problems (of size up to
128), Oreste et al. (2013a,b) obtained good results for
batched LU developed entirely for GPU execution,
where a single CUDA thread, or a single thread block,
was used to solve one system at a time. Similar tech-
niques, including the use of single CUDA thread warp
for single factorization, were investigated by
Wainwright (2013) for LU with full pivoting on
matrices of size up to 32. Although the problems con-
sidered were often small enough to fit in the GPU’s
shared memory, e.g. 48 kB on a K40 GPU, and thus to
benefit from data reuse (n2 data for 2

3
n3 flops for LU),

the results showed that the performance in these

Figure 1. Schematic view of a batched one-sided factorization problem for a set of k dense matrices. An approach based on
batched BLAS factorizes the matrices simultaneously.
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approaches, up to about 20 Gflop/s in double preci-
sion, did not exceed the maximum performance due to
memory bound limitations (e.g. 46 Gflop/s on a
K40 GPU for DGEMV’s 2n2 flops on n2 data; see also
the performance analysis in Section 5.2).

Here we developed an approach based on batched
BLAS plus some batched-specific algorithmic improve-
ments that exceeds in performance the memory bound
limitations mentioned above. A batched LU based on
batched BLAS has been also developed recently and
released through CUBLAS (NVIDIA Corporation, b),
but has lower performance compared with our
approach when the algorithmic improvements are
added.

3. Algorithmic background

In this section, we present a brief overview of the linear
algebra aspects for development of either Cholesky,
Gauss, or the Householder QR factorizations based on
block outer-product updates of the trailing matrix.
Conceptually, one-sided factorization maps a matrix A
into a product of matrices X and Y:

F :
A11 A12

A21 A22

� �
7! X11 X12

X21 X22

� �
3

Y11 Y12

Y21 Y22

� �

Algorithmically, this corresponds to a sequence of
in-place transformations of A, whose storage is over-
written with the entries of matrices X and Y (Pij indi-
cates currently factorized panels):

A
(0)
11 A

(0)
12 A

(0)
13

A
(0)
21 A

(0)
22 A

(0)
23

A
(0)
31 A

(0)
32 A

(0)
33

2
64

3
75!

P11 A
(0)
12 A

(0)
13

P21 A
(0)
22 A

(0)
23

P31 A
(0)
32 A

(0)
33

2
64

3
75!

!
XY11 Y12 Y13

X21 A
(1)
22 A

(1)
23

X31 A
(1)
32 A

(1)
33

2
4

3
5!

XY11 Y12 Y13

X21 P22 A
(1)
23

X31 P32 A
(1)
33

2
4

3
5!

!
XY11 Y12 Y13

X21 XY22 Y23

X31 X32 A
(2)
33

2
4

3
5!

XY11 Y12 Y13

X21 X22 Y23

X31 X32 P33

2
4

3
5!

!
XY11 Y12 Y13

X21 XY22 Y23

X31 X32 XY33

2
4

3
5! XY½ �

where XYij is a compact representation of both Xij and
Yij in the space originally occupied by Aij.

There are two distinct phases in each step of the
transformation from [A] to [XY]: panel factorization (P)
and trailing matrix update A(i)!A(i+1).
Implementation of these two phases leads to a straight-
forward iterative scheme shown in Algorithm 1.

Algorithm 1 is called block algorithm since every
panel P is of size nb which allows the trailing matrix
update to use the Level 3 BLAS routines. Note that if

nb = 1 the algorithm falls back to the standard
algorithm introduced by LINPACK in the 1980s. The
factorization of each panel is accomplished by a non-
blocked routine. Table 1 shows the BLAS and the
LAPACK routines that should be substituted for the
generic routines named in the algorithm.

Most of the current libraries focus on large matrices
by using hybrid (CPU–GPU) algorithms (Innovative
Computing Laboratory at the University of Tennessee,
2014). Because the panel factorization is considered a
latency-bound workload, which faces a number of inef-
ficiencies on throughput-oriented GPUs, it was pre-
ferred to perform its factorization on the CPU. Due to
their high performance rate exhibited on the update
operation, and the fact that the update requires the
majority of floating-point operations, the GPU has to
perform the trailing matrix update. Note that a data
transfer of the panel to and from the CPU is required
at each step of the loop. The classical implementation
as described in Algorithm 1 lacks efficiency because
either the CPU or the GPU is working at a time. The
MAGMA library modified further the algorithm to
overcome this issue and to achieve closer to optimal
performance. In fact, the ratio of the computational
capability between the CPU and the GPU is orders of
magnitude, and thus the common technique to alleviate
this imbalance and keep the GPU loaded is to use
lookahead.

Algorithm 2 shows a very simple case of lookahead
of depth 1. The update operation is split into an update
of the next panel, and an update of the rest of the trail-
ing matrix. The splitting is done to overlap the commu-
nication and the factorization of the panel with the
update operation. This technique let us hide the mem-
ory bound operation of the panel factorization and also
keep the GPU loaded by the trailing matrix update.

In the batched implementation, however, we cannot
afford such a memory transfer at any step, since the

Table 1. Panel factorization and trailing matrix update routines.

