
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3341

SPECIAL ISSUE PAPER

Unveiling the performance-energy trade-off in iterative linear
system solvers for multithreaded processors

José I. Aliaga1,*,† , Hartwig Anzt2, Maribel Castillo1, Juan C. Fernández1,
Germán León1, Joaquín Pérez1 and Enrique S. Quintana-Ortí1

1Departamento de Ingeniería y Ciencia de Computadores, Universitat Jaume I, 12071-Castellón, Spain
2Innovative Computing Lab (ICL), University of Tennessee, Knoxville, TN, USA

SUMMARY

In this paper, we analyze the interactions occurring in the triangle performance-power-energy for the execu-
tion of a pivotal numerical algorithm, the iterative conjugate gradient (CG) method, on a diverse collection of
parallel multithreaded architectures. This analysis is especially timely in a decade where the power wall has
arisen as a major obstacle to build faster processors. Moreover, the CG method has recently been proposed
as a complement to the LINPACK benchmark, as this iterative method is argued to be more archetypical
of the performance of today’s scientific and engineering applications. To gain insights about the benefits of
hands-on optimizations we include runtime and energy efficiency results for both out-of-the-box usage rely-
ing exclusively on compiler optimizations, and implementations manually optimized for target architectures,
that range from general-purpose and digital signal multicore processors to manycore graphics processing
units, all representative of current multithreaded systems. Copyright © 2014 John Wiley & Sons, Ltd.

Received 30 March 2014; Accepted 5 June 2014

KEY WORDS: energy efficiency; CPUs; low-power architectures; GPUs; CG

1. INTRODUCTION

At a rough cost of $1m USD per megawatt (MW) year, current high performance computing
(HPC) facilities and large-scale datacenters are painfully aware of the power wall. This is recog-
nized as a crucial hurdle by the HPC community, and many ongoing developments toward the
world’s first exascale system are shaped by the expected power demand and the related energy
costs. For instance, a simple look at the Top500 and Green500 lists [1, 2] reveals that an ExaFLOP
computer built using the same technology employed in today’s fastest supercomputer, would dissi-
pate more than 520 MW, resulting in an unmistakable call for power-efficient systems and energy
proportionality [3–7].

One important follow-up of the end of Dennard scaling [8] (i.e., the ability to drop the voltage
and the current that transistors need to operate reliably as their size shrinks) is the surge of dark
silicon [9], and consequently the development of specialized processors composed of heteroge-
neous core architectures with more favorable performance-power ratios. This trend is visible, for
example, in the Top500 list, with the current top two systems being equipped with NVIDIA GPUs
and Intel Xeon Phi accelerators. Against this background, although most manufacturers advertise
the power-efficiency of their products by providing theoretical energy specifications, an equitable
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comparison between different hardware architectures remains difficult. The reason is not only that
distinct devices are often designed for different types of computations, but also that they are tailored
for either performance or power efficiency. New energy-related metrics have been recently proposed
to analyze the balance between these two key figures [10], but the situation becomes increasingly
difficult once the different levels of optimization applied to an algorithm enter the picture.

In response to this situation, this paper analyzes the performance-energy trade-offs of an ample
variety of multithreaded general-purpose and specialized architectures, using the CG method as a
workhorse. This method is a key algorithm for the numerical solution of symmetric positive definite
(s.p.d.) sparse linear systems [11]. Furthermore, because the cornerstone of this iterative method is
the sparse matrix-vector product (SPMV), an operation that is also crucial for many other numerical
methods [12], the significance of the results carries over to many other applications. In addition, the
CG method has been recently proposed as a complement to the LINPACK benchmark on the basis
of being more representative of the actual performance attained by current scientific and engineering
codes that run on HPC platforms [13]. Concretely, the LINPACK benchmark comprises the solution
of a (huge) dense system of linear equations via the LU factorization, a compute-bounded operation
that is known to deliver a GFLOPS (billions of floating-point arithmetic operations, or flops, per sec-
ond) rate close to that of the matrix-matrix product and, therefore, the theoretical peak performance
of the underlying platform. The CG method, on the other hand, is composed of memory-bound ker-
nels, an attribute shared by a considerably larger number of HPC applications, and offers a much
lower GFLOPS throughput than the LINPACK metric.

Our analysis covers two different scenarios. We first review the study in [14], replacing the
single-precision (SP) arithmetic with double-precision (DP) experiments, as this is the norm in
numerical linear algebra. In [14] we refrained from applying any manual hardware-aware optimiza-
tions to the code, but instead evaluated basic SP implementations of the CG method and SPMV,
using either the baseline CSR (compressed sparse rows) or ELLPACK sparse matrix formats [11],
and relying exclusively on the optimizations applied by the compiler. That scenario thus provided
insights on the resource efficiency achieved when running complex numerical codes on large HPC
facilities without applying hands-on optimization. In this paper we extend the study significantly
by considering an alternative scenario which aims to increase resource efficiency by replacing
the standard SPMV with a more sophisticated implementation, and, in the presence of a hardware
graphics accelerator, modifying the basic CG algorithm to reduce the overall kernel count [15].
This allows us to also assess the improvement potential of algorithmic modifications on the distinct
hardware architectures.

The rest of the paper is structured as follows. In Section 2 we briefly introduce the mathemati-
cal formulation of the CG method as well as the matrix benchmarks and hardware architectures we
evaluate, which include four general-purpose multicore processors (Intel Xeon E5504 and E5-2620,
and AMD Opteron 6128 and 6276); a low-power multicore digital signal processor (Texas Instru-
ments C6678); three low-power multicore processors (ARM Cortex A9, Exynos5 Octa, and Intel
Atom S1260); and three GPUs with different capabilities (NVIDIA Quadro M1000, Tesla C2050,
and Kepler K20). Section 3 contains the performance and energy efficiency results obtained from
the basic DP implementations of the CG method, where only compiler-intrinsic optimizations are
applied. These figures are contrasted next, in Section 4, against the results obtained when applying
the hands-on optimizations described previously in that section. We finally conclude the paper in
Section 5 with a short summary about the findings and a discussion of ideas for future research.

2. BACKGROUND AND EXPERIMENTAL SETUP

2.1. Krylov-based iterative solvers

The CG method [11] is usually the preferred Krylov subspace-based solver to tackle a linear system
of the form

Ax D b; (1)
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Figure 1. Mathematical formulation of the CG method. The names inside parenthesis, except for SPMV
which refers to the sparse matrix-vector kernel, identify the routine from the level-1 BLAS that offers the

corresponding functionality.

Figure 2. Simplified loop body of the basic CG implementation using double precision.

where A 2 Rn�n is sparse s.p.d., b 2 Rn contains the independent terms, and x 2 Rn is the
sought-after solution. The method is mathematically formulated in Figure 1, where the user-defined
parameters maxres and maxiter set upper bounds, respectively, on the residual for the computed
approximation to the solution, xk , and the maximum number of iterations.

