Assembly Operations for Multicore
Architectures using Task-Based Runtime
Systems

Damien Genet!, Abdou Guermouche?, and George Bosilca®

! INRIA, Bordeaux, France
2 INRIA, LaBRI, Univ. Bordeaux, Bordeaux, France
3 University of Tennessee, Knoxville, USA

Abstract. Traditionally, numerical simulations based on finite element
methods consider the algorithm as being divided in three major steps: the
generation of a set of blocks and vectors, the assembly of these blocks in a
matrix and a big vector, and the inversion of the matrix. In this paper we
tackle the second step, the block assembly, where no parallel algorithm
is widely available. Several strategies are proposed to decompose the
assembly problem while relying on a scheduling middle-ware to maximize
the overlap between stages and increase the parallelism and thus the
performance. These strategies are quantified using examples covering two
extremes in the field, large number of non-overlapping small blocks for
CFD-like problems, and a smaller number of larger blocks with significant
overlap which can be met in sparse linear algebra solvers.

1 Introduction

The increasing parallelism and complexity of hardware architectures requires
the High Performance Computing (HPC) community to develop more and more
complex software. To achieve high levels of optimization and fully benefit of
their potential, not only the related codes are heavily tuned for the considered
architecture, but the software is often designed as a single entity that aims to
simultaneously cope with both the algorithmic and architectural needs. If this
approach may indeed lead to extremely high performance, it is at the price of a
tremendous development effort, a lesser portability and a poor maintainability.

Alternatively, a more modular approach can be employed. The numerical al-
gorithm is described at a high level, independently of the hardware architecture,
as a Directed Acyclic Graph (DAG) of tasks where a vertex represents a task
and an edge represents a dependency between tasks. A second layer is in charge
of taking the scheduling decisions. Based on these decisions, a runtime system
will perform the actual execution of the tasks, maintaining data consistency and
ensuring that dependencies are satisfied. The fourth layer consists of the opti-
mized code for the related tasks on the underlying architectures. This approach
is starting to give successful results in various domains going from very regu-
lar applications [16, 3, 7] to very irregular ones [14, 2, 1]. However, building such

complex applications on top of task-based runtime systems requires algorithmic
modifications of some core kernels of the application so that the flexibility offered
by the runtime system can be fully exploited. More precisely, these operations
need to be expressed as a task graph having enough parallelism to allow the
runtime system to overcome all the synchronizations/race conditions which can
be met with regular implementations of these kernels.

In this paper, we will focus on a specific operation, namely assembly opera-
tion, which can be met in various application fields: finite elements (FEM) meth-
ods, multifrontal sparse direct solvers, etc. This operation, even if not costly in
terms of operations count, is memory-bound and often a performance bottleneck
when the number of computational resources increases. Assembly operations can
be viewed as scatter/add operations used to process dense contribution blocks to
update a global, dense or sparse, matrix. This work is a first step toward a larger
context where numerical simulations will be expressed in a task-based paradigm
in order to diverge from the traditional fork-join model and relax synchroniza-
tions. Our contributions are : 1) A tiled version (which enhances parallelism) of
the assembly operation is introduced and implemented on top of two task-based
runtime systems. 2) Several priority based dynamic scheduling techniques which
aim at reducing the makespan of the assembly operation are presented. 3) An
experimental study concerning two application fields, namely FEM applications
and multifrontal sparse direct solver, is presented.

The remainder of the paper is organized as follows. After a presentation
of existing techniques for parallelizing assembly operations, we will introduce
our tiled version of the assembly operations and show how it can be expressed
in two different task-based paradigms. Finally, we will evaluate our proposed
approaches and compare them with state-of-the-art techniques.

