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ABSTRACT
OpenSHMEM scalability is strongly dependent on the capa-
bility of its communication layer to efficiently handle multi-
ple threads. In this paper, we present an early evaluation of
the thread safety specification in the Unified Common Com-
munication Substrate (UCCS) employed in OpenSHMEM.
Results demonstrate that thread safety can be provided at
an acceptable cost and can improve efficiency for some op-
erations, compared to serializing communication.

1. INTRODUCTION
MPI (Message Passing Interface) has served the High Per-
formance Computing community extremely well during the
last two decades. So well in fact that it has been promoted
from its design intent as a communication library to, in
effect, a programming paradigm. However, as the gap be-
tween the assumptions of the MPI programming paradigm
and the hardware capabilities of machines widens, the pres-
sure to switch toward innovative programming approaches
increases. OpenSHMEM [4] is such an approach that is re-
cently enjoying a revival in interest, thanks to its flexible
ability to express complex irregular memory accesses (hence-
forth irregular communication patterns), which are becom-
ing increasingly pervasive in scientific applications designed
to scale on clusters of hybridized, complex processors.

One crucial capability for OpenSHMEM is to benefit from
high performance communications to resolve remote mem-
ory accesses in a timely and efficient manner; although MPI
could be employed to that end [3], its two-sided primitives
poorly fit with the intrinsically one-sided operations exposed
to the user in OpenSHMEM. Meanwhile, one-sided MPI
primitives impose more synchrony than necessary, thereby
reducing potential performance.

The Unified Common Communication Substrate (UCCS [4])
is a lower level communication layer that features routines
matching both the MPI and OpenSHMEM communication
models. In this paper, we present the design and an early

performance analysis of the thread safety support in UCCS.
The key contributions are 1) the extension of the UCCS
specification to support multiple threads, 2) the creation
of UCCS benchmarks measuring thread management effi-
ciency, and 3) to demonstrate that thread safety can be
achieved at a reasonable cost for the OpenSHMEM com-
munication layer.

The remainder of this paper is organized as follows: in Sec-
tion 2 we present the key features of the UCCS thread safety
design; In Section 3 we outline early performance results;
and then we conclude in Section 4.

2. UCCS THREAD SAFETY DESIGN
Runtime Environment. The UCCS specification includes a
portable API to abstract Runtime Environment (RTE) ser-
vices. The RTE is responsible for the deployment, I/O for-
warding, and the exchange of the network identity cards dur-
ing connection setup. Unfortunately, many popular RTEs
deployed in production have limited or non-existent thread
safety. Since the RTE API is used only during the establish-
ment of new connexions and not during performance criti-
cal communication routines, our implementation choice is to
delegate the RTE progress to a library internal thread, and
to serialize all RTE service calls with a global mutex, taken
in the RTE API shim routines. This ensures thread-safe ac-
cess to an unmodified non-thread safe RTE infrastructure.

Progress. On the contrary, the UCCS communication li-
brary implementation does not feature an internal progress
thread. The API is designed to allow simultaneous calls from
multiple user threads, resulting in multiple threads entering
the UCCS progress loop, and making these threads avail-
able to the UCCS engine to perform background progress,
if necessary (as an example to sustain OpenSHMEM asyn-
chronous progress). Despite a careful design of the UCCS
library internals, this flexible design means that at any time,
multiple threads could concurrently manipulate internal ob-
jects, such as message queues and requests. We rely on some
of the highly optimized atomic operations and data struc-
tures from OPAL [2] to provide the fine grain locking and
thread safe, and possibly lockless, accessors necessary to im-
plement requests management and message queues (as had
been hinted as most efficient in the context of MPI [1]).

