
Computing Low-rank Approximation of a Dense Matrix on

Multicore CPUs with a GPU and its Application to Solving a

Hierarchically Semiseparable Linear System of Equations

Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra
{iyamazaki,tomov,dongarra}@icl.utk.edu

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, U.S.A.

Abstract

Low-rank matrices arise in many scientific and engineering computation. Both computa-
tional and storage costs of manipulating such matrices may be reduced by taking advantages
of their low-rank properties. To compute a low-rank approximation of a dense matrix, in this
paper, we study the performance of QR factorization with column pivoting or with restricted
pivoting on multicore CPUs with a GPU. We first propose several techniques to reduce the
postprocessing time, which is required for restricted pivoting, on a modern CPU. We then
examine the potential of using a GPU to accelerate the factorization process with both col-
umn and restricted pivoting. Our performance results on two eight-core Intel Sandy Bridge
CPUs with one NVIDIA Kepler GPU demonstrate that using the GPU, the factorization time
can be reduced by a factor of more than two. In addition, to study the performance of our
implementations in practice, we integrate them into a recently-developed software StruMF
which algebraically exploits such low-rank structures for solving a general sparse linear system
of equations. Our performance results for solving Poisson’s equations demonstrate that the
proposed techniques can significantly reduce the preconditioner construction time of StruMF
on the CPUs, and the construction time can be further reduced by 10%-50% using the GPU.

1 Introduction

In applied and numerical mathematics or in scientific and engineering simulations, we often en-
counter low-rank matrices, and more frequently, we encounter matrices whose submatrices are
low-rank. We can reduce both computational and storage requirements of manipulating many
of these matrices by taking advantages of their low-rank properties. In this paper, we study
the performance of the following two algorithms for computing a low-rank approximation of a
dense matrix on multicore CPUs and investigate the potential of using a GPU to accelerate the
process: 1) the QR factorization with column pivoting (QP3) [1, 2] and 2) the QR factoriza-
tion with restricted pivoting (QPR) [3, 4]. In addition, to study the performance of QP3 and
QPR in practice, we integrate our implementations of QP3 and QPR into StruMF [5, 6] which
is a recently-developed software for solving a general sparse linear system of equations. StruMF
algebraically exploits a low-rank structure, referred to as a hierarchically semiseparable (HSS)
structure [7], of a coefficient matrix while computing and applying a preconditioner, and uses
QP3 and QPR for computing the low-rank approximation of the dense submatrices. In many
cases, the preconditioner construction time of StruMF is dominated by the low-rank approxima-
tion of the submatrices.

1

2

The rest of the paper is organized as follows: First, in Section 2, we review QP3 and QPR.
Then, in Section 3, after analyzing the performance of StruMF on a CPU, we propose several
techniques to improve the QPR performance on the CPU. Next, in Section 4, we describe our
implementations of QP3 and QPR using a GPU. Finally, in Section 5, we show their performance
on multicore CPUs with a GPU and its impact on the performance of StruMF. We provide our
final remarks in Section 6. Throughout this paper, the j-th column of a matrix A is denoted
by aj , while Ai1:i2,j1:j2 is the submatrix consisting of the i1-th through the i2-th rows and the
j1-th through the j2-th columns of A.

2 QR Algorithms with Column Pivoting

An m-by-n matrix A has a numerical rank r with respect to a threshold τ when

σ1(A)

σr(A)
≤ τ < σ1(A)

σr+1(A)
,

where σ1(A), σ2(A), . . . , σm(A) are the singular values of A in the descending order (i.e., σ1(A) ≥
σ2(A) ≥ · · · ≥ σm(A))1. Then, an RRQR factorization of A has a form

AP = QR,

where Q is an m-by-m orthonormal matrix, R is an m-by-n upper-triangular matrix, and P is a
permutation matrix chosen to reveal the numerical rank,

σmin(R1:r,1:r) ≈ σr(A), (1)

σmax(Rr+1:m,r+1:n) ≈ σr+1(A). (2)

Since the interlacing properties of the singular values [8] states that

σmin(R1:r,1:r) ≤ σr(A), (3)

σmax(Rr+1:m,r+1:n) ≥ σr+1(A), (4)

satisfying (1) or (2) is equivalent to finding the permutation matrix P such that one of the
following two tasks is satisfied, respectively;

task-1: max
P

σmin(R1:r,1:r), (5)

task-2: min
P

σmax(Rr+1:m,r+1:n). (6)

More detailed discussion on the RRQR factorizations can be found in [9] and the references there
within.

In the following subsections, we review the existing algorithms to compute such RRQR fac-
torizations. Namely, we first review the blocked versions of Householder QR [8] (Section 2.1).
We then outline QP3 [1, 2] which is a greedy algorithm for solving task-1 and is implemented in
LAPACK [10] (Section 2.2). Next, we describe how an algorithm solving task-1 can be modified
to solve task-2, and present three types of so-called hybrid algorithms [9] that are theoretically
guaranteed to solve task-1 or task-2, or both (Section 2.3). Finally, we discuss QPR [3] that uses
the hybrid algorithm as a postprocessing scheme to reduce the computational bottleneck of QP3,
while ensuring the rank-revealing properties of the computed factorization (Section 2.4).

3

setup: r := 0 and k := 0
while r < m do

1. panel factorization:
for j = 1, . . . , nb do

generation of Householder transformation:

(τ
[k]
j ,v

[k]
j) such that H [k,j] := I − τ [k]j v

[k]
j v

[k]T
j .

right-looking update of panel:

Ar+j:m,r+j:r+nb
:= H

[k,j]
r+j:m,r+j:mAr+j:m,r+j:r+nb

.

end for

2. computation of matrix T [k]:
for j = 1, 2, . . . , nb do

T
[k]
1:j−1,j := T

[k]
1:j−1,j − τ

[k]
j T

[k]
1:j−1,1:j−1V

[k]T
j:n,1:j−1v

[k]
j:n,j

T
[k]
j,j := τ

[k]
j

end for

3. right-looking update of trailing submatrix:

Ar:m,r+nb:n := H
[k]
r:m,r:mAr:m,r+nb:n.

k := k + 1 and r := r + nb.
end while

Figure 1: Blocked QR factorization algorithm.

2.1 Blocked QR Algorithm

The j-th step of Householder QR [8] generates the Householder transformations to zero out
the off-diagonal elements in the j-th column of A (for j = 1, 2, . . . ,m). To improve the data
locality of the factorization, a blocked version of the algorithm (QR3) accumulates nb Householder
transformations and uses a BLAS-3 to apply the accumulated transformations at once to the
trailing submatrix: i.e., for k = 1, 2, . . . , mnb

, and r = (k − 1)nb,
2

Ar:m,r+nb:n := H [k]
r:m,r:mAr:m,r+nb:n,

whereH [k] is the product of the nb Householder matrices; i.e., H [k] = H [k,nb:−1:1] = H [k,nb]H [k,nb−1] . . . H [k,1]

and H [k,j] = I − τ [k]j v
[k]
j v

[k]T
j .3 This matrix H [k] can be represented in a so-called VW form [11],

H [k] = I − V [k]W [k]T , (7)

where w
[k]
j = τ

[k]
j H [k,j−1:−1:1]Tv

[k]
j . Since for j = 1, 2, . . . , nb, these j−1 Householder matrices are

applied to the vector v
[k]
j in addition to the matrix A, this blocked algorithm requires about nb

m
times more floating point operations (flops) than the unblocked algorithm. However, on a modern
computer, the blocked algorithm takes advantage of the memory hierarchy and often obtains a
significant speedup over an unblocked algorithm.