2 Related Work

Considering the increasing complexity of modern high performance computing
platforms, the need for a portable layer that will insulate the algorithms and
their developers from the rapid hardware changes becomes critical. Recently,
this portability layer appeared under the denomination of task-based runtime.
A lot of initiatives have emerged in the past years to develop efficient runtime
systems for modern architectures. As stated above, most of these runtime sys-
tems use a task-based paradigm to express concurrency and dependencies by
employing a task dependency graph to represent the application to be executed:
PaRSEC [8], SMPSs [6], StarPU [5], etc. The main differences between all the
approaches are related to whether or not they manage data movements between
computational resources, to which extent they focus on task scheduling, and
how task dependencies are expressed. These task-based runtime systems aim at
performing the actual execution of the tasks, both ensuring that the DAG depen-
dencies are satisfied at execution time and maintaining data consistency. Most of
them are designed to allow writing a program independently of the architecture
and thus require a strict separation of the different software layers: high-level al-

gorithm, scheduling, runtime system, actual task implementation. Among these
frameworks, we will focus in this paper on the StarPU and the PaRSEC run-
time systems. The dense linear algebra community has strongly adopted such
a modular approach lately [16,3,7] and delivered subsequent production-level
solvers. As a result, performance portability is achieved thanks to the hardware
abstraction layer introduced by runtime systems. More recently, this approach
was considered in more complex/irregular applications : sparse direct solvers [14,
2], fast multipole methods [1], etc. The obtained results are promising and illus-
trate the interest of such a layered approach.

From the numerical simulation point of view, more precisely finite element
methods, significant efforts have been made to exploit modern heterogeneous
architectures (i.e. multicore systems equipped with accelerators) [13,11]. The
main idea is to be able to have efficient implementations of the core kernels
needed by the numerical simulation namely assembly operations, linear systems
solution, etc, for these architectures. We believe that these efforts are necessary to
understand the bottlenecks to obtain a good performance on such heterogeneous
architectures. However, we think that the modular approach proposed in this
paper, coupled with a fine grain task-based expression of the application will
ensure performance portability on any heterogeneous execution platform.

3 Background

3.1 Assembly operations on multicore systems

: Initialize the matrix A
: for each contribution block ¢ do
for each entry c[i][j] of ¢ do
A[rmap(c, i), cmap(c,j)]+ = CM [.]}
end for
end for

ST W

Algorithm 1: Assembly operation. Fig.1: Assembly operation with 2
contribution blocks.

From a general point of view, assembly operations can be viewed as scatter-
add operations of each contribution on the matrix following the scheme depicted
in Algorithm 1. This operation is commutative and contributions can be treated
in any order. For each contribution block, each entry is summed with the corre-
sponding entry of the matrix A. The association between elements of the contri-
bution blocks and entries of A are determined using indirection arrays rmap and
cmap which store the correspondence between local indices within the contribu-
tion block and global indices within the matrix A. For example, if we consider
the assembly operation the contribution block ¢; (which is a 2 by 2 matrix)
presented in Figure 1, rmap(c1,1) (resp. emap(ci, 1)) will be equal to 1 while
rmap(cy,2) (resp. ecmap(cy,2)) will be equal to 4.

Recently, a lot of work has targeted the implementation of efficient assembly
operations for finite element methods running on multicore architectures which
may be enhanced with accelerators. The main issue with the parallelization of
assembly operations comes from the race conditions which occur when two dif-
ferent contribution blocks need to update the same entry of the global matrix. A
naive parallelization scheme of the assembly operation is to process the contribu-
tion blocks in a sequential way using a parallel implementation of the assembly
of a block. This strategy requires the contribution blocks to be large enough to
ensure performance.

Moreover, the approach suffers from the lack of scalability: only intra-block
parallelism is exploited. More Recently, in [9] Cecka et al. introduced a paral-
lelization approach based on a coloring of the contribution blocks where contri-
bution blocks having the same color can be treated in parallel. This property
is guaranteed by the fact that blocks having the same color do not contribute
to the same entries of the global matrix. This idea has been pushed further by
Markall et al. in [15] by improving the coloring scheme in a way such that the
number of colors used is reduced. Lately, Hanzlikova et al. proposed in [12] an
approach which extends the work from Cecka by using extra storage to avoid
synchronizations needed to prevent race conditions.