Cholesky Householder Gauss

PanelFactorize xPOTF2 xGEQF2 xGETF2

xTRSM

TrailingMatrix

Update

xSYRK2

xGEMM

xLARFB xLASWP

xTRSM

xGEMM

Algorithm 1. Two-phase implementation of a one-sided
factorization.

for Pi 2 {P1, P2, ., Pn} do
PanelFactorize(Pi)
TrailingMatrixUpdate(A(i))
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trailing matrix is small and the amount of computation
is not sufficient to overlap it in time with the panel fac-
torization. Many small data transfers will take away
any performance advantage enjoyed by the GPU. In
the next section, we describe our proposed implementa-
tion and optimization for the batched algorithm.

4. Batched one-sided factorizations

The purpose of batched routines is to solve a set of
independent problems in parallel. When the matrices
are large enough to fully load the device with work,
there is no need for batched routines: the set of inde-
pendent problems can be solved in serial as a sequence
of problems. Moreover, it is preferred to solve it in
serial, and not in batched fashion, to better enforce
locality of data and increase the cache reuse. However,
when matrices are small (for example, matrices of size
less than or equal to 512), the amount of work needed
to perform the factorization cannot saturate the device,
either CPU or GPU, and thus there is a need for
batched routines.

4.1. Batched factorizations for multicore CPUs

In broad terms, there are two main ways to approach
batched factorization on multicore CPU. The first is to
parallelize each small factorization across all of the
cores and the second one is to execute each factoriza-
tion sequentially on a single core with all of the cores
working independently on their own input data. With
these two extremes clearly delineated, it is easy to see
the third possibility: the in-between solution where each
matrix is partitioned among a handful of cores and
multiple matrices are worked on at a time as the total
number of available cores permits.

The tall-and-skinny matrix factorization scenarios
were studied before (Dongarra et al., 2011, 2012;
Luszczek and Dongarra, 2012) which has some relation
to batched factorization on multicore CPUs. The prob-
lem can either be of reduced size and be fully cache-
contained even for level 1 cache in which case the algo-
rithm becomes compute-bound because the cache can
fully satisfy the issue rate of the floating-point units.
For our target matrix sizes, the cache containment con-
dition does not hold and, consequently, the most effi-
cient scheme is to employ fixed matrix partitioning
schemes with communication based on cache coher-
ency protocols to achieve nearly linear speedup over

purely sequential implementation (Dongarra et al.,
2011, 2012; Luszczek and Dongarra, 2012). To the best
of the authors’ knowledge, this work constitutes nearly
optimal implementation scenario that by far exceeds
the state-of-the-art vendor and open-source implemen-
tations currently available. Unfortunately, the band-
width still remains the ultimate barrier: the achieved
performance could be a multiple times better than the
next best solution but it is still a fraction of the peak
performance of the processor.

For batched operations, the cache partitioning tech-
niques did not work well in our experience because of
the small size of matrices which is not the intended tar-
get for this kind of optimization. We tested various lev-
els of nested parallelism to exhaust all possibilities of
optimization available on CPUs. The two extremes
mentioned above get about 40 Gflop/s (one outer task
and all 16 cores working on a single problem at a time,
16-way parallelism for each matrix) and 100 Gflop/s
(16 outer tasks with only a single core per task, sequen-
tial execution each matrix), respectively. The scenarios
that between these extremes achieve somewhere in
between in terms of performance. For example, with 8
outer tasks with 2 cores per task we achieve about
50 Gflop/s. Given these results and to increase clarity
of the presentation, we only report the extreme setups
in the results shown below.

4.2. Batched factorizations for GPUs

One approach to the batched factorizations problem
for GPUs is to consider that the matrices are small
enough and to therefore factor them using the non-
blocked algorithm. The implementation in this case is
simple but the performance obtained turns out to be
unacceptably low. Thus the implementation of the
batched factorization must also be blocked, and thus
follow the same iterative scheme (panel factorization
and trailing matrix update) shown in Algorithm 1. Note
that the trailing matrix update consists of Level 3
BLAS operations (Xsyrk for Cholesky, Xgemm for LU
and Xlarfb for QR) which are compute intensive and
thus can perform very well on the GPU. Thus, the most
difficult phase of the algorithm is the panel
factorization.

A recommended way of writing efficient GPU ker-
nels is to use the GPU’s shared memory: load it with
data and reuse that data in computations as much as
possible. The idea behind this is to do the maximum

Algorithm 2. Lookahead of depth 1 for the two-phase factorization.

for Pi 2 {P1, P2, ., Pn} do
CPU: PanelFactorize(Pi)
GPU: TrailingMatrixUpdate of only next panel of (A(i) which is P2)
CPU and GPU work in parallel: CPU go to the next loop while GPU continue the update

GPU: continue the TrailingMatrixUpdate of the remaining (A(i21)) using the previous panel (Pi21)
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amount of computation before writing the result back
to the main memory. However, the implementation of
such technique may be complicated for the small prob-
lems considered as it depends on the hardware, the pre-
cision, and the algorithm. Moreover, our experience
showed that this procedure provides very good perfor-
mance for simple GPU kernels but is not that appeal-
ing for batched algorithm for two main reasons. First,
the current size of the shared memory is 48 kB per
streaming multiprocessor (SMX) for the newest Nvidia
K40 (Kepler) GPUs, which is a low limit for the
amount of the batched problems data that can fit at
once. Second, completely saturating the shared mem-
ory per SMX can decrease the performance of memory
bound routines, since only one thread-block will be
mapped to that SMX at a time. Indeed, due to a lim-
ited parallelism in the factorization of a small panel,
the number of threads used in the thread block will be
limited, resulting in low occupancy, and subsequently
poor core utilization. In our study and analysis we
found that redesigning the algorithm to use small
amount of shared memory per kernel (less than 10 kB)
not only provides an acceptable data reuse but also
allows many thread-blocks to be executed by the same
SMX in parallel, and thus taking a better advantage of
its resources. As a results the performance obtained is
more than 33 better than the one where the entire
shared memory is used. Since the CUDA warp consists
of 32 threads, it is recommended to develop CUDA
kernels that use multiple of 32 threads per thread-
block. For our batched algorithm, we discovered
empirically that the best value for nb is 32.