In practical applications, the computational cost of the CG method is dominated by the matrix-
vector multiplication ´k WD Adk . Given a sparse matrix A with n´ nonzero entries, this operation
roughly requires 2n´ flops. The SPMV is ubiquitous in scientific computing, being a key operation
for the iterative solution of linear systems and eigenproblems as well as the PageRank algorithm,
among others [11, 12, 16]. The irregular memory access pattern of this operation, in combination
with the limited memory bandwidth of current general-purpose architectures, has resulted in a con-
siderable number of efforts that propose specialized matrix storage layouts as well as optimized
implementations for a variety of architectures; see, for example, [17–19] and the references therein.
Although we target only symmetric systems with our CG implementations for which storage for-
mats and matrix-vector routines that efficiently exploit this property exist [11], we refrain from using
them. We argue, that by not considering this optimization, our analysis and results can be easily
extrapolated to the case of unsymmetric sparse linear system solvers.

In addition to the matrix-vector multiplication, the loop body of the CG method contains several
vector operations, with a cost of O.n/ flops each, for the updates of xkC1, rkC1, dkC1, and the
computation of �k and ˇkC1. These operations are supported as part of the level-1 BLAS [20];
see Figure 2.
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Table I. Description and properties of the test matrices (top) and the corresponding sparsity
plots (bottom).

UFMC, University of Florida Matrix Collection.

2.2. Matrix benchmarks

For our experiments, we selected six s.p.d. matrices from the University of Florida Matrix
Collection‡, corresponding to finite element discretizations of several structural problems arising in
mechanics, and an additional case derived from a finite difference discretization of the 3D Laplace
problem; see Table I. For these linear systems, the right-hand side vector b was initialized to be con-
sistent with the solution x � 1, while the CG iteration was started with the initial guess x0 � 0.
Except where stated otherwise, all tests were conducted with DP arithmetic. (We note that the
experimentation in [14] was performed using SP arithmetic only.)

2.3. Hardware setup and compilers

Table II lists the main features of the hardware systems and compilers utilized in the experiments.
For each multicore processor we also report the different processor frequencies that were evaluated.
Aggressive optimization was applied to all implementations through flag -O3. In order to measure
power, we leveraged a WATTSUP?PRO wattmeter, connected to the line from the electrical socket
to the power supply unit, with an accuracy of˙1:5% and a rate of 1 sample/sec. These results were
collected on a separate server to avoid interfering with the application performance and consump-
tion. For all test matrices, we based the analysis on the average power draft when executing 1000 CG
iterations after a warm up period of 5 minutes using the same test. Because the platforms where the
processors are embedded contain other devices—for example, disks, network interface cards, and
fans—on each platform we measured the average idle power and then subtracted the corresponding
value (Table II) from all the samples obtained from the wattmeter. We believe this setup enables
a relevant comparison between the energy efficiencies of the different architectures, as proceeding

‡http://www.cise.ufl.edu/research/sparse/matrices.
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Table II. Multithreaded architectures. For the GPU systems (FER, KEP, and QDR), the idle power includes
the consumption of both the server and the accelerator.

Total Frequency (GHz) RAM size,
Acron Architecture #cores – idle power (W) type Compiler

AIL AMD Opteron 6276 8 1.4–167.29, 1.6–167.66 64 GB, icc 12.1.3
(Interlagos) 1.8–167.31, 2.1–167.17 DDR3 1.3 GHz

2.3–168.90

AMC AMD Opteron 6128 8 0.8–107.48, 1.0–109.75, 48 GB, icc 12.1.3
(Magny-Cours) 1.2–114.27, 1.5–121.15, DDR3 1.3 GHz

2.0–130.07

IAT Intel Atom S1260 2 0.6–41.94, 0.90–41.93, 8 GB, icc 12.1.3
1.30–41.97, 1.70–41.95 DDR3 1.3 GHz
2.0–42.01

INH Intel Xeon E5504 8 1.60–33.43, 1,73–33.43, 32 GB, icc 12.1.3
(Nehalem) 1.87–33.43, 2.00–33.43 DDR3 800 MHz

ISB Intel E5-2620 6 1.2–113.00, 1.4–112.96, 32 GB, icc 12.1.3
(Sandy-Bridge) 1.6–112.77, 1.8–112.87, DDR3 1.3 GHz

2.0–112.85

A9 ARM Cortex A9 4 0.76–10.0, 1.3–10.1 2 GB, DDR3L gcc 4.6.3

A15 Exynos5 Octa 0.25–2.2, 1.6–2.4 2 GB, LPDDR3 gcc 4.7
(ARM Cortex A15 + A7) 4C 4

FER Intel Xeon E5520 8 1.6–222.0, 2.27–226.0 24 GB, gcc 4.4.6
NVIDIA Tesla C2050 (Fermi) 448 1.15 3 GB, GDDR5 nvcc 5.5

KEP Intel Xeon i7-3930K 6 1.2–106.30, 3.2–106.50 24 GB, gcc 4.4.6
NVIDIA Tesla K20 (Kepler) 2496 0.7 5 GB, GDDR5 nvcc 5.5

QDR ARM Cortex A9 4 0.120–11.2, 1.3–12.2 2 GB, DDR3L gcc 4.6.3
NVIDIA Quadro 1000M 96 1.4 2 GB, DDR3 nvcc 5.5

TIC Texas Instruments C6678 8 1.0–18.0 512 MB, DDR3 cl6x 7.4.1

in this manner we only take into account the (net) energy that is drawn for the actual work, but
eliminate power sinks such as the inefficiencies of the power supply unit, the network interface, or
the disk.

3. BASIC CG METHOD RELYING ON COMPILER OPTIMIZATION

In this section, we analyze a straight-forward implementation of the CG method, with the only
optimizations being applied automatically by the compiler, when configuring the hardware for
either performance or energy efficiency through adjusting the processor operation frequency and
the number of active cores. The reference code for all of these baseline implementations is given
in Figure 2.

3.1. Basic implementation of the CG method

In our basic implementations of the SPMV for the CG method, matrix A is stored in the CSR format
for multicore architectures, or the ELLPACK format for the GPUs. Both schemes aim to reduce the
memory footprint by explicitly storing only the nonzero elements, though the ELLPACK format
may store some zero elements for padding all rows to the same length; see Figure 3 and Table III

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
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Figure 3. Basic dense and sparse matrix storage formats. The memory demand corresponds to the gray areas.

Table III. Storage overhead of the test matrices when using ELLPACK or SELL-P format.