3.2 The StarPU runtime system

As most modern task-based runtime systems, StarPU aims at performing the
actual execution of the tasks, both ensuring that the DAG dependencies are sat-
isfied at execution time and maintaining data consistency. The particularity of
StarPU is that it was initially designed to write a program independently of the
architecture and thus requires a strict separation of the different software layers:
high-level algorithm, scheduling, runtime system, actual code of the tasks. We
refer to Augonnet et al. [5] for the details and present here a simple example con-
taining only the features relevant to this work. Assume we aim at executing the
sequence funy (z, y); funz(z); funi(z, w), where fun; ;eqy 2y are functions applied
on w, x, Yy, z data; the arguments corresponding to data which are modified by a
function are underlined. A task is defined as an instance of a function on a spe-
cific set of data. The set of tasks and related data they operate on are declared
with the submit_task instruction. This is a non blocking call that allows one to
add a task to the current DAG and postpone its actual execution to the moment
when its dependencies are satisfied. Although the API of a runtime system can
be virtually reduced to this single instruction, it may be convenient in certain
cases to explicitly define extra dependencies. For that, identification tags can be
attached to the tasks at submission time and dependencies are declared between
the related tags with the declare_dependency instruction. For instance, an ex-
tra dependency is defined between the first and the third task in Figure 2 (left).
Figure 2 (right) shows the resulting DAG built (and executed) by the runtime.
The id; — ids dependency is implicitly inferred with respect to the data hazard
on = while the id; — id3 dependency is declared explicitly. Optionally, a priority
value can be assigned to each task to guide the runtime system in case multiple

tasks are ready for execution at a given moment. In StarPU, the scheduling sys-
tem is clearly split from the core of the runtime system (data consistency engine
and actual task execution). Therefore, not only all built-in scheduling policies
can be applied to any high-level algorithm, but new scheduling strategies can be
implemented without having to interfere with low-level technical details of the
runtime system.

1: PING(k) : k=0..N
submit_task(funy, z, y, id=id;) @ % RW A : Ei{;):N(g(‘ll)A(k) : A PONG(k-1)
submit_task(fung, z, id=ids)
declare_dependency (ids + id;) @ % ESVNS@ AI‘P]:N%‘(S
submit_task(funi, z, w, id=ids) @ 6: — (k==N) ? A(k) : A PING(k+1)

Fig.2: Basic StarPU-like example Algorithm 2: Ping-Pong algorithm ex-
(left) and associated DAG (rlght) preSSGd in the PaRSEC dataflow de-
scription

3.3 The PaRSEC runtime system

As described in [8], PaRSEC is a dataflow programming environment supported
by a dynamic runtime, capable of alleviating some of the challenges imposed by
the ongoing changes at the hardware level. The underlying runtime is a generic
framework for architecture-aware scheduling and management of micro-tasks on
distributed many-core heterogeneous architectures. The dynamic runtime is only
one side of the necessary abstraction, as it must be able to discover concurrency
in the application to feed all computing units. To reach the desired level of flexi-
bility, we support the runtime with a symbolic representation for the algorithm,
able to expose more of the available parallelism than traditional programming
paradigms. The runtime is capable of freely exploiting this parallelism to increase
the opportunities for useful computation, predict future algorithm behaviors and
increase the occupancy of the computing units.

Algorithm 2 represents a concise dataflow description of a ping-pong appli-
cation, where a data A(k) is altered by two tasks, PING and PONG, before
being written back into the original location A(k). Line 1 defines the task PING
and it’s valid execution space, Vk € [0..N]. Line 2 depicts the input value A for
the task PING(k), where if k is 0 the data is read from an array A(), otherwise
it is the output A of a previous task PONG(k-1). Line 3 describes the output
flow of the tasks PING, where the locally modified data A is transmitted to a
task PONG(k). This task PONG(k) can be executed in the context of the same
process as PING(k) or remotely, the runtime will automatically infer the com-
munications depending on the location of the source and target tasks. Lines 4
to 6 similarly depict the complementary task PONG.

Each task consists in the addition to the dataflow definition depicted in the
above algorithm, several possible implementations of the code to be executed
on the data, the so called codelets. Each codelet is targeted toward a specific
hardware device (CPU, Xeon Phi, GPU) or a specific language or framework
(Open CL). The decision of which of the possible codelets to be executed is

controlled by a dynamic scheduling, aware of the state of all local computing
resources. Once the scheduling decision is taken, the runtime provides the input
data located on the specific resource where the task is to be executed, and upon
completion will make the resulting data available for any potential successors.
As the task flow definition includes a description of the type of use made by
a task for each data (read, write or read/write) the runtime can minimize the
data movements while respecting the correct data versioning. Not depicted in
this short description are other types of collective communication patterns that
can be either described, or automatically inferred from the dataflow description.