In the following we describe our batched routines
based on batched BLAS: the way they are implemen-
ted, and all of the relevant optimizations that have been
incorporated in order to achieve performance. All rou-
tines are batched and denoted by the corresponding
LAPACK routine names. We have implemented them
in the four standard floating-point precisions: single
real, double real, single complex, and double complex.
For convenience, we use the double precision routine
name throughout the paper.

4.2.1. Methodology based on batched BLAS. In a batched
problem solution methodology that is based on batched
BLAS, there are many small dense matrices that must
be factorized simultaneously (as illustrated in Figure 1).
This means that all the matrices will be processed simul-
taneously by the same kernel. Yet, each matrix problem
is still solved independently, identified by a unique
batch ID. We follow this model in our batched imple-
mentations and developed the following set of new
batched CUDA kernels.

� Cholesky panel: Provides the batched equivalent of
LAPACK’s dpotf2 routine. At step j of a panel of

size (m, nb), the column vector A(j : m, j) must be
computed. This requires a dot-product using row
A(j, 1 : j) to update element A(j, j), followed by a
dgemv A(j+1, 1) A(j, 1 : j) = A(j+1 : m, j), and
finally a dscal on column A(j+1 : m, j). This rou-
tine involves two Level 1 BLAS calls (dot and scal),
as well as a Level 2 BLAS dgemv. Since there are nb
steps, these routines are called nb times, and thus
one can expect that the performance depends on the
performances of Level 2 and Level 1 BLAS opera-
tions. Hence, it is a slow, memory bound algorithm.
We used shared memory to load both row A(j, 1 : j)
and column A(j+1 : m, j) to reuse them, and wrote
a customized batched dgemv kernel to read and
write these vectors from/into the shared memory.

� LU panel: This provides the batched equivalent of
LAPACK’s dgetf2 routine to factorize panels of
size m3 nb at each step of the batched LU factoriza-
tions. It consists of three Level 1 BLAS calls (idamax,
dswap and dscal) and one Level 2 BLAS call (dger).
The dgetf2 procedure proceeds as follows: find the
maximum element of the ith column, then swap the ith
row with the row owning the maximum, and scale the
ith column. To achieve higher performance and mini-
mize the effect on the Level 1 BLAS operation, we
implemented a tree reduction to find the maximum
where all the threads contribute to find the max. Since
it is the same column that is used to find the max then
scaled, we load it to the shared memory. This is the
only data that we can reuse within one step.

� QR panel: This provides the batched equivalent of
LAPACK’s dgeqr2 routine to perform the
Householder panel factorizations. It consists of nb
steps where each step calls a sequence of the dlarfg
and the dlarf routines. At every step (to compute
one column), the dlarfg involves a norm computa-
tion followed by a dscal that uses the results of the
norm computation in addition to some underflow/
overflow checking. The norm computation is a sum
reduce and thus a synchronization step. To acceler-
ate it, we implemented a two-layer tree reduction
where for sizes larger than 32, all 32 threads of a
warp progress to do a tree reduction similar to the
MPI_REDUCE operation, and the latest 32 ele-
ment are reduced by only one thread. Another opti-
mization is to allow more than one thread-block to
execute the dlarfg kernel which means the kernel
needs to be split over two: one for norm and one
for scaling in order to guarantee the synchroniza-
tion. Custom batched implementations of both
dlarfg and the dlarf have been developed.

� Trailing matrix updates: The trailing matrix updates
are mainly Level 3 BLAS operations. However, for
small matrices it might be difficult to extract per-
formance from very small Level 3 BLAS kernels.
The dgemm is the best Level 3 BLAS kernel: it is
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GPU friendly, highly optimized, and achieves the
highest performance among BLAS. For that, high
performance can be achieved if we redesign our
update kernels to be represented by dgemms. For
Cholesky, the update consists of the dsyrk routine.
It performs a rank-nb update on either the lower or
the upper portion of A22. Since CUBLAS does not
provide a batched implementation of this routine,
we implemented our own. It is based on a sequence
of customized dgemms in order to extract the best
possible performance. The trailing matrix update
for the Gaussian elimination (LU) is composed of
three routines: the dlaswp that swaps the rows on
the left and the right of the panel in consideration,
followed by the dtrsm to update A12  L�1