Posting operations. Similarly, API calls to initiate non-
blocking operations can be invoked from multiple threads
simultaneously. Our general design encourages an imple-



mentation with fine grain locking, to ensure minimal thread
contention. The current implementation of most operations
(one-sided PUT, GET) is indeed implemented with per-
request/endpoint locking; however, the emission of active
message currently rely on mutex serialization. While this
is outside the scope of the current thread safety analysis,
there is an ongoing effort to investigate different approaches
of further minimizing the overheads due to synchronizations
in the critical path, an effort mirrored closely at the Open-
SHMEM community with two active threading proposals
(endpoints and contexts).

Active Message callbacks. Active Messages (AM) are a
powerful construct to implement efficient high level commu-
nication protocols. On processes that need to act on the
reception of a message, a tag and a callback are registered.
Upon reception of a tagged message, the callback function
associated with the tag is triggered. In the context of a mul-
tithreaded application, the rules regarding which threads
can execute the callback must be explicit. In the UCCS
specification, we decided to allow any thread to execute any
callback, even when the callback has been initially registered
by another thread. Furthermore, if multiple active messages
with the same tag are incoming, multiple instances of the
callback may coexist simultaneously, in which case, mutual
exclusion for any global structure accesses through the call-
back is the user’s responsibility.

3. PERFORMANCE EVALUATION
Performance evaluation is carried on two nodes of an In-
finiband(20G) cluster. Each node features two quad-cores
Intel Xeon E5520 (Nehalem) with 12GB of DDR3 memory.
Software environment is Linux CentOS 6.5. In this section,
we also introduce original UCCS multithreaded synthetic
benchmarks, inspired from MPI benchmarks [5].
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Figure 1: Aggregate bandwidth of one-sided com-
munication primitives, issued by multiple threads
concurrently.

The first experiment (Figure 1) compares the bandwidth of
one-sided operations when an increasing number of threads
are posting concurrent communication requests. In this bench-
mark, each process spawns the demanded number of threads
that post concurrent PUT and GET operations (left and
right graphs respectively) representing a number of “Pings”.
A supplementary thread polls the destination memory lo-
cations to detect the “Ping” transfer completion and then
emits a single short 4 bytes “Pong” message. Both processes
initiate a Ping wave, thereby measuring duplex bandwidth.
With one thread, the observed maximum bandwidth with
UCCS is superior to (non thread-safe) MPI performance
(IMB 4.0, bidirectional RMA aggregate mode, Open MPI
1.7.5). Both PUT and GET maximum bandwidth are sim-
ilar, but the bandwidth for intermediate message size is

higher for PUT than GET operations. The addition of a sec-
ond thread performing concurrent communication increases
the observed bandwidth (especially for medium size mes-
sages), closely matching multiple MPI processes perform-
ing the same communication pattern. When the number
of threads is further increased to 4 and 8, the UCCS band-
width still increases for medium messages, but cannot match
anymore the best bandwidth obtained with MPI (with 4 pro-
cesses per node).
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Figure 2: Injection rate and load fairness for Ac-
tive Message communications with multiple receiver
threads.

The second experiment (Figure 2) investigates Active Mes-
sage callbacks processing. In this benchmark, a single thread
on the sender process emits a large number of 4 bytes AM
requests. The receiver process registers a minimalistic AM
callback to count the number of incoming messages and send
an ACK when a threshold is met. The reception of the ACK
permits computing an estimate of the injection rate at the
sender. In all multithreaded cases, the performance is im-
proved compared to the single thread runs (up to 75% bet-
ter average injection rate when employing 2 threads). The
widening gap between the maximum and the average injec-
tion rates indicates some remaining contention. The right
graph presents the spread of the callbacks among 8 receiver
threads for 1000 runs. As can be observed, the spread is
generally fair with an identical average and a low standard
deviation for each thread.

4. CONCLUSIONS
We presented early results regarding multi-thread support
in the UCCS specification. The Implementation experience
and performance demonstrate that the design has the poten-
tial to deliver bandwidth and fairness when multiple threads
are concurrently communicating. In future works, we intend
to eliminate the remaining coarse grain mutex and expand
the benchmarks to include overlap, network congestions and
realistic OpenSHMEM application workloads.
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