4 Taskified Assembly Operation

1234

1
2
; (1)
;
[@ @ @
12/t \23 12
1 2 Task Graph 1
2|:| 3 9 Task Graph
C C. G
Fig. 3: Naive scheme. Fig. 4: Tiled scheme.

We introduce in this section a taskified assembly operation where the objec-
tive is to enhance parallelism while leaving the management of data constraints
and possible race conditions to the underlying runtime system. The main phe-
nomenon which limits the amount of parallelism is the serialization of the as-
sembly of two contribution blocks updating the same block, serialization that
prevents possible race conditions. To increase the amount of parallelism, compu-
tations must be organized such that conflicting write operations are minimized.
A naive approach to express the global assembly operation would be to asso-
ciate a task to the assembly operation of each contribution block (see Figure 3).
In this context, all tasks will be serialized because of the write conflicts on the
global matrix. For example, if we consider the assembly operation presented in
Figure 3 where this naive scheme is used, the dependency task graph contains
2 tasks (namely ¢11 and ¢32) which have a write conflict on the global matrix.
Note that since the summation operator used during the assembly operation is
commutative and associative, the task graph where ¢, ; is the predecessor of ¢3 1
is also valid. However, for the remaining of this study, we ignore the commuta-
tivity of the assembly operation, and will impose a writing order by ordering the
tasks generation and declaration. With such an approach, the runtime is now
responsible to order the assembly operations with respect to the depicted data
dependencies, preventing all conflicts between accesses to the same data.

In order to exhibit more parallelism, one could partition the global matrix
into blocks and associate a task to the assembly operation of each contribution
block into each tile of the global matrix (see Figure 4). Of course, if a contribution
block does not update a tile of the global matrix, the corresponding empty task
is not considered. By doing so, the amount of non-conflicting tasks is increased

leading to higher degree of parallelism. For example, if we consider now the
assembly operation described in Figure 4 where this tile-based scheme is used,
we can see that the task graph contains now 5 tasks for which there is only one
conflict between ¢; ; and t2 ;. When using this scheme, the number of tasks and
subsequently the degree of parallelism is strongly linked to blocking factor used
for the global matrix. A trade-off needs thus to be found between the needed
parallelism and the management overhead induced in the runtime system. The
approach to taskify the assembly operation that we propose is a tiled approach
where the serialized tasks are sorted according to their computational cost in each
chain: the most costly tasks are treated first. The task graph is thus composed
by a set of independent chains of tasks. This scheme will be referred to as the
flat assembly operation scheme.

To overcome the overhead due the management of the large number of tasks,
one could decrease the number of tasks for a fixed tile size by merging the chains
of the flat assembly scheme into a single tasks. This will produce a fixed number
of tasks corresponding to the number of tiles of the global matrix. This approach
is similar to [9], in the sense that it builds a set of completely independent tasks
preventing all race conditions from occurring. This is illustrated in Figure 4,
where the chain is replaced by the dashed box surrounding it. In the rest of the
paper, this scheme will be referred to as no-chain assembly operation scheme.

4.1 Scheduling strategies for taskified assembly operations

Taskified assembly operations can are expressed using task dependency graphs
composed of independent chains of tasks (an example is given in Figure 4). In
this paper, we consider dynamic on-line scheduling strategies which are com-
monly used in various runtime systems. In order to efficiently assign tasks to the
computational resources it is important to take into account the weight of each
task in terms of workload and give priority to the largest ones (the larger the
contribution the higher its priority is). This strategy is used on the set of ready
tasks (i.e. tasks for which the corresponding dependencies are satisfied) and each
idle processing unit picks the task with highest priority from the set of ready
tasks. By doing so, the processing units are constantly working on the critical
path of the execution. Varying the tasks priorities allow for further improvement
of the scheduling strategy.

12 10 2 1

10 12 10 2 4 2

10 12 10) 8 5

10 30 12 20 10 10 30 12 20 10
Fig. 5: Fixed priorities. Fig. 6: Adaptive priorities.

A first approach to express the critical aspect of a task regarding the length
of the chain it belongs to, is to associate a priority related to the cost of the
entire chain. This illustrates in Figure 5, where the priorities of the entire chain

are constant, and are computed based on the cost of the entire chain. We will
refer to this priority scheme as fized priority scheme.