11 A12, and
finally a dgemm for the update
A22  A22 � A21L�1

11 A12. The swap (or pivoting) is
required to improve the numerical stability of the
Gaussian elimination. However, pivoting can be a
performance killer for matrices stored in column
major format because rows in that case are not
stored continuously in memory, and thus cannot be
read coalescently. Indeed, a factorization stored in
column-major format can be 23 slower (depend-
ing on hardware and problem sizes) than imple-
mentations that transpose the matrix in order to
internally use a row-major storage format (Volkov
and Demmel, 2008). Nevertheless, experiments
showed that this conversion is too expensive in the
case of batched problems. Moreover, the swapping
operations are serial, that is row by row. This limits
the parallelism. To minimize this penalty, we pro-
pose a new implementation that emphasizes a par-
allel swap and allows coalescent read/write. We
also developed a batched dtrsm. It loads the small
nb3 nb L11 block into shared memory, inverts it
with the dtrtri routine, and then the A12 update is
accomplished by a dgemm. In general, computing

the inverse of a matrix may suffer from numerical
stability, but since A11 results from the numerically
stable LU with partial pivoting and its size is just
nb3 nb, or in our case 323 32, we do not have this
problem (Croz et al., 1992). For the Householder
QR decomposition the update operation is referred
by the dlarfb routine. We implemented a batched
dlarfb that is composed of three calls to the batched
dgemm:
A22  (I � VTH V H )A22 [ (I � A21TH AH

21)A22.

4.3. Techniques for high-performance batched
factorizations

4.3.1. Parallel swapping. Profiling the batched LU reveals
that more than 60% of the time is spent in the swap-
ping routine. Figure 2 shows the execution trace of the
batched LU for 2,000 matrices of size 512. We can
observe on the top trace that the classical dlaswp ker-
nel is the most time consuming part of the algorithm.
The swapping consists of nb successive interchanges of
two rows of the matrices. The main reason that this
kernel is the most time consuming is because the nb
row interchanges are performed in a sequential order,
and that the data of a row is not coalescent, thus the
thread warps do not read/write it in parallel. It is clear
that the main bottleneck here is the memory access.
Indeed, slow memory accesses compared to high com-
pute capabilities have been a persistent problem for
both CPUs and GPUs. CPUs for example alleviate the
effect of the long-latency operations and bandwidth
limitations by using hierarchical caches. Accelerators
on the other hand, in addition to hierarchical mem-
ories, use thread-level parallelism (TLP) where threads
are grouped into warps and multiple warps assigned
for execution on the same SMX unit. The idea is that
when a warp issues an access to the device memory, it
stalls until the memory returns a value, while the

swap kernel 60%

gemm kernel 15%

gemm kernel 30%

swap kernel 10%

classical swap: 

parallel swap: 

Figure 2. Execution trace of the batched LU factorization using either classical swap (top) or our new parallel swap (bottom).
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accelerator’s scheduler switches to another warp. In
this way, even if some warps stall, others can execute,
keeping functional units busy while resolving data
dependencies, branch penalties, and long-latency mem-
ory requests. In order to overcome the bottleneck of
swapping, we propose to modify the kernel to apply all
nb row swaps in parallel. This modification will also
allow the coalescent write back of the top nb rows of
the matrix. Note that the first nb rows are those used
by the dtrsm kernel that is applied right after the
dlaswp, so one optimization is to use shared memory
to load a chunk of the nb rows, and apply the dlaswp

followed by the dtrsm at the same time. We changed
the algorithm to generate two pivot vectors, where the
first vector gives the final destination (e.g. row indices)
of the top nb rows of the panel, and the second gives
the row indices of the nb rows to swap and bring into
the top nb rows of the panel. Figure 2 depicts the exe-
cution trace (bottom) when using our parallel dlaswp
kernel. The experiment shows that this reduces the time
spent in the kernel from 60% to around 10% of the
total elapsed time. Note that the colors between the top
and the bottom traces do not match each other; this is
because the Nvidia profiler puts always the most expen-
sive kernel in green. As a result, the performance gain
obtained is about 1.83 as shown by the purple curve
of Figure 3. We report each of the proposed optimiza-
tion for the LU factorization in Figure 3 but we would
like to mention that the percentage of improvement
obtained for the Cholesky and QR factorization is simi-
lar and to simplify we reported the LU factorization
only. Note that starting from this version we were able
to be faster than the CUBLAS implementation of the
batched LU factorization.

4.3.2. Recursive nested blocking. The panel factorizations
described in Section 4.2.1 factorize the nb columns one
after another, similarly to the LAPACK algorithm. At
each of the nb steps, either a rank-one update is
required to update the vectors to the right of the factor-
ized column i (this operation is done by the dger kernel
for LU and the dlarf kernel for QR), or a left looking
update of column i by the columns on its left, before
factorizing it (this operation is done by dgemv for
the Cholesky factorization). Since we cannot load the
entire panel into the shared memory of the GPU, the
columns to the right (in the case of LU and QR) or to
the left (in the case of Cholesky) are loaded back and
forth from the main memory at every step. Thus, one
can expect that this is the most time-consuming part of
the panel factorization. A detailed analysis using the
profiler reveals that the dger kernel requires more than
80% and around 40% of the panel time and of the
total LU factorization time, respectively. Similarly for
the QR decomposition, the dlarf kernel used inside the
panel computation need 65% and 33% of the panel
and the total QR factorization time, respectively.
Likewise, the dgemv kernel used within the Cholesky
panel computation needs around 91% and 30% of the
panel and the total Cholesky factorization time, respec-
tively. This inefficient behavior of these routines is also
due to the memory access. For that, to overcome this
bottleneck, we propose to improve the efficiency of the
panel and to reduce the memory access by using a
recursive level of blocking technique as depicted in
Figure 4. In principle, the panel can be blocked recur-
sively until a single element. Yet, in practice, 2–3
blocked levels are sufficient to achieve high perfor-
mance. The above routines must be optimized for each

Figure 3. Performance in Gflops/s of the different versions of our batched LU factorizations compared to the CUBLAS
implementation for different matrix sizes where m = n.