ELLPACK SELL-P

Matrix #nonzeros (n´) Size (n) n´=n nrow´ nELLPACK´ Overhead (%) nSELL�P´ Overhead (%)

A159 27,986,067 4,019,679 6.96 7 28,137,753 0.54 32,157,440 12.97
AUDI 77,651,847 943,645 82.28 345 325,574,775 76.15 95,556,416 18.74
BMW 10,641,602 148,770 71.53 351 52,218,270 79.62 12,232,960 13.01
CRANK 14,148,858 63,838 221.63 3423 218,517,474 93.53 15,991,232 11.52
F1 26,837,113 343,791 78.06 435 149,549,085 82.05 33,286,592 19.38
INLINE 38,816,170 503,712 77.06 843 424,629,216 91.33 45,603,264 19.27
LDOOR 42,493,817 952,203 44.62 77 73,319,631 42.04 52,696,384 19.36

nFORMAT´ refers to the explicitly stored elements (n´ nonzero elements and the explicitly stored zeros for
padding).

for the evoked overhead. While in general this incurs some additional storage cost, the aligned
structure allows for more efficient hardware use when targeting streaming processors such as the
GPUs [21, 22].

In Figure 4, we sketch the SPMV kernels for the CSR and ELLPACK formats. In both routines,
n refers to the matrix size; the matrix is stowed using arrays values, colind and, in the case
of routine SpMV_csr, also array rowptr (Figure 3); the input and output vectors of the product
y WD Ax are, respectively, x and y; finally, nzr refers to the number of entries per row in the
ELLPACK-based routine.

In the basic implementation for multicore processors (SpMV_csr), concurrency is exploited via
the OpenMP application programming interface, with the matrix-vector operation partitioned by
rows, and each OpenMP thread being responsible for all the arithmetic operations necessary to
update a certain number of entries of y. In these architectures, we employed the legacy implemen-
tation of BLAS from netlib§ for the level-1 (vector) operations (kernels sdot, daxpy, scal in
Figure 2). No attempt was made to extract parallelism from these BLAS kernels as, because of their
low computational cost, a parallel execution on a conventional multithreaded architecture rarely
offers any benefits.

For the GPUs, concurrency is exploited in SpMV_ell by rows, with one CUDA thread being
responsible for the computation of one element of y. On these streaming architectures we used
the multithreaded implementation in NVIDIA’s CUBLAS, replacing the invocations to ddot,
daxpy, and dscal in Figure 2 with calls to cublasDdot, cublasDaxpy, and cublasDcal,

§http://www.netlib.org.
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Figure 4. Sparse matrix-vector product using the compressed sparse rows and ELLPACK formats
(SpMV_csr and SpMV_ell, respectively).

respectively. (For the resulting code, see also the left-hand side of Figure 7.) We consider this a fair
comparison as in the following: (1) In general, the time cost of the vector operations is significantly
lower than that of the SPMV; (2) Because of their reduced cost, there is little opportunity to benefit
from a concurrent execution of the vector operations on a multicore processor.

3.2. Search for the optimal configuration

Tables IV and V and Figure 5 report the performance and net energy (i.e., energy after subtracting
the cost of idle power) per iteration, for the different platforms and benchmark cases, obtained
with the basic DP implementations. (For an analogous study with SP arithmetic, refer to [14].) For
each architecture and matrix, we report the combination of core number and frequency that yields
the shortest execution time per iteration, together with the corresponding net energy (‘optimized
w.r.t. time’), as well as the configuration that provides the most energy-efficient result (‘optimized
w.r.t. energy’). As the tables and figure convey a considerable amount of information, we limit the
following analysis to some central aspects.

3.2.1. Optimization with respect to time. If aiming for performance using the basic CG implemen-
tation, it is not possible to identify an overall winner, as the performance turns out to be highly
problem dependent (see the top-left graph in Figure 5). For example, the Tesla K20 (KEP) achieves
almost 12 GFLOPS for the A159 matrix, a number that is most closely followed by the Tesla C2050
GPU’s 7.5 GFLOPS (FER), and about nine times faster than the best of all the CPUs for that particu-
lar case (1.3 GFLOPS attained with the Intel E5-2620, ISB). On the other hand, for the more involved
sparsity structure of the CRANK problem, KEP only delivers 1.2 GFLOPS, while the CPU imple-
mentations, using the less problem-dependent CSR format instead of ELLPACK, achieve between 2
and 4 GFLOPS on recent hardware (AIL and ISB, respectively). A closer inspection reveals that the
GPU’s performance is directly related to the overhead induced by the usage of the ELLPACK format
(Table III). Also, the performance of the older CPU generations (AMC and INH) is less problem-
dependent, whereas the other two GPU architectures are similarly sensitive to the matrix structure.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
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Table IV. Optimal hardware parameter configuration when optimizing the general-purpose architectures for
runtime or energy efficiency using the basic implementations.

Optimized w.r.t. time Optimized w.r.t. net energy

Matrix c f T Enet c f T Enet

AIL

A159 8 2300 1.00E � 01 1.72EC 01 4 2100 1.14E � 01 1.53EC 01
AUDI 8 2300 1.07E � 01 1.70EC 01 8 2300 1.07E � 01 1.70EC 01
BMW 8 2300 1.13E � 02 1.89EC 00 8 2100 1.15E � 02 1.82EC 00
CRANK 8 2300 1.42E � 02 2.46EC 00 8 2100 1.46E � 02 2.34EC 00
F1 8 2300 3.82E � 02 6.15EC 00 8 2300 3.82E � 02 6.15EC 00
INLINE 8 2300 4.48E � 02 7.77EC 00 4 2100 5.24E � 02 7.26EC 00
LDOOR 8 2300 6.17E � 02 1.09EC 01 8 2100 6.25E � 02 9.76EC 00

AMC

A159 8 2000 2.11E � 01 1.94EC 01 8 2000 2.11E � 01 1.94EC 01
AUDI 8 2000 2.12E � 01 2.06EC 01 8 2000 2.12E � 01 2.06EC 01
BMW 8 2000 1.83E � 02 2.01EC 00 8 2000 1.83E � 02 2.01EC 00
CRANK 8 2000 2.57E � 02 2.82EC 00 8 2000 2.57E � 02 2.82EC 00
F1 8 2000 7.40E � 02 7.59EC 00 8 2000 7.40E � 02 7.59EC 00
INLINE 8 2000 8.15E � 02 8.55EC 00 8 2000 8.15E � 02 8.55EC 00
LDOOR 8 2000 1.02E � 01 1.08EC 01 8 2000 1.02E � 01 1.08EC 01

IAT

A159 2 2000 3.01E � 01 1.27EC 00 1 600 1.25EC 00 8.53E � 01
AUDI 2 2000 3.79E � 01 1.48EC 00 1 600 1.84EC 00 9.60E � 01
BMW 2 2000 4.35E � 02 1.95E � 01 1 600 2.43E � 01 1.37E � 01
CRANK 2 2000 5.82E � 02 2.43E � 01 1 600 3.07E � 01 1.43E � 01
F1 2 2000 1.78E � 01 6.12E � 01 1 600 8.15E � 01 3.94E � 01
INLINE 2 2000 1.74E � 01 7.23E � 01 1 600 9.09E � 01 4.24E � 01
LDOOR 2 2000 2.38E � 01 9.61E � 01 1 600 1.19EC 00 6.60E � 01