This priority management can be pushed further so that the priorities, not
only take into account the absolute length of the critical path but its current
length at the moment where the scheduling decision is taken. Thus, the priority
of a task is computed based on the remaining workload on the chain it belongs
to. This allows the working units to select the tasks that are currently the most
critical. Figure 6 depicts the same example as before using this new priority
assignment scheme. This time the tasks belonging to a chain have a priority
linked to the length of the remaining part of the chain. We will refer to this
priority scheme as adaptive priority scheme.

One of the major differences between StarPU and PaRSEC is the way the
list of ready tasks is managed. In StarPU, the user divides data, precomputes a
list of tasks working on those data, and submits, in advance, all the tasks. This
sequential submission of tasks creates implicit dependencies between the tasks.
In PaRSEC, the dependencies are explicitly specified by the user, and the tasks
are dynamically discovered by the runtime based on completed dependencies and
the symbolic description of the algorithm. From the scheduling point of view,
StarPU gives the opportunity to the user to write his own scheduler while in
PaRSEC, a highly optimized scheduler is provided, where priorities are secondary
to enforcing a coherent data locality policy.

5 Experimental results

We evaluate the behavior and performance of our task-based approach on the
riri platform, composed by 4 Intel E7-4870 processors having 10 cores clocked
at 2,40 GHz and having 30 MB of L3 cache. The platform has uniform memory
access (UMA) to it’s 1 TB of RAM. In all cases the results presented are averages
over multiple runs (at least 10), where the outliers have been cleaned. In addition
to the results presented here, we also analyzed the standard deviation, but we
decided not to report it as is was under the system noise (2%).

We have chosen to illustrate the behavior of our approaches on two different
classes of problems. The first class correspond to assembly operations met in fi-
nite element methods. We consider in the following study both 2D and 3D finite
element continued method applied on structured meshes. The difference between
the two cases resides in the connectivity between elements. While on a 2D grid,
each element has at most 8 neighbors, in 3D, each hexahedron has 26 neighbors
leading to higher overlapping between contribution blocks for the 3D case. The
second class correspond to a less structured assembly operations met in a sparse
direct method (namely the multifrontal method [10]). The considered configu-
ration has been generated using the MUMPS sparse direct solver [4] using input
problems coming from the University of Florida Sparse Matrix Collection 4. To
be more precise, we extracted configurations met during the assembly phases

4 http://www.cise.ufl.edu/research/sparse/matrices

needed by the sparse LU factorization. The contribution blocks for these config-
urations are very irregular with sizes varying from 0.01% to 99% of father’s size.
Thus, we are not analyzing the task-based implementation asymptotically on
large benchmarks, but on real-life cases extracted existing applications. Finally,
two parameters will vary in our experiments, the size of the tile and the number
of computational resources. The bigger the tile size, the lesser parallelism one
will be able to exhibit. Thus, one shall find an acceptable value in sync with the
second parameter, the number of computing resources units available.

0.2 tile size = 10000 tile size = 20000 tile size = 50000
——+— StarPU flat
X StarPU fixed
——*—— StarPU adapt
8 ——=—— StarPU no-chain
g ——+—— PaRSEC flat
g —>—— PaRSEC fixed
» —#— PaRSEC adapt
£ —&— PaRSEC no-chain
GE) —=— OpenMP
= ——+&— Colour
> ——+—— StarPU
S ——+— PaRSEC
2
[s]
E
o
Il Il Il Il Il Il

L L L L
4 8 16 24 32 4 8 16 24 32
number of threads

Fig.7: Comparison of the performance of an assembly operation using a 2D
mesh with 2025 blocks of size 1212 based on the granularity of the operation (as
depicted by the tile size). The matrix has 203k entries and respectively 61, 31,
and 13 active tiles (from left to right).