Haidar et al. 7

 at UNIV OF TENNESSEE on March 9, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


blocked level, which complicates the implementation.
More than 30% boost in performance is obtained by
this optimization, as demonstrated in Figure 3 for the
LU factorization. The same trend has been observed
for both the Cholesky and the QR factorization.

4.3.3. Trading extra computation for higher performance. The
challenge discussed here is the following: for batched
problems there is a need to minimize the use of low-
performance kernels on the GPU even if they are Level
3 BLAS. For the Cholesky factorization this concerns
the dsyrk routine that is used to update the trailing
matrix. The performance of dsyrk is important to the
overall performance, since it takes a big part of the run-
time. We implemented the batched dsyrk routine as a
sequence of dgemm routines, each of size M = m,
N = K = nb. In order to exclusively utilize the dgemm

kernel, our implementation writes both the lower and
the upper portion of the nb3 nb diagonal blocks of the
trailing matrix. This results in nb3 extra operations for
the diagonal block. However, since nb is small (e.g.
nb = 32) these extra operations can be considered free.
In practice, the extra operation allows us to use dgemm

and thus achieve higher performance than the one that
touches the lower/upper portion of the nb3 nb diagonal
blocks. Tests show that our implementation of dsyrk is
twice faster than the dgemm kernel for the same matrix
size. This shows that our dsyrk is very well optimized in
order to reach the performance of dgemm (which is
twice slower as it computes twice more flops).

We applied the same technique in the dlarfb routine
used by the QR decomposition. The QR trailing matrix
update uses the dlarfb routine to perform
A22 =(I � VTH V H )A22 =(I � A21TH AH

21)A22. The upper
triangle of V is zero with ones on the diagonal. In the
classical dlarfb what is available is A21 that stores V in
its lower triangular part and R (part of the upper A) in
its upper triangular part. Therefore, the above is

computed using dtrmm for the upper part of A21 and
dgemm for the lower part. Also, the T matrix is an
upper triangular and therefore the classical dlarfb

implementation uses dtrmm to perform the multiplica-
tion with T. Thus, if one can guarantee that the lower
portion of T is filled with zeroes and the upper portion
of V is filled zeros and ones on the diagonal, the dtrmm

can be replaced by dgemm. Thus, we implemented a
batched dlarfb that uses three dgemm kernels by initia-
lizing the lower portion of T with zeros, and filling up
the upper portion of V with zeroes and ones on the
diagonal. Note that this brings 3nb3 extra operations,
but again, the overall time spent in the new dlarfb

update using the extra computation is around 10% less
than the one using the dtrmm.

Similarly to dsyrk and dlarfb, we implemented the
batched dtrsm (that solves AX = B) by inverting the
small nb3 nb block A and using dgemm to get the final
results X = A21B.

4.3.4. Block recursive dlarft algorithm. The dlarft is used to
compute the upper triangular matrix T that is needed
by the QR factorization in order to update either the
trailing matrix or the right-hand side of the recursive
portion of the QR panel. The classical LAPACK com-
putes T column by column in a loop over the nb col-
umns as described in Algorithm 3. Such
implementation takes up to 50% of the total QR fac-
torization time. This is due to the fact that the kernels
needed, dgemv and dtrmv, require implementations
where threads go through the matrix in different direc-
tions (horizontal versus vertical, respectively). An anal-
ysis of the mathematical formula of computing T
allowed us to redesign the algorithm to use Level 3
BLAS and to increase the data reuse by putting the col-
umn of T in shared memory. One can observe that the
loop can be split into two loops: one for dgemv and
one for dtrmv. The dgemv loop that computes each
column of T̂ can be replaced by one dgemm to com-
pute all of the columns of T̂ if the triangular upper por-
tion of A is zero and the diagonal is made of ones. For
our implementation that is already needed for the trail-
ing matrix update in order to use dgemm in the dlarfb,
and thus can be exploited here as well. For the dtrmv

phase, we load the T matrix into shared memory as this
allows all threads to read/write from/into shared mem-
ory during the nb steps of the loop. The redesign of this

Figure 4. Recursive nested blocking.

Algorithm 3. Classical implementation of the dlarft routine.

for j 2 {1, 2, ., nb} do
dgemv to compute T̂1:j�1, j = AH

j:m, 1:j�13Aj:m, j

dtrmv to compute T1:j�1, j = T1:j�1, 1:j�13T̂1:j�1, j

T(j, j) = tau(j)
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routine is depicted in Algorithm 4. Since we developed
recursive blocking algorithm, we have to compute the
T matrix for every level of the recursion. Nevertheless,
the analysis of Algorithm 4 let us conclude that the
portion of the Ts computed in the lower recursion level
are the same as the diagonal blocks of the T of the
upper level (yellow diagonal blocks in Figure 6), and
thus we can avoid their (re-)computation. For that we
modified Algorithm 4 in order to compute either the
whole T or the upper rectangular portion that is missed
(red/yellow portions in Figure 6).