The additional m-by-nb workspace to store W [k] can be reduced by factorizing W [k] into the
following form [12],

W [k] = V [k]T [k], (8)

1We assume m ≤ n without the loss of generality.
2We assume that both m and n are multiples of nb, but the discussion can be easily extended for other cases.
3The matrices H [k] is not explicitly formed. Instead, we store v

[k]
j:m,j in the lower-triangular part of aj and store

τ
[k]
j in an n-length vector.

4

where T [k] is an nb-by-nb upper-triangular matrix such that T
[k]
1:i,i = τ

[k]
i

[
z
1.0

]
and z is an (i− 1)-

length vector given by z = −T [k]
1:i−1,1:i−1V

[k]T
:,1:i−1v

[k]
i . Figure 1 shows the pseudocode of the resulting

blocked QR algorithm with BLAS-3 (QR3).

2.2 QP3 Algorithm

At each step of an RRQR factorization, selecting an optimal pivot to satisfy task-1 (5) or
task-2 (6), or both is likely to be a combinatorial optimization problem. To reduce the com-
putational cost, a greedy algorithm is generally used. In this section, we discuss such a greedy
algorithm for solving task-1. Specifically, at the (r+ 1)-th step (for r = 0, 1, . . . ,m−1), assuming
that the r well-conditioned columns of A have been already selected and factorized, the next pivot
column is selected from the remaining n− r columns such that the smallest singular value of the
r + 1 selected columns are maximized,(

R1:r,1:r r1:r,r+1

rr+1:m,r+1

)
= arg max

j=r+1,...,n
σmin

(
R1:r,1:r a1:r,j

ar+1:m,j

)
.

Since selecting such a column is still computationally expensive, heuristics are used. First, since
a Householder transformation can zero out the elements of ar+1:m,j below the diagonal, we have

σmin

(
R1:r,1:r a1:r,j

ar+1:m,j

)
= σmin

(
R1:r,1:r a1:r,j

γj

)
,

where γj = ‖ar+1:m,j‖2. Furthermore, we can approximate the smallest singular value of the
matrix by the reciprocal of the largest row norm of its inverse [9, 13],

σmin

(
R1:r,1:r a1:r,j

γj

)
≤ max

i=1,2,...,r+1

∥∥∥∥∥eTi
(
R1:r,1:r a1:r,j

γj

)−1
∥∥∥∥∥
−1

2

≤
√
nσmin

(
R1:r,1:r a1:r,j

γj

)
.

In addition, since R1:r,1:r is assumed to be well-conditioned, all the row norms of R−1
1:r,1:r are

expected to be small. Hence, it leads to the following approximation,

min
i=1,2,...,r+1

∥∥∥∥eTi (R−1
1:r,1:r −R

−1
1:r,1:ra1:r,jγ

−1
j

γ−1
j

)∥∥∥∥
2

≈ min
i=1,2,...,r+1

∥∥∥∥eTi (−R−1
1:r,1:ra1:r,jγ

−1
j

γ−1
j

)∥∥∥∥
2

≈ γ−1
j ,

where (
R1:r,1:r a1:r,j

γj

)−1

=

(
R−1

1:r,1:r −R
−1
1:r,1:ra1:r,jγ

−1
j

γ−1
j

)
.

Based on these heuristics, QR with column pivoting (QRP) [1] selects the next pivot column that
is farthest away in the Euclidean norm from the subspace spanned by the already-selected columns
(i.e., the column with the largest γj = ‖ar+1:m,j‖2). Since an orthogonal transformation does not
change the column norms, once these norms are initialized (γj := ‖aj‖2 for j = 1, 2, . . . n), it can
be cheaply downdated at the end of the (r+1)-th step (γj := γj−r2r+1,j for j = r+2, r+3, . . . , n).

Figure 2 shows a blocked version (QP3) of QRP [2]. One difference between QP3 and QR3
of Figure 1 is at the trailing submatrix update. Specifically, QR3 stores the product of the
nb Householder matrices in the VW form (7) (or using the matrix T [k] to reduce the memory
requirement) and updates the trailing submatrix by two matrix-matrix multiplies4: i.e., after

4Our implementation takes advantage of the triangular structures of both V [k] and T [k].

5

setup: Compute the column norms
γj = ‖aj‖22 for j = 1, 2, . . . , n r = 0, and k = 0.

while r < m do

1. panel factorization:
for j = 1, 2, . . . , nb do

1.1. pivoting:
select the pivot column with the largest γh.
A:,[r+1,h] = A:,[h,r+1] and γ[r+1,h] = γ[h,r+1].

F
[k]
[h,j],1:j−1 = F

[k]
[j,h],1:j−1.

r := r + 1 (update numerical rank).
1.2. left-looking update of pivot column:

Ar:m,r := Ar:m,r − V [k]
r:m,1:j−1f

[k]T
r,1:j−1.

1.3. Householder matrix computation:

(τ
[k]
j ,v

[k]
j) such that H

[k]
j = I − τ [k]j v

[k]
j v

[k]T
j .

1.4. Computation of the j-auxiliary vector fj:

f
[k]
r:n,j = τ

[k]
j (Ar:m,r:n − V [k]

r:m,1:j−1F
T
r:n,1:j−1)Tv

[k]
j

1.5. right-look update of pivot row:

rr,r:n = ar,r:n − v
[k]
r,1:j−1F

[k]T
r:n,1:j−1

1.6. norm downdate:
γ` = γ` − r2r−1,` for ` = r, r + 1, . . . , n.

(if norms must be recomputed then break)
end for

2. trailing submatrix update:

Ar+1:m,r+1:n := Ar+1:m,r+1:n − V [k]
r+1:m,1:nb

F
[k]T
r+1:n,1:nb

.
k := k + 1 (recompute norms if necessary).

end while

Figure 2: QP3 factorization algorithm, where A:,[r+1,h] is the submatrix consisting of the (r+1)-th
and h-th columns of A.

the k-th panel factorization, the trailing submatrix is updated by A := A − V [k]F [k]T where
F [k] = ATW [k]. On the other hand, the j-th step of the k-th QP3 panel factorization computes

the j-th column of the matrix-matrix product ATW [k] and uses the resulting vector f
[k]
j to update

the j-th row of A, which, in return, is needed to downdate the column norms of the trailing
submatrix (Steps 1.5 and 1.6 of Figure 2). Finally, QP3 updates the trailing submatrix by a single
matrix-matrix multiply, A := A − V [k]F [k]T . Since QP3 saves the result of the matrix-matrix
product ATW [k] in the auxiliary matrix F [k], QP3 and QR3 require about the same numbers of
flops. However, QP3 performs about a half of the total flops using BLAS-2, while QR3 performs
most of its flops using BLAS-3.