Figure 7 depicts the performance of the assembly operation when used in
the context of a finite element method application in a 2D mesh case. This
corresponds to a case where the overlapping between contribution blocks is small.
First of all, we can observe that, by increasing the concurrency (leftmost plot),
the taskified assembly operation obtains a very good behavior with all strategies
in PaRSEC. Moreover, we observe that the StarPU implementation has a good
behavior on a small number of processing units but seems less efficient when
the number of resources increases. As shown in the bottom part of the graph
this is mainly due to the overhead induced by the management of the tasks, the
tasks are not compute intensive enough to amortize the overhead of the StarPU
runtime system (which is mainly due to the inference of task dependencies).
Similarly, we can notice that independently from this observation, the no-chain
assembly operation scheme behaves well in both runtime systems mainly because
there are no race conditions in this strategy. We can see also, that this strategy
gives performance equivalent to the one obtained with the coloring strategy
described in [9] and outperforms it in certain configurations (typically when
there the global matrix is tiled using fine grain blocks). This illustrates the
interest of our taskified assembly scheme on this simple scenario.

In Figure 8 we investigate the behavior of the taskified assembly operation
on the two runtime systems in the context of a finite element method application

in a 3D mesh case. This time both the size of the contribution blocks and their
overlapping increased in comparison with the 2D case.

tile size = 10000 tile size = 20000 tile size = 50000

——+— StarPU flat
——— StarPU fixed
——*—— StarPU adapt
——=— StarPU no-chain
—+— PaRSEC flat
—>— PaRSEC fixed
—*— PaRSEC adapt
_|—=— PaRSEC no-chain
—=— OpenMP
—a— Colour

time in seconds

——+— StarPU
—+— PaRSEC

efficiency

L L L
4 8 16 24 32 4 8 16 24 32 4 8 16 24 32

number of threads

Fig.8: Comparison of the performance of an assembly operation using a 3D
mesh with 512 blocks of size 5122 based on the granularity of the operation (as
depicted by the tile size). The matrix has 185k entries and respectively 121, 44,
and 10 active tiles (from left to right).

We can observe that the functioning of our taskified schemes have a good
behavior for all tile sizes. Moreover, we can observe that the overhead of the run-
time system is negligible compared with the computational cost of the tasks and
allow all the strategies to expose a scalable behavior. Concerning the coloring
scheme, it is outperformed by all the strategies when the number of computa-
tional resources increased. Finally, once again, the no-chain assembly operation
scheme is the most efficient variant for both runtime systems.

Finally, Figure 9 reports the results gathered in the context of the most
irregular and complex case: assembly operations arising in the sparse LU fac-
torization using the multifrontal method. First of all, note that in this case, it
is not possible to use the coloring heuristic since the overlapping between con-
tributions blocks may be arbitrarily large (the cost of the coloring heuristic is
prohibitive in this case). We can observe that PaRSEC has a good performance
with all tiling strategies and all scheduling policies. We can also see that the
adaptive priority scheduling policy is the one with the most scalable behavior.
Finally, we can observe that the overhead induced by the runtime is minimal
with PaRSEC. Concerning StarPU, when the granularity of the tiles is small,
we measure that the overhead of the runtime system tends to increase with the
number of resources leading to a significant performance loss. However, increas-
ing the granularity allows to overcome the runtime overhead and the behavior of
StarPU becomes equivalent to the one obtained with PaRSEC. Once again, the
no-chain assembly operation scheme is the most efficient variant for both runtime
systems. Finally, we report also, the behavior of the naive implementation using
based on OpenMP where all the global matrix is not tiled and the contribution
blocks are treated sequentially using as many threads as provided by the user for
each contribution block. We can see, that our taskified assembly scheme is much

more stable in terms of behavior and outperforms the OpenMP implementation
for most non-trivial cases. Even though our strategies and the OpenMP imple-
mentation are extremely close on some experiments, our approach permits to
relax synchronizations once integrated into an application, enabling additional
overlap between the assembly operations and the rest of the computations and
the entire application will benefit. From this perspective, these experimental
results illustrate the interest of our taskified scheme.

tile size = 100 tile size = 300 tile size = 600

——+— StarPU flat

| ———— StarPU fixed

f ——— StarPU adapt
o ——=&— StarPU no-chain
g ——+— PaRSEC flat
2 | ——— PaRSEC fixed
0 0.1 4 —— PaRSEC adapt
£ \ ——&— PaRSEC no-chain
“E) —=— OpenMP
£

7 \hA
le2 r = o o
> 8 T ngﬁ*”** ' th’”wi‘\l,,,]+ starpu
e L —+— PaRSEC
6

o
S 4
£ 2 L
@ ! Il Il Il T 4 Il Il Il Il Il Il Il Il Il Il

4 8 16 24 32 4 8 16 24 32 4 8 16 24 32
number of threads

Fig.9: Comparison of the performance of an assembly operation coming from
the MUMPS solver based on the granularity of the operation.