INH

A159 4 1870 1.01E � 01 1.01EC 01 2 1870 1.03E � 01 9.30EC 00
AUDI 8 2000 1.00E � 01 1.35EC 01 4 1730 1.34E � 01 1.28EC 01
BMW 4 1870 1.29E � 02 1.37EC 00 4 1600 1.33E � 02 1.29EC 00
CRANK 4 1870 1.65E � 02 1.75EC 00 4 1600 1.72E � 02 1.64EC 00
F1 8 1730 3.81E � 02 4.97EC 00 4 1600 5.01E � 02 4.72EC 00
INLINE 8 1600 5.00E � 02 5.97EC 00 4 1600 5.27E � 02 5.04EC 00
LDOOR 8 1870 6.84E � 02 9.66EC 00 4 1600 7.12E � 02 6.91EC 00

ISB

A159 6 2000 5.56E � 02 2.78EC 00 2 1200 1.08E � 01 1.86EC 00
AUDI 6 2000 6.12E � 02 3.10EC 00 2 1400 1.30E � 01 2.46EC 00
BMW 6 2000 5.51E � 03 3.24E � 01 6 1200 8.17E � 03 2.63E � 01
CRANK 6 2000 7.22E � 03 4.56E � 01 6 1200 1.11E � 02 3.45E � 01
F1 6 2000 1.98E � 02 1.04EC 00 6 1200 2.92E � 02 8.51E � 01
INLINE 6 2000 2.31E � 02 1.27EC 00 4 1400 3.53E � 02 1.05EC 00
LDOOR 6 2000 3.06E � 02 1.75EC 00 6 1200 4.54E � 02 1.45EC 00

In the labels, c denotes the number of cores, f the frequency (in MHz), T the time per iteration (in seconds), and
Enet the net energy per iteration (in Joules).

Finally, while the low-power architectures—IAT, A9, A15, and TIC—provide the lowest GFLOPS
rate for most problems, in some cases the usage of the ELLPACK format on the GPUs may incur
significant overhead, which their computing power cannot compensate for, such that even the low-
power processors may become competitive in those cases (compare, e.g., the performance of TIC

and QDR for the BMW case).
The performance sensitivity of the architectures to the problem characteristics and the format-

dependent overhead also translate into the corresponding energy efficiency, so that the GPUs are
only superior to the CPUs for the structured problems A159 and LDOOR (see Figure 5 right-top).
While the C66780 from Texas Instruments (TIC) also shows some variation on performance as
well as the performance-per-watt ratio depending on the matrix structure, its energy efficiency is
unmatched by any other architecture. The remaining low-power processors, A9, A15, and IAT,
achieve higher GFLOPS/W rates than the conventional general-purpose processors AIL, AMC, and

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
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Table V. Optimal hardware parameter configuration when optimizing the specialized architectures for
runtime or energy efficiency using the basic implementations.

Optimized w.r.t time Optimized w.r.t net energy

Matrix c f T Enet c f T Enet

A9

A159 4 760 7.15E � 01 1.04EC 00 4 760 7.15E � 01 1.04EC 00
AUDI 4 1300 9.06E � 01 2.89EC 00 2 760 1.30EC 00 1.76EC 00
BMW 4 1300 1.45E � 01 5.35E � 01 2 760 1.83E � 01 2.74E � 01

CRANK 4 1300 1.68E � 01 5.15E � 01 2 760 2.26E � 01 3.05E � 01
F1 4 1300 3.57E � 01 1.22EC 00 2 760 5.03E � 01 6.74E � 01

INLINE 4 1300 4.88E � 01 1.72EC 00 2 760 6.59E � 01 9.88E � 01
LDOOR 4 1300 6.16E � 01 2.10EC 00 2 760 8.45E � 01 1.17EC 00

A15

A159 4 1600 1.70E � 01 1.12EC 00 4 250 8.08E � 01 2.02E � 01
AUDI 4 1600 2.11E � 01 1.64EC 00 4 250 7.87E � 01 2.68E � 01
BMW 4 1600 3.12E � 02 2.76E � 01 4 250 1.10E � 01 4.62E � 02

CRANK 4 1600 3.61E � 02 3.17E � 01 4 250 1.34E � 01 5.88E � 02
F1 4 1600 8.44E � 02 6.65E � 01 4 250 3.11E � 01 1.15E � 01

INLINE 4 1600 1.11E � 01 9.50E � 01 4 250 3.89E � 01 1.75E � 01
LDOOR 4 1600 1.44E � 01 1.23EC 00 4 250 5.21E � 01 1.98E � 01

FER

A159 1 1600 1.01E � 02 1.77EC 00 1 1600 1.01E � 02 1.77EC 00
BMW 1 1600 1.02E � 02 1.69EC 00 1 1600 1.02E � 02 1.69EC 00

CRANK 1 1600 4.58E � 02 7.20EC 00 1 1600 4.58E�02 7.20EC00
F1 1 1600 3.36E � 02 5.56EC 00 1 1600 3.36E � 02 5.56EC 00

LDOOR 1 1600 1.41E � 02 2.58EC 00 1 1600 1.41E � 02 2.58EC 00

KEP

A159 1 1200 6.80E � 03 6.73E � 01 1 1200 6.80E � 03 6.73E � 01
AUDI 1 1200 3.53E � 02 3.51EC 00 1 1200 3.53E � 02 3.51EC 00
BMW 1 1200 5.57E � 03 5.37E � 01 1 1200 5.57E � 03 5.37E � 01

CRANK 1 1200 2.26E � 02 2.07EC 00 1 1200 2.26E � 02 2.07EC 00
F1 1 1200 1.68E � 02 1.64EC 00 1 1200 1.68E � 02 1.64EC 00

LDOOR 1 1200 8.57E � 03 9.12E � 01 1 1200 8.57E � 03 9.12E � 01

QDR
A159 1 1300 4.54E � 02 1.15EC 00 1 51 6.06E � 02 8.15E � 01
BMW 1 1300 4.56E � 02 1.07EC 00 1 51 7.36E � 02 9.78E � 01

TIC
BMW 8 1000 3.06E � 02 8.83E � 02 4 1000 4.37E � 02 1.098E � 01

CRANK 8 1000 4.18E � 02 1.10E � 01 8 1000 4.18E � 02 1.10E � 01
F1 8 1000 1.27E � 01 2.69E � 01 8 1000 1.27E � 01 2.69E � 01

In the labels, c denotes the number of cores, f the frequency (in MHz), T the time per iteration (in seconds), and
Enet the net energy per iteration (in Joules).