4.4. Streamed dgemm

As our main goal is to achieve higher performance, we
performed deep analysis of every kernel of the algo-
rithm. We discovered that 70% of the time is spent in
the batched dgemm kernel after the previously
described optimizations were applied. An evaluation of
the performance of the dgemm kernel using either
batched or streamed dgemm is illustrated in Figure 7.
The curves let us conclude that the streamed dgemm is
performing better than the batched one for some cases,
e.g., for k = 32 when the matrix size is of order
m . 200 and n . 200. We note that the performance
of the batched dgemm is stable and does not depend
on k, in the sense that the difference in performance
between k = 32 and k = 128 is minor. However, it is

bound by 300 Gflop/s. For that we propose to use the
streamed dgemm whenever is faster, and to roll back
to the batched one otherwise. Figure 8 shows the trace
of the batched LU factorization of 2,000 matrices of
size 512 using either the batched dgemm (top trace) or
the combined streamed/batched dgemm (bottom
trace). We can see that the use of the streamed dgemm

(when the size allows it) can speed up the factorization
by about 20%.

5. Performance results

5.1. Hardware description and setup

We conducted our experiments on Intel multicore sys-
tem with two 8-cores socket Intel Xeon E5-2670 (Sandy
Bridge) processors, each running at 2.6 GHz. Each
socket had 20 MB of shared L3 cache, and each core
had a private 256 kB L2 and 64 kB L1 cache. The sys-
tem is equipped with 52 GB of memory and the theore-
tical peak in double precision is 20.8 Gflop/s per core,
i.e. 332.8 Glop/s in total for the two sockets. It is also

Algorithm 4. Block recursive dlarft routine.

dgemm to compute T̂1:nb, 1:nb = AH
1:m, 1:nb3A1:m, 1:nb

load T̂1:nb, 1:nb to the shared memory. for j 2 {1, 2, ., nb} do

dtrmv to compute T1:j�1, j = T1:j�1, 1:j�13T̂1:j�1, j

T(j, j) = tau(j)
write back T to the main memory.

panel: classical getf2 38%

panel: blocked getf2 8%

classical dgetf2: 

nested blocking of dgetf2: 

Figure 5. Execution trace of the batched LU factorization using either classical getf2 (top) or our recursive getf2 (bottom).

Figure 6. The shape of the matrix T for different level of the
recursion during the QR decomposition.
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equipped with a NVIDIA K40c cards with 11.6 GB of
GDDR memory per card running at 825 MHz. The
theoretical peak in double precision is 1,689.6 Gflop/s.
The cards are connected to the host via two PCIe I/O
hubs with 6 GB/s bandwidth.

A number of software packages were used for the
experiments. On the CPU side, we used the MKL
(Math Kernel Library) (Intel Corporation, 2014a) with
the icc compiler (version 2013.sp1.2.144) and on the
GPU accelerator we used CUDA version 6.0.37.

Related to power, we note that in this particular
setup the CPU and the GPU have about the same theo-
retical power draw. In particular, the Thermal Design
Power (TDP) of the Intel Sandy Bridge is 115 W per
socket, or 230 W in total, while the TDP of the K40c
GPU is 235 W. Therefore, we roughly expect that a
GPU would have a power consumption advantage if it
outperforms (in terms of time to solution) the 16 Sandy
Bridge cores. Note that based on the theoretical peaks

the GPU’s advantage should be about a factor of 4–5.
This is observed in practice as well, especially for regu-
lar workloads on large data-parallel problems that can
be efficiently implemented for GPUs.

5.2. Performance analysis

The performance of the non-blocked versions can be
bounded by the performance of the rank-one update.
Its flops/bytes ratio for double precision numbers is

3n
16+ 16n

(for m = n). Therefore, a top performance for
n = 500 and read/write achievable bandwidth of
160 Gflop/s would be 160 3 3 3 500

16+ 16 3 500
= 29:9Gflop=s.

This shows for example that our non-blocking LU from
Figure 3 achieves this theoretically best performance.
This is the limit for the other non-blocking one-sided
factorizations as well.

Similar analysis for a best expected performance can
be done for the block algorithms as well. Their upper

Figure 7. Performance comparison between the streamed and the batched dgemm kernel for different value of K and different
matrix sizes where m = n.

stream
ed dgem

m

batched dgemm

stream
ed dgem

m
g

batched dgemm

Figure 8. Execution trace of the batched LU factorization using either batched dgemm (top) or streamed/batched dgemm

(bottom).
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performances are bounded in general by the rank-nb
performance, e.g. illustrated in Figure 7 for nb = 32
and 64. Although we do not reach the asymptotic per-
formance of 400 GFlop/s at n = 500, as we show, our
performances grow steadily with n, indicating that the
O(n2) flops in addition to the rank-nb are slow and n
needs to grow in order for their influence on the perfor-
mance to become less significant compared with the
rank-nb’s O(n3) flops.

5.3. Comparison with CUBLAS on a K40c

Getting high performance across accelerators remains a
challenging problem that we address with the algorith-
mic and programming techniques described in this
paper. The efficient strategies used exploit parallelism
and increase the use of Level 3 BLAS operations across
the GPU. We highlighted this through a set of experi-
ments that we performed on our system. We compare
our batched implementations with the CUBLAS
(NVIDIA Corporation, b) library whenever possible
(CUBLAS features only a dgetrfBatched routine). Our
experiments were performed on batches of 2,000
matrices of different sizes going from 323 32 to
5123 512.