6 Conclusion

In this work we evaluated the usability and effectiveness of general-purpose task-
based runtime systems for parallelizing the assembly operation, which is a main
operation in several application fields. We expressed the assembly operation as
tasks with data dependencies between them and provided the resulting task
graph to a runtime systems. Several algorithms aiming at enhancing the concur-
rency while trying to reduce the number of race conditions have been proposed,
and they were analyzed under different dynamic constraints: tasks priority and
granularity. Overall, the results clearly indicates that for both runtime systems,
namely PaRSEC and StarPU, our approach exhibits encouraging performance,
especially when the right balance is reached between the task granularity and
the overhead of the runtime system.

In the near future, we plan to further extend this work by using accelerators
(GPU, Intel Xeon-Phi, etc) to minimize the time-to-solution. This will be done
by relying on existing assembly kernels for the different accelerators and leave the
data management and scheduling decisions to the runtime systems (the schedul-
ing policies need to be adapted to the heterogeneous context). Moreover, it could
be of interest to consider intra-task parallelism which may offer more flexibility
to enhance concurrency. In a longer term, this work represents a necessary kernel
which will be used to design complex numerical simulation applications on top
of modern runtime systems. This will allow the application to run in a more
asynchronous way without relying on the classical fork-join paradigm.

Acknowledgments This work was partially supported by the French ANR through the
MN (Solhar ANR-13-MONU-007 project) program, and the US Department of Energy
through the DE-FG02-13ER26151.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi. Task-
based fmm for multicore architectures. STAM SISC, 36(1), 2014.

E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. Multifrontal QR factoriza-
tion for multicore architectures over runtime systems. In Furo-Par 2013 Parallel
Processing - 19th International Conference, pages 521-532, 2013.

E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics, 180(1), 20009.

P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling
for the parallel solution of linear systems. Parallel Computing, 32(2):136-156, 2006.
C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concur-
rency and Computation: Practice and Experience, 23:187-198, February 2011.

R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S. Quintana-Orti, and
G. Quintana-Orti. Parallelizing dense and banded linear algebra libraries using
SMPSs. Concurrency and Computation: Practice and Ezxperience, 21(18), 2009.
G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Luszczek, and J. Dongarra.
Dense linear algebra on distributed heterogeneous hardware with a symbolic dag
approach. Scalable Computing and Communications: Theory and Practice, 2013.
George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J. Dongarra. PaRSEC: Exploiting heterogeneity to enhance
scalability. Computing in Science and Engineering, 15(6):36—45, 2013.

C. Cecka, A. J. Lew, and E. Darve. Assembly of finite element methods on graphics
processors. Int. J. for Numerical Methods in Engineering, 85(5):640-669, 2011.

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Transactions on Mathematical Software, 9:302-325, 1983.
Z.Fu, T. J. Lewis, R. M. Kirby, and R. T. Whitaker. Architecting the finite element
method pipeline for the GPU. Journal of Computational and Applied Mathematics,
257(0):195 — 211, 2014.

N. Hanzlikova and E. R. Rodrigues. A novel finite element method assembler for
co-processors and accelerators. In Proceedings of the 3rd Workshop on Irreqular
Applications: Architectures and Algorithms, NY, USA, 2013. ACM.

P. Huthwaite. Accelerated finite element elastodynamic simulations using the
GPU. Journal of Computational Physics, 257, Part A(0):687 — 707, 2014.

X. Lacoste, M. Faverge, P. Ramet, S. Thibault, and G. Bosilca. Taking advantage
of hybrid systems for sparse direct solvers via task-based runtimes. Rapport de
recherche RR-8446, INRIA, January 2014.

G. R. Markall, A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J.
Sherwin. Finite element assembly strategies on multi-core and many-core architec-
tures. International Journal for Numerical Methods in Fluids, 71(1):80-97, 2013.
G. Quintana-Orti, E. S. Quintana-Orti, R. A. van de Geijn, F. G. Van Zee, and
E. Chan. Programming matrix algorithms-by-blocks for thread-level parallelism.
ACM Trans. Math. Softw., 36(3), 2009.