In some cases, due to the round-off errors, the downdated norms γj diverge significantly
from the true norms [14]. When this occurs, the trailing submatrix is immediately updated
with the outstanding Householder transformations, and the column norms are recomputed. If
the column norms must be frequently recomputed, then in comparison to QR3, QP3 not only
requires significantly more flops for recomputing the norms, but it also exhibits a poorer data
locality since the trailing submatrices are updated using smaller blocks.

6

for j = 1, 2, . . . ,m− 1 do

Golub-I(A, j,m, n)
end for

(a) Golub algorithm for task-1

for j = m,m− 1, . . . , 2 do

Chan-II(A, 1, j, n)
end for

(b) Chan algorithm for task-2

1. compute the column norms:
for j = r + 1, r + 2, . . . , n

γj = ‖rr:m,j‖2
2. find a pivot column j such that

γj = maxk=r+1,r+2,...,n γk
3. shift columns for column pivot:

y = r1:j,j
for k = j, j − 1, . . . , r + 1

r1:k,k = r1:k,k−1

r1:j,r = y
4. re-triangularize R:

for k = j, j − 1, . . . , r + 1 do

4.1. generate a Given’s rotation
to zero out rk,r with rk−1,r

4.2. apply the Given’s rotation
to the trailing submatrix

end for

(c) Golub-I(R, r,m, n) algorithm.

1. compute right singular vector v
corresponding to σmin(R1:r,1:r)

2. find a pivot column j such that
|vj | = mink=1,2,...,r |vk|

3. shift columns for column pivot:
y = r1:r,j
for k = j, j + 1, . . . , r − 1

r1:k+1,k = r1:k+1,k+1

r1:r,r = r1:r,j
4. re-triangularize R:

for k = j, j + 1, . . . , r − 1 do

4.1.generate a Given’s rotation
to zero out rk+1,k with rk,k

4.2.apply the Given’s rotation
to the trailing submatrix

end for

(d) Chan-II(R, r,m, n) algorithm.

Figure 3: Unification principle of QRP algorithm.

2.3 Hybrid Algorithms

In this section, we first show how an algorithm solving task-1 can be used to solve task-2, and
then describe so-called hybrid algorithms for solving task-1 or task-2, or both. The algorithms
presented in this subsection are used as a postprocessing to improve the numerical properties of
an RRQR factorization, and the matrix A is of upper-triangular form. For instance, Figure 3(a)
shows the QP3 algorithm applied to an upper triangular matrix R. To simplify our notation, we
write the RRQR factorization as

AP = Q

[
R[1,1] R[1,2]

R[2,2]

]
,

where R[1,1] is the r-by-r leading submatrix. Then, task-2 is equivalent to

task-3: max
P

σmin((R[2,2])−T).

Hence, to solve task-2, we apply an algorithm that solves task-1 to the transpose-inverse of the
matrix A. Namely, if we have such an RRQR factorization,

A−TP = Q

[
R[1,1] R[1,2]

R[2,2]

]
,

then we also have,

AP = Q

[
(R[1,1])−T

−(R[2,2])−TR[1,2]TR[1,1]T (R[2,2])−T

]
.

7

Hybrid-I(R, r, n,m) to solve task-1
repeat

pivot “best” column among {rr, rr+1, . . . , rn} to rr
Golub-I(R, r, n,m)
pivot “worst” column among {r1, r2, . . . , rr} to rr
Chan-II(R, 1, r,m)

until no column pivot occurred

Hybrid-II(R, r, n,m) to solve task-2
repeat

pivot “best” column among {r1, r2, . . . , rr+1} to rr+1

Chan-II(R, r + 1, n,m)
pivot “worst” column among {rr+1, rr+2, . . . , rn} to rr+1

Golub-I(R, 1, r + 1,m)
until no column pivot occurred

Hybrid-III(R, r, n,m) to solve both task-1 and task-2
Hybrid-I(R, r, n,m), to address task-1
Hybrid-II(R, r, n,m), to address task-2

Figure 4: Hybrid algorithms.

Moreover, if P̂ is the permutation matrix with ones on the anti-diagonal, then

A(PP̂) = (QP̂)

[
R[2,2]−1 −R[1,1]−1

R[1,2]R[2,2]−1

R[1,1]−1

]
, (9)

where PP̂ is a permutation matrix, QP̂ is an orthogonal matrix, and σmax(R[1,1]−1
) is minimized.

Hence, the factorization (9) is an RRQR factorization solving task-2. This is called the unification
principle of the algorithms solving task-1 and task-2 [9].

We now introduce the Chan-I algorithm for solving task-1, whose task-2 version is used as
the postprocess scheme in Section 2.4. Just like the QRP algorithm, the Chan-I algorithm pivots
the column with the largest norm, but it uses an additional heuristic. Namely, at the (r + 1)-th
step, the column norms γr+k is approximated using the right-singular vector corresponding to the
largest singular value of the submatrix A[2,2]. Specifically, if A[2,2] = UΣV T is the singular value
decomposition of A[2,2], then the k-th column norm of A[2,2] is approximated by

‖a[2,2]k ‖2 =

∥∥∥∥∥∥
∑

`=1,2,...,n−r

σ`(A
[2,2])vk,`u`

∥∥∥∥∥∥
2

=

 ∑
`=1,2,...,n−r

(
σ`(A

[2,2])|vk,`|
)2 1

2

≈ σ1(A
[2,2])|vk,1|.

Hence, at the (r + 1)-th step, the algorithm pivots the (r + k)-th column, whose corresponding
element vk,1 of the most dominant right singular vector v1 has the largest module. Figure 3(b)
shows the Chan-II algorithm which is the task-2 version of the Chan-I algorithm and pushes the
column that minimizes σmax(R[2,2]) into the trailing submatrix at each step.

8

1. QR factorization with restricted pivoting:
setup: r := 0 and k := 0.
while r < m do

1.1. panel factorization:
setup: initialize column norms within the window,

w = r + nw (last column in window).
for j = 1, . . . , nb do

1.1.1. restricted pivoting:
swap j-th column with pivot column

of the largest norm within the window.
if condest(R1:r+1,1:r+1) > τ then

nb := j and break.
r := r + 1 (update numerical rank).

1.1.2. Householder matrix computation:

H [k,j] := I − τ [k]j v
[k]
j v

[k]T
j .

1.1.3. right-look update of window:

Ar:m,r:w := H
[k,j]
i:m,i:mAr:m,r:w.

end for

1.3. trailing submatrix update: (k := k + 1).
compute matrix T [k].
update trailing submatrix right of current window.

1.4. swapping rejected columns to end:
end while

2. QR factorization of rejected columns
with column pivoting

3. QR factorization of rejected columns
with no pivoting

(a) QPR factorization algorithm.

setup: set r to be the maximum column index
such that condest(R1:r,1:r) ≤ τ .

repeat

1. pivoting for task-1 and task-2
repeat

Golub-I(R, r, n,m)
Golub-I(R, r + 1, n,m)
Chan-II(R, r + 1, n,m)
Chan-II(R, r, n,m)

until no column pivot occurred
2. convergence check

α =condest(R1:r,1:r)
β =condest(R1:r+1,1:r+1)
if α ≤ τ and β > τ then

break

else if α ≤ τ then

r := r + 1, move to right
else

r := r − 1, move to left
end if

end repeat

(b) QPR postprocessing algorithm.