INH, but are only more efficient than GPUs for certain matrix cases. With respect to energy, ISB is
at least competitive with the older ARM Cortex A9.

3.2.2. Optimization with respect to net energy. The first general observation is that, in many cases,
reducing the CPU operating frequency (and voltage) pays off. The FER and KEP GPU-accelerated
platforms are two notable exceptions, as rescaling the frequency operation of the host CPU of these
systems has negligible impact on the overall performance and energy efficiency of the solver. The
behavior is very different for the low-power processors and QDR, where rescaling the CPU fre-
quency can improve the energy efficiency by a wide margin. For instance, reducing the operating
frequency of the recent ARM Cortex (A15) from 1600 to 250 MHz improves the efficiency ratio
by a factor of 5.5 (see the results for A159 in Table V: from 1.12 to 2.02E � 01 GFLOPS/W; also
compare the top and bottom plots on the right of Figure 5). The results for IAT and A9 (Tables IV
and V) also show significant improvements, which reveal that these architectures provide not only a
more favorable baseline energy efficiency, but also higher optimization potential compared with the
conventional general-purpose CPUs or GPUs. While the TIC provided the highest performance/watt
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Figure 5. Comparison of performance (left) and energy efficiency (right), measured, respectively, in terms
of GFLOPS and GFLOPS/W, when optimizing the basic CG implementations with respect to run time (top)

or net energy (bottom).

ratio when optimizing for performance, A15 now becomes the overall winner, followed by TIC, IAT,
and the older generation Cortex (A9). As the energy efficiency of the graphics accelerators KEP,
FER, and QDR is again very problem-dependent, it is difficult to compare them against ISB, but they
still deliver higher GFLOPS/W ratios than the older CPU architectures AIL, AMC, and INH. Unfortu-
nately, the factors gained when improving energy efficiency translate into the related execution time,
as the reduced Joule-per-iteration values for TIC, A9, A15, and IAT come at the price of significantly
higher execution times. However, as these provide the lowest performance in any case, and the GPUs
do not allow for too much hardware reconfiguration, the left-top and left-bottom graphs in Figure 5
look very similar. Optimizing ISB for either performance or energy efficiency renders improvement
factors around 2, significantly higher than those observed for other CPU architectures.

Finally, we mention that optimizing with respect to net energy is not necessarily equivalent to
optimizing for the total energy consumption. It may happen that the net energy consumption is
reduced by decreasing the CPU frequency, at the cost of an increase of the total energy, as we did
not consider the system’s baseline power draft (idle power) in this analysis.

4. HARDWARE-AWARE OPTIMIZATION OF THE CG METHOD

While the results in the previous section offer insights on the computational and energy efficiencies
of the target hardware architectures when running ‘unoptimized’ code, we now address the question
of how much improvement can be achieved by tailoring the codes to specific hardware. For this
purpose we modify the basic implementations of the CG solver in two ways:
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1. We replace the basic sparse matrix formats and the associated baseline matrix-vector product
codes (Figures 3 and 4) with more sophisticated solutions which can be expected to render
higher performance, depending on the target hardware and the matrix benchmark.

2. On the streaming processors, the performance of memory-bound algorithms suffers from the
read/write operations from/to global memory that are required when launching a kernel. For
this reason we leverage a variant of the CG algorithm where the SPMV and vector operations
are reorganized and merged into several kernels [15], reducing the volume of memory access
and the kernel launch overhead.

In the remainder of this section we expose the modifications introduced in the CG method,
in the same order as enumerated earlier, and experimentally evaluate the effect they exert on the
performance and energy efficiency of the solver.

4.1. Optimizing the matrix layout for SPMV

4.1.1. Multicore processors. CSR has become the de facto standard format for sparse matrices
thanks to its flexibility and low memory requirements [23]. In particular, in exchange for keeping
only the nonzero entries of the matrix, CSR introduces a storage overhead of only n C n´ integer
entries to represent the indices or pointers that determine the positions of these elements.

Block CSR (BCSR) is a blocked variant of CSR that aims to improve register reuse for SPMV [24],
by dividing the matrix into small dense blocks that are kept in consecutive locations in memory, as
a sparse collection of dense blocks; see Figure 6. While BCSR introduces some storage overhead
by padding the dense blocks with zeros, this is potentially compensated for by having to maintain
a single index per block only, and by the performance advantage of improved register reuse that
serves as motivation for the format. A detailed description of BCSR and a basic implementation of
the SPMV operation can be found in [24]. In our tailored version of the CG method, we leveraged
two multithreaded routines of the SPMV routine in Intel MKL (version 10.3 update 9), based on the
CSR and BCSR formats: mkl_cspblas_dcsrgemv and mkl_cspblas_dbsrgemv, respec-
tively [25]. For the latter code, our tests considered values for the block size (parameter lb) equal
to 2 and 3, but we only report the best result.

The alternative compressed sparse blocks (CSB) format [26] maintains the matrix as a dense
collection of sparse blocks, with the blocks themselves being stored in Z-morton order [27]; see
Figure 6 for a sketch of this layout. This format exhibits negligible storage overhead compared with
CSR, and, more importantly, allows for an efficient parallelization of SPMV on current multicore
architectures. We employ the multithreaded routine bicsb_gespmv from the CSB library [28] for

Figure 6. Visualizing the block compressed sparse rows (BCSR), compressed sparse blocks (CSB), and
SELL-P formats. Note that choosing the block size 2 for BCSR and SELL-P, as well as the block size 4 for
CSB, requires adding a zero row to the original matrix. Furthermore, padding the SELL-P format to a row

length divisible by 2 requires explicit storage of a few additional zeros.
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the SPMV routine, linked to release 1.1 of Intel Cilk Plus and release 4.0 of Intel Thread Building
Blocks.

The optimized implementations of the CG method for the multicore platforms are analogous to
the code in Figure 2, with the SPMV routine replaced by the appropriate implementation of the
matrix-vector product (either one of the MKL routines or the CSB library code), and linked in all
cases with the MKL implementation of BLAS [25] for routines ddot, daxpy, and dscal.

4.1.2. Graphics accelerators. The ELLPACK format incurs a storage overhead, for the general
case, which grows with the differences in the number of nonzero elements per row (Table III).
In those cases, the associated memory and computational overheads may result in poor perfor-
mance, despite that coalesced memory access is highly beneficial for streaming processors such
as the GPUs. ELLR-T [22, 29] is a subtle variant of ELLPACK that addresses this problem while
maintaining the coalesced memory access pattern of the original layout. In particular, it reduces
useless computations with zeros and improves thread load balancing, often resulting in superior
performance.

An alternative workaround to reduce memory and computational overhead is to split the original
matrix into row blocks before converting these into the ELLPACK format. In the resulting sliced
ELLPACK format (SELL or SELL-C where C denotes the size of the row blocks [30, 31]), the
overhead is no longer determined by the matrix row containing the largest number of nonzeros, but
by the row with the largest number of nonzero elements in the respective block.