Figure 9 shows the performance of the LU factoriza-
tion. The dgetrfBatched version, marked as
‘‘CUBLAS’’, reaches a performance of around
70 Gflop/s for matrices size of 5123 512. We first com-
pare to a naı̈ve implementation that is based on the

assumption that matrices of size (\ 512) are very small
for block algorithms, and therefore uses the non-
blocked version. For example, for the case of LU this is
the dgetf2 routine. The routine is very slow and the
performance obtained reaches less than 30 Gflop/s, as
shown in Figure 3. Note that although low, this is also
the optimal performance achievable by this type of
algorithms, as explained in Section 5.2.

Our second comparison is to the classic LU factori-
zation, i.e. the one that follows LAPACK’s two-phase
implementation described in Algorithm 1. This algo-
rithm achieves 63 Gflop/s as shown in Figure 3.

To reach beyond 100 Gflop/s, we used the technique
that optimizes pivoting with parallel swap. Next step in
performance improvement was the use of two-level
blocking of the panel, which enables performance levels
that go slightly above 130 Gflop/s. The final two
improvements are streamed/batched gemm, which
moves the performance beyond 160 Gflop/s, and
finally, the two-levels blocking update, (also what we
called recursive blocking) completes the set of optimiza-
tions and takes the performance beyond 180 Gflop/s.
Thus our batched LU achieves up to 2.53 speedup
compared to its counterpart from the CUBLAS library.

5.4. Comparison to multicore CPU solutions

Here we compare our batched LU to the two CPU
implementations proposed in Section 4.1. The simple
CPU implementation is to go in a loop style to
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Figure 9. Performance in Gflops/s of our different version of the batched LU factorization compared to the CUBLAS
implementation for different matrix sizes where m = n.
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factorize matrix after matrix, where each factorization
is using the multi-thread version of the MKL library.
This implementation is limited in terms of performance
and does not achieve more than 50 Gflop/s. The main
reason for this low performance is the fact that the
matrix is small: it does not exhibit parallelism and so
the multithreaded code is not able to feed with work all
16 threads used. For that we proposed another version
of the CPU implementation. Since the matrices are
small (\ 512) and at least 16 of them fit in the L3 cache
level, one of the best technique is to use each thread to
factorize independently a matrix. This way 16 factori-
zations are conducted independently in parallel. We
think that this implementation is one of the best opti-
mized implementations for the CPU. This latter imple-
mentation is twice as fast as the simple implementation.
It reaches around 100 Gflop/s in factorizing 2,000
matrices of size 5123 512. Experiments show that our
GPU batched LU factorization is able to achieve a
speedup of a factor of 1.8 versus the best CPU imple-
mentation using 16 Sandy Bridge cores, and a factor of
4 versus the simple one.

The performances obtained for the Cholesky and
QR factorizations are similar to the results for LU. A
comparison against the two CPU implementations for
Cholesky and QR are given in Figures 10 and 11,
respectively.

Similarly to the LU, our first GPU implementation
of the batched Cholesky factorization follows the classi-
cal LAPACK implementation. Compared with the
non-blocking algorithm this version increases the use of
shared memory and attains at n = 500 an upper bound
of 60 Gflop/s. The different optimization techniques
from Section 4.3 drive the performance of the Cholesky

factorization up to 200 Gflop/s. The two CPU imple-
mentations behave similarly to those for LU. The sim-
ple CPU implementation achieves around 60 Gflop/s
while the optimized one reaches 100 Gflop/s. This
yields a speedup of 23 against the best CPU imple-
mentation using 16 Sandy Bridge cores.

The progress of our batched QR implementation
over the different optimizations shows the same beha-
vior. The classical block implementation does not attain
more than 50 Gflop/s. The recursive blocking improves
performance up to 105 Gflop/s, and the optimized com-
putation of T draws it up to 127. The other optimiza-
tions (replacing dtrmm by dgemm in both dlarft and
dlarfb), combined with the streamed/batched dgemm

bring the GPU implementation to around 167 Gflop/s.
The simple CPU implementation of the QR decomposi-
tion does not attain more than 50 Gflop/s while the
optimized one gets 100 Gflop/s. Despite the CPU’s
hierarchical memory advantage, our GPU batched
implementation is about a factor of 1.7 faster.

5.5. Energy efficiency

For our energy efficiency measurements we use power
and energy estimators built into the modern hardware
platforms. In particular, on the tested CPU, Intel Xeon
E5-2690, we use RAPL (Runtime Average Power
Limiting) hardware counters (Intel Corporation, 2014b;
Rotem et al., 2012). By the vendor’s own admission, the
reported power/energy numbers are based on a model
which is tuned to match well the actual measurements
for various workloads. Given this caveat, we can report
that the idle power of the tested Sandy Bridge CPU,
running at fixed frequency of 2600 MHz, consumes

Figure 10. Performance in Gflops/s of the GPU vs. the CPU versions of our batched Cholesky factorizations for different matrix
sizes where m = n.
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about 20 W of power per socket. Batched operations
raise the consumption to above 125–140 W per socket
and the large dense matrix operations, that reach the
highest fraction of the peak performance, raise the
power draw to about 160 W per socket.