Figure 5: QRP factorization and postprocessing algorithms, where condest(R) computes an
estimation of the condition number of R.

Finally, Figure 4 shows a single iteration of three hybrid algorithms Hybrid-I, Hybrid-II, and
Hybrid-III [9] that solve task-1, task-2, and both task-1 and task-2, respectively. The iteration is
terminated when the r-th column is not moved.

2.4 QPR Algorithm

Even when QP3 and QR3 performs about the same number of flops, QP3 is often slower. This is
largely because QR3 performs most of its flops using BLAS-3, while QP3 performs about half of
its flops using BLAS-2. Since this BLAS-2 is needed to select the pivot among all the remaining
columns, QPR [3] tries to reduce the bottleneck by selecting the pivot among a fixed number, nw,
of the columns. Figure 5(a) shows the pseudocode of QPR. At each step of the panel factorization,
while QP3 computes the matrix-vector product with the whole trailing submatrix, QPR updates
the columns within this window using a Householder matrix (both by BLAS-2). Since the pivots
are now selected only within the window, in order to ensure the rank-revealing properties, QPR
uses a condition estimator and accepts only the pivots that satisfy (3). After all the columns are
either accepted or rejected (Step 1 in Figure 5(a)), the QR factorization of the rejected columns
is computed to obtain the upper-triangular matrix R (Steps 2 and 3). At the end, in comparison

9

40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
x

T
im

e
 /

 T
o

ta
l
F

a
c
t

T
im

e

Total

QP3

(a) Relative time spent in QP3.

40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n
x

M
e

m
o

ry
 s

a
v
in

g

(b) Memory relative to direct factorization.

Figure 6: Relative time and memory requirements of StruMF.

to QP3, QPR performs a fewer flops using BLAS-2 to select the pivots. However, the nw − nb
columns of the trailing submatrix are now updated using BLAS-2. In Sections 3 and 5.1, we
compare the performance of QPR and QP3 on a CPU and on multicore CPUs with a GPU,
respectively.

Since QPR selects the pivots only within the windows, it requires postprocessing to globally
ensure the rank-revealing property. Though there are two postprocessing options [9, 15], here, we
focus on the first [9] because it has shown to be more effective in our experiments. Figure 5(b)
shows the pseudocode of this postprocessing scheme, which modifies the Hybrid-III algorithm of
Figure 4 to improve its convergence rate [3].

3 Case Studies with StruMF on a CPU

The performance of both QP3 and QRP depends on the input matrix A. To study their per-
formance, in this section, we provide their case studies with StruMF for solving 3D seven-point
Poisson’s equations on one core Intel Sandy Bridge CPU. In our experiments, we use the same
default parameters used for solving the Poisson’s equations with StruMF in [5] (e.g., the numerical
rank tolerance is set to be τ = 5 × 10−1, and FGMRES(30) is considered to be converged when
the residual norm is reduced at least by the order of 10−6), and for QPR, we used the default
window size recommended in [3] (i.e., nw = nb + min

(
m,n,max

{
10, nb

2 + 0.05n
})

).

3.1 Performance of Original StruMF and QRP

Figure 6(a) shows the breakdown of the StruMF time using QP3. It clearly shows that StruMF
spends most of its preconditioner construction time in QP3. Moreover, the percentage of the
time spent in QP3 often increases as the global matrix dimension increases. To analyze the
performance of QP3, Figure 7 shows the dimensions of the off-diagonal blocks for which the
low-rank approximations are computed. Most of these off-diagonal blocks are short and wide
having a few hundreds rows and tens of thousands of columns. In addition, the dimensions of
the off-diagonal blocks, especially, their numbers of columns, often increase with respect to the
global dimension. Hence, if the compression time of these short-wide blocks can be reduced using
another algorithm or a GPU, then the StruMF solution time may be significantly reduced.

10

0−−3000
3000−−6000

6000−9000
9000−12000

12000−15000
15000−−18000

18000−−21000
21000−24000

24000−27000
27000−30000

30000−33000

0−−100

100−−200

200−300

300−400

400−500

500−600

0

100

200

300

of columns
of rows

n
u

m
b

e
r

o
f

Q
P

3
 c

a
ll
s

(a) nx = 80

0−−3000
3000−−6000

6000−9000
9000−12000

12000−15000
15000−−18000

18000−−21000
21000−24000

24000−27000
27000−30000

30000−33000

0−−100
100−−200

200−300
300−400

400−500
500−600

0

5

10

15

20

of columns
of rows

ti
m

e
 s

p
e

n
t

o
n

 Q
P

3
 (

s
)

(b) nx = 80

0−−3000
3000−−6000

6000−9000
9000−12000

12000−15000
15000−−18000

18000−−21000
21000−24000

24000−27000
27000−30000

30000−33000

0−−100

100−−200

200−300

300−400

400−500

500−600

0

100

200

300

of columns
of rows

n
u

m
b

e
r

o
f

Q
P

3
 c

a
ll
s

(c) nx = 100

0−−3000
3000−−6000

6000−9000
9000−12000

12000−15000
15000−−18000

18000−−21000
21000−24000

24000−27000
27000−30000

30000−33000

0−−100
100−−200

200−300
300−400

400−500
500−600

0

20

40

60

of columns
of rows

ti
m

e
 s

p
e

n
t

o
n

 Q
P

3
 (

s
)

(d) nx = 100

Figure 7: Statistics of off-diagonal blocks whose low-rank approximations are computed.

Figure 8 compares the StruMF solution times using QP3 and QPR. The figure clearly indi-
cates that even though the factorization time is reduced using QPR, the postprocessing can be
expensive. In the next subsection, we propose modifications to the QPR implementation, which
often reduce the postprocessing time and make QPR more competitive. Just for reference, Fig-
ure 8 compares the StruMF solution time with that of a direct multi-frontal factorization. We
see that for a large enough system, StruMF can reduce not only the memory requirement (see
Figure 6(b)) but also the solution time of the direct factorization.

3.2 Proposed Modifications to Original QPR Implementation

The performance of QPR depends strongly on the condition estimator used to evaluate Step 1.1.1
of Figure 5(a). In the original implementation, the smallest singular value of R[1,1] is estimated
using an incremental condition estimator (ICE) [16, 17], while the largest singular value is esti-
mated by the largest two-norm of the columns times the third root of the matrix dimension [3].
This simple estimator is used for the largest singular value because though the estimator may lead
to a greater estimation error, it requires a fewer flops (i.e., ICE requires O(r) flops to update the
estimation of R[1,1]). During the postprocessing phase, the same estimators are used at Step. 1 of
Figure 3(b), but in order to obtain an accurate final factorization, both the largest and smallest
singular values are estimated by ICE at Step. 3 of Figure 5(b). We found that in our numerical

11

40 60 80 100
0

100

200

300

400

500

600

700

n
x

S
o

lu
ti
o

n
 T

im
e

 (
s
)

Direct Multifrontal

Iterative Solver

Rest of precond. comp.