In [30], the SELL-C layout is enhanced with an a-priori sorting step, which aims to gather rows
with a similar number of nonzeros into the same blocks. While this may improve the performance
of SPMV, the impact on complex algorithms is still an open research topic. Another optimization,
specific to streaming processors such as GPUs, enforces a memory alignment within the SELL-P
format that allows for applying the sophisticated matrix-vector kernel proposed in [32]. Although
the padding that comes along with this format introduces some zero fill-in, a comparison between the
SELL-P format visualized in Figure 6 and the plain ELLPACK in Figure 3 reveals that the blocking
strategy may still render significant memory savings (see also Table III), which directly translate
into reduced computational cost and improved runtime performance. Previous experiments with
this SELL-P format have shown high performance without impacting the algorithm’s stability by
applying row-sorting, so we will include it as an option for the GPU implementations. In particular,
we apply a default configuration for SELL-P with the blocksize 8 and the row length padded to a
multiple of 8.

Compared with the baseline (unoptimized) implementation of the CG solver, the optimized GPU
codes consider the simple ELLPACK kernel for SPMV as well, but also include implementations for
this operation based on the alternative formats ELLR-T and SELL-P. Furthermore, the optimized
implementations do not invoke routines from CUBLAS, but instead reorganize and merge the vector
operations in CG as described next.

Figure 7. Aggregation of kernels to transform the basic implementation into a merged implementation.
Here, the invocation to the sparse matrix-vector kernel SPMV has to be replaced by the appropriate graphics

processing unit routine, depending on the sparse matrix format.
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4.2. Reformulating the CG algorithm for graphics processing units

The performance of memory-bound algorithms, such as the CG solver, is determined by the volume
and pattern of the memory accesses. On streaming processors, the number reads/writes to global
memory usually correlates to the number of kernels launched over the runtime. While this is moti-
vation enough to reduce the number of kernel calls, additional performance benefits may come
through reduced CPU/GPU communication and a lower number of kernel launches. Here, we fol-
low the ideas presented in [15] to adopt merged versions of the basic CG method. The resulting
algorithm is illustrated in Figure 7, where SPMV denotes a generic implementation of the sparse
matrix-vector kernel, which is replaced in the actual codes with one of the optimized cases described
in the previous subsection.

Table VI. Optimal hardware parameter configuration when optimizing the general-purpose architectures for
runtime or energy efficiency using the tuned implementations.

Optimized w.r.t time Optimized w.r.t net energy

Matrix c f s T Enet c f s T Enet

AIL

A159 8 2300 2 8.89E � 02 1.48E C 01 8 2100 2 9.46E � 02 1.27E C 01
AUDI 8 2300 1(3) 7.90E � 02 1.44E C 01 8 2100 1(3) 8.08E � 02 1.26E C 01
BMW 8 2300 1(3) 8.46E � 03 1.50E C 00 8 2100 1(3) 8.58E � 03 1.34E C 00
CRANK 8 2300 2 1.29E � 02 2.05E C 00 8 2300 2 1.29E � 02 2.05E C 00
F1 8 2300 1(3) 2.76E � 02 4.46E C 00 8 2100 1(3) 2.84E � 02 4.42E C 00
INLINE 8 2300 1(3) 3.35E � 02 5.73E C 00 8 2100 1(3) 3.43E � 02 5.37E C 00
LDOOR 8 2300 1(2) 5.40E � 02 8.76E C 00 8 2100 1(2) 5.49E � 02 8.63E C 00

AMC

A159 8 1500 2 1.69E � 01 1.65E C 01 8 1500 2 1.69E � 01 1.65E C 01
AUDI 8 2000 1(3) 1.67E � 01 1.63E C 01 8 2000 1(3) 1.67E � 01 1.63E C 01
BMW 8 2000 1(3) 1.44E � 02 1.52E C 00 8 2000 1(3) 1.44E � 02 1.52E C 00
CRANK 8 2000 0 2.35E � 02 2.56E C 00 8 2000 0 2.35E � 02 2.56E C 00
F1 8 2000 1(3) 5.59E � 02 5.58E C 00 8 2000 1(3) 5.59E � 02 5.58E C 00
INLINE 8 2000 1(3) 6.48E � 02 6.61E C 00 8 2000 1(3) 6.48E � 02 6.61E C 00
LDOOR 8 2000 1(2) 9.59E � 02 9.92E C 00 8 2000 1(2) 9.59E � 02 9.92E C 00

IAT

A159 2 2000 0 2.88E � 01 1.33E C 00 1 600 2 1.56E C 00 7.71E � 01
AUDI 2 2000 0 3.20E � 01 1.41E C 00 1 600 1(3) 1.64E C 00 7.65E � 01
BMW 2 2000 0 3.65E � 02 1.83E � 01 1 600 1(3) 2.16E � 01 1.14E � 01
CRANK 2 2000 1(2) 4.70E � 02 2.16E � 01 1 600 2 5.40E � 01 1.02E � 01
F1 2 2000 1(3) 1.55E � 01 5.27E � 01 1 600 1(3) 7.17E � 01 3.28E � 01
INLINE 2 2000 0 1.50E � 01 6.90E � 01 1 600 2 1.48E C 00 3.73E � 01
LDOOR 2 2000 1(2) 1.92E � 01 8.54E � 01 1 600 1(2) 8.93E � 01 6.18E � 01

INH

A159 8 1870 0 7.04E � 02 1.03E C 01 4 1600 0 8.71E � 02 8.38E C 00
AUDI 8 2000 1(3) 6.86E � 02 9.82E C 00 8 1600 1(3) 6.91E � 02 8.57E C 00
BMW 4 2000 1(3) 8.88E � 03 9.48E � 01 4 1600 1(3) 9.14E � 03 8.88E � 01
CRANK 4 1870 1(2) 1.53E � 02 1.63E C 00 4 1600 1(2) 1.59E � 02 1.54E C 00
F1 8 1870 1(3) 2.53E � 02 3.62E C 00 8 1600 1(3) 2.57E � 02 3.30E C 00
INLINE 8 2000 1(3) 3.05E � 02 4.35E C 00 4 1600 1(3) 3.72E � 02 3.61E C 00
LDOOR 8 1870 1(2) 5.46E � 02 7.74E C 00 4 1600 0 6.56E � 02 6.37E C 00

ISB

A159 6 2000 0 3.65E � 02 2.15E C 00 4 1200 0 5.69E � 02 1.68E C 00
AUDI 6 2000 1(3) 4.04E � 02 2.08E C 00 2 1200 1(3) 9.65E � 02 1.62E C 00
BMW 6 2000 1(3) 3.57E � 03 2.13E � 01 6 1200 1(3) 5.15E � 03 1.71E � 01
CRANK 6 2000 0 6.45E � 03 4.23E � 01 6 1200 1(2) 9.67E � 03 3.11E � 01
F1 6 2000 1(3) 1.35E � 02 6.92E � 01 6 1200 1(3) 1.97E � 02 5.68E � 01
INLINE 6 2000 1(3) 1.54E � 02 8.51E � 01 4 1200 1(3) 2.58E � 02 6.96E � 01
LDOOR 6 2000 1(2) 2.38E � 02 1.40E C 00 6 1200 1(2) 3.40E � 02 1.16E C 00