For the GPU measurements we use NVIDIA’s
NVML (NVIDIA Management Library) library
(NVIDIA Corporation, a). NVML provides a C-based
programmatic interface for monitoring and managing

various states within NVIDIA Tesla GPUs. On Fermi
and Kepler GPUs (such as the K40c used) the readings
are reported to be accurate to within 65% of current
power draw. The idle state of the K40c GPU consumes
about 20 W. Batched factorizations raise the consump-
tion to about 150–180 W, while large dense matrix
operations raise the power draw to about 200 W.

We depict in Figure 12 the comparison of the power
consumption required by the three implementations of

Figure 11. Performance in Gflops/s of the GPU versus the CPU versions of our batched QR decomposition for different matrix
sizes where m = n.
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the batched QR decomposition: the best GPU and the
two CPU implementations. The problem solved here is
about 4,000 matrices of size 5123 512 each. The green
curve shows the power required by the simple CPU
implementation. In this case the batched QR proceeds
as a loop over the 4,000 matrices where each matrix is
factorized using the multithreaded dgeqrf routine form
the Intel MKL library on the 16 Sandy Bridge cores.
The blue curve shows the power required by the opti-
mized CPU implementation. Here, the code proceeds
by sweep of 16 parallel factorizations each using the
sequential dgeqrf routine form the Intel MKL library.
The red curve shows the power consumption of our
GPU implementation of the batched QR decomposi-
tion. One can observe that the GPU implementation is
attractive because it is around 23 faster than the opti-
mized CPU implementation and, moreover, because it
consumes a factor of 3 less energy.

According to the experiments we conduct to measure
the power we found that the GPU implementations of
all of the batched one-sided factorizations reach around
a factor of 2 speedup over their best CPU counterpart
and are a factor of 3 less expensive in terms of energy.

6. Conclusions and future directions

Designing algorithms to work on small problems is a
concept that can deliver higher performance through
an improved data reuse. Many applications have relied
on this design concept to get higher hardware effi-
ciency, and users have requested it as a supported func-
tionality in linear algebra libraries. In addition to
having the potential to improve the overall perfor-
mance of applications with computational patterns
ranging from dense to sparse linear algebra, developing
these algorithms for the new low-powered and power-
efficient architectures can bring significant savings in
energy consumption. We demonstrated how to accom-
plish this in the case of batched dense solvers for GPU
architectures.

We showed that efficient batched dense solvers can
be implemented relatively easily for multicore CPUs,
relying on existing high-performance libraries such as
MKL for building blocks. For GPUs, on the other
hand, the development is not straightforward. Our lit-
erature review pointed out that the pre-existing solu-
tions were either just memory-bound, or even if highly
optimized, did not exceed in performance the corre-
sponding CPU versions (if they are highly optimized
such as those developed in this work and use a number
of cores scaled to ensure the same CPUs power draw as
a GPU). We demonstrated that GPUs, with proper
algorithmic enhancements and with the batched BLAS
approach used, can have an advantage over CPUs on
this workload. In particular, the algorithmic work on
blocking, variations of blocking like in the recursive

nested blocking, adding extra flops to improve paralle-
lism and regularity of the computation, streaming, and
other batched/algorithm-specific improvements as in
the LU’s parallel swapping, contributed most in
enabling the GPUs to outperform the CPUs on a
workload that was previously favored for execution on
multicore CPU architectures due to their larger cache
sizes and well-developed memory hierarchy.

To illustrate the improvements, we compared the
results obtained on current high-end GPUs and CPUs.
In particular, we considered a single NVIDIA K40c
GPU versus two Intel Sandy Bridge CPUs (16 cores in
total) as this configuration has the same accumulative
power draw on the two systems. While the power draw
is the same (around 240 W), the GPU has about a fac-
tor of 4 higher theoretical performance peak, and there-
fore is expected to have around a factor of 3–4
advantage in both performance and energy efficiency.
Indeed, improvements like these have been observed on
large classical numerical algorithms in both dense and
sparse linear algebra, where efficient GPU implementa-
tions are possible. In this paper, we demonstrated that
one can take advantage of the GPUs for small batched
linear solvers as well. In particular, we achieved around
a factor of 2 speedup compared with our optimized
CPU implementations and a factor of 3 better energy
efficiency.

As the development of efficient small problem sol-
vers becomes more intricate on new architectures, we
envision that users will further demand their availabil-
ity in high-performance numerical libraries, and that
batched solvers will actually become a standard feature
in those libraries for new architectures. Our plans are
to release and maintain this new functionality through
the MAGMA libraries for NVIDIA GPU accelerators,
Intel Xeon Phi coprocessors, and OpenCL with optimi-
zations for AMD GPUs.

The batched algorithms and techniques can be used
and extended to develop totally GPU implementations
for standalone linear algebra problems. These would be
useful, for example, to replace the hybrid CPU–GPU
algorithms in cases where energy consumption, instead
of higher-performance through use of all available
hardware resources, is the top priority. Moreover,
totally GPU implementations can have a performance
advantage as well, when the host CPU becomes slower
compared with the accelerator in future systems. For
example, in mobile devices featuring ARM processors
enhanced with GPUs, such as the Jetson TK1, we have
already observed that the totally GPU implementations
have a significant advantage in both energy consump-
tion and performance. This has motivated another
future work direction: the development and release of a
MAGMA Embedded library that would incorporate
entirely GPU/coprocessor implementations for standa-
lone, as well as batched, dense linear algebra problems.
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