QP3

QPR Postprocess

QPR Factorization
nx QP3 Prec Sol Total Itrs
40 3.4 5.4 0.8 6.2 23
60 24.9 34.9 4.4 39.3 35
80 103.2 134.7 15.2 149.9 50

100 310.4 390.6 36.6 427.2 60

QPR
nx facto post Prec Sol Total Itrs
40 2.5 36.6 41.9 0.9 42.8 25
60 17.3 394.4 422.1 4.6 426.7 37
80 69.9 4833.3 4921.2 15.0 4936.2 50

100 218.0 10779.2 11015.2 36.5 11051.7 60

Figure 8: Original StruMF solution time.

40 60 80 100
0

100

200

300

400

500

600

700

n
x

S
o

lu
ti
o

n
 T

im
e

 (
s
)

Iterative Solver

Rest of precond. comp.

QPR Postprocess

QPR Factorization

QP3+QR

(a) Effect of condition estimator.

40 60 80 100
0

100

200

300

400

500

600

700

800

900

1000

n
x

S
o

lu
ti
o

n
 T

im
e

 (
s
)

Iterative Solver

Rest of precond. comp.

QPR Postprocess

QPR Factorization

QP3+QR

(b) Effect of tuning the postprocess.

Figure 9: Solution time of original StruMF (left bar) and after modification (right bars), using
ICE and tuning the postprocess in left and right plots.

experiments using random matrices, this simple estimator underestimates the largest singular val-
ues. As a result, many components that should be rejected are accepted. In addition, during the
preconditioner construction for solving the Poisson’s equation by StruMF, the simple estimator
overestimates the singular values, rejecting the components which should be accepted. In either
case, this estimation error could significantly increase the postprocessing cost. Figure 9(a) shows
that when a more accurate condition estimator (i.e., ICE) is used, the postprocessing time can
be dramatically reduced. In addition, ICE reduced the factorization time slightly because most
of the components are accurately accepted by Step 1 of Figure 5(a), and Step 2 has less work.

During the postprocessing (Figure 5(b)), the Golub-I algorithm requires the column norms
of the trailing submatrix Rr:m,r:n, and the Chan-II algorithm requires the column norms of the
leading submatrix R1:r+1,1:r+1. At the beginning of Step 1 to call the Chan-II algorithm, the
original implementation computes the column norms of the leading submatrix R1:r−1,1:r−1. Then,
the norms ‖rr‖2 and ‖rr+1‖2 are computed as they are permuted into R1:r+1,1:r+1. On the other
hand, for each Golub-I call, the column norms of the trailing submatrix Rr:m,r:n are recomputed.
This is because when the Chan-II algorithm applies the Given’s rotation to the leading subma-

12

40 60 80 100
0

50

100

150

200

250

300

350

400

450

n
x

S
o

lu
ti
o

n
 T

im
e

 (
s
)

Iterative Solver

Rest of precond. comp.

QPR Postprocess

QPR Factorization

QP3

QR

(a) Column-wise (left) and blocked (right bar)
algorithm.

1 5 8 12 16 20 24
10

−6

10
−4

10
−2

10
0

10
2

Block size

k
a
p
p
a
(R

r)
/
C

o
n
d
e
s
t

Original QPR
QRP task1+2
QRP task1
QRP task2
QPB

(b) Ratio of exact and estimated conditioner
number of leading triangular factor after the
QPR factorization.

trix R1:r,1:r, the column norms of the trailing submatrix Rr:m,r:n changes. In our experiments,
this norm computation could become expensive, especially when Step 1 requires many iterations
or a large tolerance τ is used. To reduce this computational cost, we incrementally update or
downdate the norms when the Given’s rotation is applied and when the submatrix size r changes
at the outer iteration of Figure 5(b). In addition, we use the same criteria used in QP3 [14] to
detect if the updated norms have diverged from the actual norms due to the round-off errors.
When this happens, the column norms are recomputed. Figure 9(b) clearly indicates that the
postprocessing time of StruMF can be significantly reduced by avoiding the norm computation.

For Step 2 of the factorization in Figure 5(a), the original implementation uses the column-wise
QRP algorithm. On a modern computer, a blocked algorithm can obtain significant speedups.
Hence, we replaced it with QP3. In addition, we use ICE to detect the numerical rank instead of
the simple estimator used in the original implementation (i.e., QP3 terminates when the estimated
condition number of the leading submatrix R1:r+1,1:r+1 becomes greater than the threshold τ).
Figure 10(a) shows that the blocked algorithm reduces the factorization time, but the overall
improvement is not significant since after ICE is integrated, only a short time is spent at Step 2
for solving this Poisson’s equation.

Finally, while QP3 aims to solve task-1, the QPR postprocessing tries to solve both task-1
and task-2. Hence, we replaced it with the postprocessing algorithms for solving only either
task-1 or task-2. Even though the postprocessing solved different tasks, StruMF converged in a
similar number of iterations. However, the task-1 postprocessing converged slightly faster than
the task-2 postprocessing, which was faster than the original postprocessing. We have also used
the test matrices from the original paper [3] to evaluate the quality of the factorization after
the postprocessing. Figure 10(c) shows that the quality of the factorization did not change
significantly when different postprocessing schemes were used. We use the original postprocessing
scheme in the remaining of the paper since it provides the most robust behavior, while the overhead
is not significant after all the proposed modifications are integrated. Figure 10(d) compares the
StruMF solution time using QP3 and QPR after all the modifications are made. Now, the solution
time using QPR is shorter than that using QP3.

13

40 60 80 100
0

50

100

150

200

250

300

350

n
x

S
o

lu
ti
o

n
 T

im
e

 (
s
)

Iterative Solver

Rest of precond. comp.

QPR Postprocess

QPR Factorization

QP3

(c) StruMF solution time using task-1 (left),
task-2 (middle), and task-1 and task-2 (right bar)
postprocessing.

40 60 80 100
0

50

100

150

200

250

300

350

400

450

n
x

S
o

lu
ti
o

n
 T

im
e

 (
s
)

Iterative Solver

Rest of precond. comp.

QP3

QPR Factorization

QPR Postprocess

(d) StruMF solution time with QP3 (left) and
QPR (right bar).

4 GPU Implementations

We now describe our QP3 and QPR implementations that utilizes a GPU.

4.1 QP3 Implementation

MAGMA5 extends LAPACK6 to heterogeneous architectures based on a hybrid programming
and static scheduling. For instance, for the blocked QR factorization, the latency-limited BLAS-2
based panel factorization is scheduled on the CPUs, while the compute-intensive BLAS-3 based
trailing submatrix update is scheduled on the GPU [18]. Furthermore, as soon as the next panel
is updated on the GPU, it is copied to the CPU such that the panel factorization on the CPUs
can be hidden behind the remaining submatrix update on the GPU (this is commonly referred to
as a lookahead). As a result, for a large enough matrix, the QR factorization by MAGMA can
obtain the performance of the BLAS-3, which exhibits a high-level of data parallelism and can be
efficiently implemented on the GPU [19].