In the labels, c denotes the number of cores, f the frequency (in MHz), s the sparse matrix layout/SPMV imple-
mentation (0 for CSR + MKL, 1(2) for BCSR + MKL with block size lb = 2, 1(3) for BCSR + MKL with block
size lb = 3, and 2 for CSB), T the time per iteration (in seconds), andEnet the net energy per iteration (in Joules).
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All the tuned implementations of CG that we evaluate next are part of a pre-release exten-
sion of the MAGMA library [33] composed of iterative algorithms for sparse linear algebra.
These codes block the CPU threads while the computation is proceeding in the GPU, so as to
avoid a power-hungry polling during the execution. This is easily achieved by setting parameter
cudaDeviceBlockingSync of the CUDA routine cudaSetDeviceFlags.

4.3. Search for the optimal configuration

Similarly to Section 3, we next analyze the runtime and energy efficiency of the algorithmically-
optimized implementations of the CG method when configuring the hardware for either performance
or energy efficiency by varying the CPU operation frequency and number of active cores. For
completeness, we again provide the detailed information of the optimal configuration for each
architecture and matrix combination (Tables VI and VII), but in the following analysis, we pre-
fer referring to the graphical results. In particular, Figure 8 compares, analogously to Figure 5, the
performance and energy efficiency of the architectures when configuring the hardware execution
parameters either for runtime performance or energy efficiency.

At this point, we note that the algorithmic optimizations intrinsic to the data layouts BCSR and
CSB, and the tuned implementations of SPMV embedded in the Intel MKL and CSB libraries, could
not be leveraged on A9, A15, and TIC, because these are not x86-based architectures, and, therefore,
it was not possible to use Intel’s MKL, Cilk, or Thread Building Blocks. Hence, in Figure 5, we
reproduce the data obtained with the basic implementations for these three architectures.

4.3.1. Optimization with respect to time. When comparing the runtime performance of the opti-
mized implementations on the different architectures, the high-end GPUs KEP and FER are the
overall winners, independently of whether the hardware execution parameters are tuned for perfor-
mance or energy efficiency (see the left top and bottom plots in Figure 8, respectively). For example,
the recent CPU generations—AIL and ISB—are outperformed by NVIDIA Tesla K20 (KEP) by

Table VII. Optimal hardware parameter configuration when optimizing the specialized architectures for
runtime or energy efficiency using the tuned implementations.

Optimized w.r.t time Optimized w.r.t net energy

Matrix c f s T Enet c f s T Enet

FER

A159 1 2270 1 8.22E � 03 1.57EC 00 1 1600 1 8.24E � 03 1.49E C 00
AUDI 1 1600 3 1.58E � 02 2.95EC 00 1 1600 3 1.58E � 02 2.95E C 00
BMW 1 1600 3 2.06E � 03 3.73E � 01 1 1600 3 2.06E � 03 3.73E � 01
CRANK 1 1600 3 2.43E � 03 4.50E � 01 1 1600 3 2.43E � 03 4.50E � 01
F1 1 1600 3 6.21E � 03 1.16EC 00 1 1600 3 6.21E � 03 1.16E C 00
LDOOR 1 1600 3 9.55E � 03 1.75EC 00 1 1600 3 9.55E � 03 1.75E C 00

KEP

A159 1 3200 1 5.29E � 03 7.45E � 01 1 1200 1 5.30E � 03 5.89E � 01
AUDI 1 3200 3 9.37E � 03 1.39EC 00 1 1200 3 9.38E � 03 1.13E C 00
BMW 1 3200 3 1.28E � 03 1.82E � 01 1 1200 3 1.29E � 03 1.47E � 01
CRANK 1 3200 3 1.52E � 03 2.18E � 01 1 1200 3 1.53E � 03 1.76E � 01
F1 1 3200 3 3.63E � 03 5.32E � 01 1 1200 3 3.64E � 03 4.31E � 01
INLINE 1 3200 3 4.69E � 03 6.58E � 01 1 1200 3 4.71E � 03 5.55E � 01
LDOOR 1 3200 3 5.61E � 03 8.21E � 01 1 1200 3 5.62E � 03 6.64E � 01

QDR

A159 1 1300 1 3.60E � 02 1.01EC 00 1 51 1 3.92E � 02 5.96E � 01
BMW 1 1300 3 1.03E � 02 2.76E � 01 1 1300 3 1.03E � 02 2.76E � 01
CRANK 1 1300 3 1.18E � 02 3.31E � 01 1 1300 3 1.18E � 02 3.31E � 01
F1 1 1300 3 3.05E � 02 8.59E � 01 1 51 3 4.05E � 02 6.77E � 01
INLINE 1 1300 0 3.42E � 01 9.59EC 00 1 51 0 3.46E � 01 7.73E C 00

In the labels, c denotes the number of cores, f the frequency (in MHz), s the sparse matrix layout/SPMV imple-
mentation (0 for CSR, 1 for ELLPACK, 2 for ELLR-T, and 3 for SELL-P), T the time per iteration (in seconds),
and Enet the net energy per iteration (in Joules).
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Figure 8. Comparison of performance (left) and energy efficiency (right), measured, respectively, in terms
of GFLOPS and GFLOPS/W, when optimizing the tuned CG implementations with respect to run time (top)

or net energy (bottom).

factors up to 10, and the reduced runtime of the GPU implementations directly translates into out-
standing energy efficiency. From the energy perspective, all GPU architectures are competitive with
the low-power processors IAT, A9, A15, and the Intel Sandy Bridge CPU ISB (see right-top graph
in Figure 8). Only the TIC achieves about twice the energy efficiency. The most inefficient architec-
tures from this point of view are, such as in the non-optimized case, the older general-purpose CPUs
AIL, AMC, and INH.