Our first QP3 implementation is based on the same hybrid paradigm, where the CPUs factorize
the panel while the GPU updates the trailing submatrix. However, in contrast to the QR panel
factorization that accesses only a panel, each step of the QP3 panel factorization accesses the whole
trailing submatrix to look for the pivot. Hence, the entire trailing submatrix must be updated
before the panel factorization starts. As a result, though the transfer of the panel to the CPU
can be overlapped with the remaining submatrix update, the actual panel factorization cannot be
overlapped with the update (the lookahead is not possible). In addition, the QP3 factorization
time is often dominated by the BLAS-2 based panel factorization that performs about a half of the
total flops. Hence, our second implementation accelerates this panel factorization using a GPU.
Because the flop count of the panel factorization is dominated by the matrix-vector product with
the trailing submatrix (Step 1.4 of Figure 2), the GPU is used to accelerate this BLAS-2 kernel.
As shown in Figure 10(e), our implementation computes the matrix-vector product with the top
block row of the trailing submatrix on the CPUs, while the rest of the product is computed on the
GPU. This is because this top block row is needed for the column norm downdating (Step 1.6),

5http://icl.utk.edu/magma
6http://www.netlib.org/lapack/

http://icl.utk.edu/magma
http://www.netlib.org/lapack/

14

GPU

CPU

panel

(e) Hybrid paradigm.

CPU

norm downdate

updating pivot row

computation of F

matrix−vecotr multiply

reflector generation

left−look update

swap

pick a pivot

Panel Factorization

Trailing Submatrix Update

recompute norms if needed recomputed norms if needed

matrix−vector multiply

setvector if needed

getvector if needed

GPU

update submatrix

setmatrix if needed

(f) Algorithmic flow.

Figure 10: Illustration of the hybrid QP3 implementation.

which is performed on the CPUs. Hence, this hybrid paradigm avoids the transfer of a row from
the GPU to the CPU at each step of the panel factorization. Figure 10(f) illustrates this hybrid
paradigm.

Unfortunately, in comparison to the QR factorization, this hybrid implementation of the QP3
factorization lead to much lower speedups. This is mainly because its performance is limited by
the memory bandwidth to move a column between the CPU and GPU at each step of the panel
factorization. This data transfer is needed for the column pivoting and matrix-vector multiply (see
Figure 10(f)). As an execution trace in Figure 11 also shows, this CPU-GPU data transfer could
become as expensive as the actual computation at each step of the panel factorization. To avoid
this data transfer, our second implementation of QP3 performs all the computation on the GPU.
At each step of the factorization, this GPU implementation still requires two synchronizations
on the CPU; one to pick a pivot and the other one to check if the column norms must be
recomputed (Steps 1.1 and 1.6, respectively). Furthermore, in many cases, the CPUs obtain
higher performance of BLAS-1 (e.g., Householder vector generation) than the GPU. However,
once the matrix is copied from the CPUs to the GPU, this GPU implementation does not transfer
any vector or matrix between the CPUs and GPU, and could obtain a higher performance than
our hybrid implementation could (see Section 5).

Initially, our GPU implementations used an individual GPU kernel for each BLAS or LAPACK
routine used for the panel factorization. However, many of these routines perform only small
amounts of computation or require a scalar to be on the CPU. In order to improve the performance,
we merged several computational kernels into one kernel in order to avoid the kernel launch
overhead and unnecessary GPU-CPU communication. In addition, we have tuned these kernels
(e.g., block size and thread grid) for the matrix dimensions typical for the QPR factorization. We
will show the effects of these optimization techniques in Section 5. A similar GPU-implementation
is proposed in [20].

4.2 QPR Implementation

In contrast to QP3, QPR allows lookaheads. Namely, once the GPU updates all the columns of
the next window, the CPU can start the panel factorization while the GPU updates the remaining
submatrix. However, in contrast to the QR panel factorization that only requires the panel, the
QPR panel factorization updates all the columns within the window at each step of the panel

15

(a) Whole trace (n = m = 1000)

(b) Partial zoomed-in trace.

Figure 11: Execution trace of the hybrid QP3 implementation. The top trace is on the CPU,
while the remaining two traces are on the GPU with two GPU streams (matrix-vector multiply,
matrix-matrix multiply, column swap, pivot selection, reflector generation, norm computation,
and communication are in green, purple, orange, magenta, red, cyan, and black, respectively.
Since the BLAS matrix-vector multiply routine does not support a vector-matrix multiply, a
matrix-matrix multiply is used to compute fj at Step 1.4 of Figure 2). The second GPU stream
is used to transfer the next panel and top block row to the CPU.

factorization. Hence, when the window size is large in comparison to the trailing submatrix
dimension, it becomes difficult to hide the BLAS-2 based panel factorization on the CPUs behind
the BLAS-3 based trailing submatrix update on the GPU.7

For Step 2 of the QPR factorization in Figure 5(a), we use the GPU implementation of QP3
(described in Section 4.1). Since at the end of Step 1, the coefficient matrix is on the GPU, Step 2
does not require any data transfer to the GPU. For Step 3, if the remaining submatrix is relatively
small (m < 300 in our experiments), then we compute its QR factorization using LAPACK on
the CPU. Otherwise, the QR factorization is computed using MAGMA on the GPU. We found
that in many cases, QP3 does not accept any of the rejected columns from Step 1. Hence, in
order to hide the cost of copying the matrix from the GPU to the CPU for Step 3, the matrix
is asynchronously copied to the CPU, while QP3 is performed on the GPU. Only when QP3
accepted a column, the matrix is resent to the CPU after the whole matrix is factorized. Finally,
to generate the final orthogonal matrix Q, the Householder vectors from both QP3 and QR are
accumulated on the GPU.

4.3 Integration into StruMF

To call our GPU kernels from StruMF, we copy the matrix to the GPU, compute the factorization,
and then copy the result back to the CPU. Initially, we allocate a fixed amount of GPU memory

7We have investigated a hybrid panel factorization. However, in many cases, it was less efficient due to the CPU-
GPU synchronization and communication, especially in our experiments with StruMF, where only a few columns
were accepted at each panel factorization.

16

2000 4000 6000 8000 10000 12000 14000 16000
0

10

20

30

40

50

60

Matrix size, n=m

G
fl
o
p
/s

MAGMA GPU (tuned)
MAGMA GPU

MAGMA Hybrid
MKL

(a) Square Matrices.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

Number of columns, n (m=500)

G
fl
o
p
/s

MAGMA GPU (tuned)
MAGMA GPU

MAGMA Hybrid
MKL

(b) Short-wide Matrices.

Figure 12: Performance comparison of different QP3 implementations on random matrices.

for the workspace, and the workspace is re-allocated when the current workspace is not large
enough. Since the interfaces of most of the MAGMA routines are identical to those of LAPACK,
replacing the LAPACK routine with the MAGMA routine is relatively easy.

5 Performance Studies with a GPU

We now study the performance of our QP3 and QPR implementations with a GPU (Section 5.1)
and its impacts on the performance of StruMF (Section 5.2). We compiled our codes using the C
compiler gcc 4.4.6 and the CUDA compiler nvcc 5.0.35, and linked them to the threaded version
of MLK 2013.4.183. We emphasize that our CPU codes have been optimized. Namely, our QPR
code integrates all the modifications described in Section 3.2, and our QP3 code computes a
partial factorization, where the factorization is terminated at the numerical rank specified by the
tolerance τ . Computing a partial factorization obtains a significant speedup compared to the QP3
routine of MKL that computes the full factorization. This was especially true in our experiments,
where a relatively large τ is used,

5.1 Kernel Performance

Figure 12(a) shows the performance of our QP3 implementations to factorize square random
matrices with an NDIVIA Tesla K20c GPU (τ = 0.0), and compares it with that of MKL on
two eight-core Intel Sandy Bridge CPUs. Our GPU implementation improves the performance
of our hybrid implementation because it avoids the data transfer between the CPU and GPU.
Figure 12(b) demonstrates the advantage of the GPU implementation for the short-wide matrices.
In addition, our optimized GPU implementation (Section 4.1) obtains significant speedups for both
small and short-wide matrices, and this is used for the remaining of the experiments.

Figures 12(a) and 12(b) also show that all of our implementations obtain significant speedups
over MKL. We observed that for large matrices, our GPU implementation and MKL obtain similar
performance relative to the practical peak performance on the corresponding hardware, where
the practical peak performance is measured by computing the required matrix-vector products
with the trailing submatrices and the matrix-matrix products for the submatrix update without
any synchronization. In other words, our GPU implementation obtains the speedups over MKL

17

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of columns, n (m=500)

F
ra

c
ti
o
n
 o

f
ti
m

e

Other

IDMX

SWAP

LARFG

GEMV

GEMM

(a) Breakdown of factorization time.

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000
0

5

10

15

20

25

30

35

40

45

50

G
fl
o
p
/s

Number of columns, n (m=500)

QPR hybrid

QP3 GPU

QPR 16CPUs

MKL QP3 16CPUs

QPR 1CPU

MKL QP3 1CPU

(b) Comparison with QP3 on random matrices.

Figure 13: Performance of the QP3 GPU-implementation on random short-wide matrices.

because it effectively utilizes the higher memory and computational bandwidths of the GPU.
Figure 13(a) shows the breakdown of the QP3 factorization time. Up to 70% of the factor-

ization time is spent in the BLAS-3 matrix-matrix and BLAS-2 matrix-vector multiplies. Even
though these BLAS-3 and BLAS-2 perform about the same numbers of flops, the bandwidth-
limited BLAS-2 dominates the factorization time. Figure 13(b) compares the performance of our
QPR implementations with that of the QP3 implementations on random short-wide matrices. It
shows that after the proposed modifications were integrated, the QPR implementation obtained
the higher performance and greater scalability on the CPUs. Furthermore, our hybrid QPR im-
plementation outperformed our QP3 GPU implementation due to the fewer BLAS-2 flops required
to select the pivots. Since the performance of QP3 and QPR (especially that of QPR) depends
greatly on the input matrix (e.g., the number of columns accepted at each panel factorization),
in the next subsection, we study the performance of these two algorithms within StruMF.

5.2 Performance of StruMF

Figure 14(a) shows the performances of StruMF using our QP3 implementations for solving a
3D Poisson’s equation. First, by comparing the performance on a single CPU in the figure with
that of Figure 10(a), we clearly see the advantage of computing the partial factorization by QP3
(the factorization is terminated at the numerical rank specified by the tolerance τ). Next, the
preconditioner construction time of StruMF using QP3 is often dominated by BLAS-2 or BLAS-3
on small submatrices, and the construction time did not scale well on the CPUs. As a result, our
GPU kernel was able to accelerate the construction time by 30%-50% over StruMF running on
up to 16 CPUs. Figure 14(b) then shows the performance of StruMF using QPR. Using QPR,
the preconditioner construction slowed down on a single CPU, but it scaled better and was faster
than using QP3 on multiple CPUs. Furthermore, the GPU reduced the construction time by
10%-20%. In comparison to QP3, the GPU acceleration was smaller in QPR mainly because the
trailing submatrices were updated using smaller blocks. Most of the columns in each window are
rejected, and significant time is spent swapping the rejected columns to the end of the matrix.

Figure 15 shows the results of solving a 2D Poisson equation, where the same tolerance τ
from [5] was used (i.e., τ = 10−4). Though the sizes of the dense submatrices were significantly
smaller in the 2D problem (see Figure 16), our GPU kernel, especially the QP3 implementation,

18

1 2 4 8 16
0

50

100

150

200

250

300

Number of threads

T
im

e
 (

s
)

Other

MKL QP3

MAGMA QP3

(a) QP3.

1 2 4 8 16
0

50

100

150

200

250

300

Number of threads

T
im

e
 (

s
)

Other

QPR Postprocess

QPR Factorization (CPU)

QPR Factorization (Hybrid)

QR Factorization (CPU)

QR Factorization (GPU)

(b) QPR.

Figure 14: Performance of StruMF solving 3D Poisson equation using the GPU (nx = 100).

1 2 4 8 16
0

20

40

60

80

100

120

Number of threads

T
im

e
 (

s
)

Other

MKL QP3

MAGMA QP3

(a) QP3.

1 2 4 8 16
0

20

40

60

80

100

120

Number of threads

T
im

e
 (

s
)

Other

QPR Postprocess

QPR Factorization (CPU)

QPR Factorization (Hybrid)

QR Factorization (CPU)

QR Factorization (GPU)

(b) QPR.

Figure 15: Performance of StruMF solving 2D Poisson equations using the GPU (nx = 3000).

still obtained significant speedups. Unfortunately, the compression time was less dominant in the
2D problem, and the reduction in the preconditioner construction time was less significant using
the GPU.

6 Conclusion

We studied the performance of QP3 and QPR for computing the low-rank approximation of
dense submatrices. We first proposed several modifications to the original QPR implementation
to improve its performance on the CPUs. We then investigated the potential of using a GPU
to accelerate the factorization time. Our performance results demonstrated that the proposed
modifications could significantly improve the performance of the QPR factorization on the CPU,
and the factorization time can be further reduced using a GPU. In addition, we provided the
case studies with an hierarchically semi-separable linear solver StruMF, which showed that the
preconditioner construction time of StruMF can be reduced by 30%-50% and 10%-20% using the
GPU for the QP3 and QPR factorizations, respectively. Though we only show the results of

19

0−1000
1000−2000

2000−3000
3000−4000

4000−5000
5000−6000

6000−7000
7000−8000

8000−9000
9000−10000

10000−11000
11000−12000

12000−13000

0−−50
50−−100

100−150
150−200

200−250
250−300

0

100

200

300

400

of columns
of rows

n
u

m
b

e
r

o
f

Q
P

3
 c

a
ll
s

(a) 2D problem (nx = 3000).

0−1000
1000−2000

2000−3000
3000−4000

4000−5000
5000−6000

6000−7000
7000−8000

8000−9000
9000−10000

10000−11000
11000−12000

12000−13000

0−−50
50−−100

100−150
150−200

200−250
250−300

0

2

4

6

of columns
of rows

ti
m

e
 s

p
e

n
t

o
n

 Q
P

3
 (

s
)

(b) 2D problem (nx = 3000).

Figure 16: Statistics of off-diagonal blocks whose low-rank approximations are computed.

solving Poisson’s equations in this paper, the performance is representative of many cases and
good indications for other cases. We emphasize that our focus is to study the performance of
computing low-rank approximations, and our aim is not on improving the numerical performance
of StruMF. The techniques discussed in this paper are applicable to other software which computes
low-rank approximations or numerical ranks of dense matrices, including those on distributed-
memory systems.

We did not study the impact of the input parameters on the performance of our implemen-
tations. For instance, we used all the default parameters of StruMF and QPR (e.g., compression
rate τ , and iteration stopping and restarting criteria for StruMF, and window size for QPR). In
particular for StruMF, a smaller compression rate would lead to larger dense blocks increasing
the effectiveness of our GPU kernels, while it would also reduce the iteration count, potentially
reducing the total solution time. For QPR, the smaller window size would improve the effective-
ness of the lookahead and may improve the performance of our hybrid implementation. On the
other hand, the larger window size could improve the performance of the trailing submatrix up-
dates, and may also lead to more accurate factorization, potentially reducing the postprocessing
time. We are currently studying the effects of these parameters on the performance of StruMF.
In addition, we mentioned that in comparison to QP3, QPR obtained smaller speedups on the
GPU, mainly because it uses a smaller block to update the trailing submatrix. We are currently
studying prepossessing techniques that would increase the block size and improve the performance
of the QPR implementation (e.g., before the factorization, reorder the matrix columns in the de-
scending order of their norms). We also discussed the performance of the QPR implementation
depends on the performance of the condition number estimator. We are investigating if more
accurate estimators are needed for other test matrices. Finally, we are studying the performance
of the randomization algorithm [21] to compute the low-rank approximation on a GPU [22] and
would like to investigate the performance of our QP3 implementation in a communication-avoiding
version of the algorithm [23] on multiple GPUs (e.g., distributed-memory system).

Acknowledgments

We thank Artem Napov, Xiaoye Li, and Ming Gu for sharing StruMF software and exchanging
helpful discussion with us. This research was supported in part by DOD, and NSF SDCI - National

20

Science Foundation Award #OCI-1032815, “Collaborative Research: SDCI HPC Improvement:
Improvement and Support of Community Based Dense Linear Algebra Software for Extreme Scale
Computational Science.”

References

[1] P. Businger, G. Golub, Linear least squares solutions by Householder transformations, Nu-
merische Mathematik 7 (1965) 269–276.

[2] G. Q.-Orti, X. Sun, C. Bishof, A BLAS-3 version of the QR factorization with column
pivoting, SIAM J. Sci. Comput. 19 (1998) 1486–1494.

[3] C. Bischof, G. Q-Orti, Computing rank-revealing QR factorization of dense matrices, ACM
Trans. Math. Softw. 24 (1998) 226–253.

[4] G. Q.-Orti, E. Q.-Orti, Parallel code for computing the numerical rank, Linear Algebra and
its Applications (1998) 451–470.

[5] A. Napov, X. Li, M. Gu, A parallel black box multifrontal preconditioner that exploits a
low-rank structure, presented at the SIAM conference on parallel processing for scientific
computing, slides available at http://homepages.ulb.ac.be/~anapov/Talks/LBL12.pdf

(2012).

[6] A. Napov, X. S. Li, An algebraic multifrontal preconditioner that exploits the low-rank
property, Tech. rep., Université Libre de Bruxelles, available at http://homepages.ulb.ac.
be/~anapov/pub/strumf.pdf (2014).

[7] S. Chandrasekaran, M. Gu, T. Pals, A fast ULV decomposition solver for hierarchially
semiseparable representations, SIAM J. Matrix Anal. Appl. 28 (2006) 603–622.

[8] G. Golub, C. van Loan, Matrix Computations, 4th Edition, The Johns Hopkins University
Press, 2013.

[9] S. Chandrasekaran, I. Ipsen, On rank-revealing factorisations, SIAM J. Matrix Anal. Appl.
15 (1994) 592–622.

[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Croz, A. Green-
baum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ guide, 3rd Edition,
Society for Industrial and Applied Mathematics, 1999.

[11] C. Bischof, C. van Loan, The WY representation for products of Householder matrices, SIAM
J. Sci. and Stat. Comput. 8 (1986) s2–s13.

[12] R. Schreiber, C. van Loan, A storage-efficient WY representation for products of Householder
transformations, SIAM J. Sci. Stat. Comput. 10 (1989) 53–57.

[13] G. Stewart, Incremental condition calculation and column selection, Tech. Rep. UMIACS-
TR 90-87, Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park (1990).

[14] Z. Drmač, Z. Bujanovać, On the failure of rank-revealing QR factorization software, ACM
Trans. Math. Softw. 12 (2008) 12:1–12:28.

http://homepages.ulb.ac.be/~anapov/Talks/LBL12.pdf
http://homepages.ulb.ac.be/~anapov/pub/strumf.pdf
http://homepages.ulb.ac.be/~anapov/pub/strumf.pdf

21

[15] C.-T. Pan, P.-T. Tang, Bounds on singular values revealed by QR factorizations, BIT 39
(1999) 740–756.

[16] C. Bischof, Incremental condition estimation, SIAM J. Matrix Anal. Appl. 11 (1990) 312–322.

[17] C. Bischof, P. Tang, Robust incremental condition estimation, Tech. Rep. CS-91-133, Math-
ematics and Computer Science Division, Argonne National Laboratory, also available as
LAPACK Working Note 33 (1991).

[18] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid GPU acclerated
manycore systems, Parallel Computing 36 (2010) 232–240.

[19] R. Nath, S. Tomov, J. Dongarra, An improved MAGMA GEMM for Fermi GPUs, Interna-
tional Journal of High Performance Computing 24 (2010) 511–515.

[20] A. Tomas, Z. Bai, V. Hernandez, Parallelization of the QR decomposition with column pivot-
ing using column cyclic distribution on multicore and GPU processors, in: the proceedings of
the international meeting on high-performance computing for computational science (VEC-
PAR), 2012, pp. 50–58.

[21] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert, A fast randomized algorithm for the approxi-
mation of matrices, Applied and Computational Harmonic Analysis 25 (2008) 335–366.

[22] T. Mary, I. Yamazaki, J. Kurzak, P. Luszczek, S. Tomov, J. Dongarra, Performance of random
sampling for computing low-rank approximations of a dense matrix on GPUs (2015).

[23] J. Demmel, L. Grigori, M. Gu, H. Xiang, Communication avoiding rank revealing QR fac-
torization with column pivoting, LAPACK Working Note 276 (May 2013).

	1 Introduction
	2 QR Algorithms with Column Pivoting
	2.1 Blocked QR Algorithm
	2.2 QP3 Algorithm
	2.3 Hybrid Algorithms
	2.4 QPR Algorithm

	3 Case Studies with StruMF on a CPU
	3.1 Performance of Original StruMF and QRP
	3.2 Proposed Modifications to Original QPR Implementation

	4 GPU Implementations
	4.1 QP3 Implementation
	4.2 QPR Implementation
	4.3 Integration into StruMF

	5 Performance Studies with a GPU
	5.1 Kernel Performance
	5.2 Performance of StruMF

	6 Conclusion