4.3.2. Optimization with respect to net energy. As already observed for the basic implementation,
modifying the hardware execution parameters for the GPU systems has only negligible impact on
performance (compare left-top and bottom plots in Figure 8). This is different for ISB which out-
performs QDR only when aiming for performance. Like in the non-optimized case, improving the
energy demand of the CPUs and the low-power architectures comes at the price of a certain level of
performance loss. As we could not apply algorithmic optimizations for the latter architectures (A9,
A15, TIC), it is not surprising that they again deliver the lowest GFLOPS rates; despite that, A15
and TIC are the overall winners when aiming for low energy demands. Even the algorithmically-
optimized CG implementation on the top-end GPUs achieves energy efficiency rates far from those
of A15. The IAT and TIC are competitive, while the ISB achieves ratios similar to those of the older
A9 and QDR. KEP has a slightly higher, and FER a slightly lower, energy efficiency than Intel’s
latest CPU generation (ISB), while the AMD CPUs (AIL and AMC) stay, such as in the performance-
oriented configuration, far behind (see right-bottom plot in Figure 8). In contrast to the GPUs, the
outstanding energy efficiency of the low-power architectures again comes at the cost of increased
runtime, such that KEP outperforms A15 by almost two orders of magnitude.
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Table VIII. Average GFLOPS and GFLOPS/W rates of the double-precision tuned implementations
normalized with respect to the ‘fastest’ (highest GFLOPS rate when optimizing w.r.t. time) and
‘most energy-efficient’ (highest GFLOPS/W rate when optimizing w.r.t. energy) architectures, KEP

and A15, respectively.

Optimized w.r.t time Optimized w.r.t net energy

Normal average Normal average Normal average Normal average
GFLOPS GFLOPS/W GFLOPS GFLOPS/W

AIL 1.18E � 01 7.95E � 02 1.06E C 01 2.61E � 02
AMC 6.31E � 02 8.84E � 02 5.77E C 00 2.13E � 02
IAT 2.87E � 02 9.31E � 01 4.20E � 01 3.93E � 01
INH 1.22E � 01 1.36E � 01 1.03E C 01 3.73E � 02
ISB 2.56E � 01 6.48E � 01 1.48E C 01 1.96E � 01
A9 9.24E � 03 4.47E � 01 6.42E � 01 1.73E � 01
A15 4.06E � 02 7.15E � 01 1.00E C 00 1.00EC 00
FER 6.05E � 01 4.70E � 01 3.46E C 01 1.14E � 01
KEP 1.00EC 00 1.00EC 00 9.10E C 01 2.97E � 01
QDR 1.05E � 01 5.46E � 01 8.94E C 00 1.62E � 01
TIC 3.70E � 02 2.07EC 00 2.99E C 00 4.67E � 01

To summarize this initial study (search for the optimal configuration), next we rank the systems
according to their performance and energy efficiency. In order to do this, for each architecture we
employ the GFLOPS and GFLOPS/W rates, averaged for all matrix benchmarks, when optimizing
for time and for energy efficiency. The purpose and effect of using average values is to collapse
the results for all the matrix cases into a single figure-of-merit, which allows an easier (albeit less
precise) comparison of the architectures. Table VIII shows the results of these metrics, normalized
with respect to the fastest architecture when optimizing for time (KEP), and with respect to the
most energy-efficient one when optimizing for energy (A15). The results in the second and third
columns of the table show that, when optimizing for performance, on average, KEP is roughly half
an order of magnitude faster than FER (6.04E � 01), around one order of magnitude faster than QDR

(1.05E � 01), and slightly more than two orders of magnitude faster than A9 (9.24E � 03). If the
goal is runtime performance, KEP consumes less energy than all the other architectures except TIC.
On the other hand, the last two columns of the table compare the energy efficiency of A15 with that
of its competitors. Here, the differences (obviously in favor of A15 in all cases) are smaller, and
range between close to half an order of magnitude for TIC (4.67E�01) and more than two orders of
magnitude for AMC (2.13E�02).

4.4. Complementary analyses

In the remainder of this section, we elaborate on two additional studies of the impact of algorith-
mic optimization and the advantages of SP arithmetic, on IAT, ISB, and KEP. We selected these
three systems because they all correspond to recent processor architectures and each one repre-
sents a different class of the systems included in this study (low-power architectures, server-oriented
general-purpose multicore processors, and manycore GPUs, respectively). Finally, we chose IAT

instead of the more appealing TIC and A15 because, as noted earlier, we could not apply algorithmic
optimizations on the latter two.

4.4.1. Algorithmic optimization potential. Table IX assesses the impact of the algorithmic opti-
mizations described at the beginning of this section. A first observation from this table is that
significant performance improvements can be achieved through algorithmic optimizations of the
implementations. This is especially true for KEP, where we replaced the standard ELLPACK-based
implementation of SPMV with a format tailored to each matrix case, and substituted the CUBLAS-
based implementation of the CG method with a version using algorithm-specific kernels. At the
same time, the improvement potential on GPUs is again very dependent on the matrix character-
istics, as we reduce runtime by ‘only’ 28% for the A159 case, but in a factor larger than 14� for
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Table IX. Speed-ups resulting from the algorithmic optimizations.

Optimized w.r.t. time Optimized w.r.t. net energy

Matrix Speed-up in T Speed-up in Enet Speed-up in T Speed-up in Enet

IAT

A159 1.04 0.95 0.80 1.10
AUDI 1.18 1.04 1.12 1.25
BMW 1.19 1.06 1.12 1.20
CRANK 1.23 1.12 0.56 1.40
F1 1.14 1.16 1.13 1.20
INLINE 1.16 1.04 0.61 1.13
LDOOR 1.23 1.12 1.33 1.06

AVERAGE 1.17 1.07 0.95 1.19

ISB

A159 1.52 1.29 1.89 1.10
AUDI 1.51 1.49 1.34 1.51
BMW 1.54 1.52 1.58 1.53
CRANK 1.11 1.07 1.14 1.10
F1 1.46 1.50 1.48 1.49
INLINE 1.50 1.49 1.36 1.50
LDOOR 1.28 1.25 1.33 1.25

AVERAGE 1.42 1.37 1.45 1.36

KEP

A159 1.28 0.90 1.28 1.14
AUDI 3.76 2.52 3.76 3.10
BMW 4.35 2.95 4.31 3.65
CRANK 14.86 9.49 14.77 11.76
F1 4.62 3.08 4.61 3.80
LDOOR 1.52 1.11 1.52 1.37

AVERAGE 5.07 3.34 5.04 4.14

CRANK. An explanation for this effect can be found in Table III, showing a drastically reduced
storage (and computational) overhead when we replace the ELLPACK with the SELLP kernel for
the CRANK test case, while the improvement for the A159, where we keep the ELLPACK format
(TableVII), comes exclusively from enhancing the implementation using algorithm-specific kernels.
On average, Table IX reveals that replacing the basic CG implementation with an optimized variant
improves performance on KEP by a factor of 5.07�. For the CPU-based architectures, the reported
speed-ups are lower on average, but are, on the other hand, more consistent. On ISB, for example,
the optimization techniques render an average performance improvement of 1.42�, with 1.11�, and
1.54� as upper and lower bounds, respectively; and similar variations when optimizing for energy
efficiency. On the low-power architecture IAT, the improvements are slightly lower.

4.5. Single-precision performance through iterative refinement

It is well-known that iterative refinement, in combination with mixed precision, can render the
benefits of a faster SP arithmetic while still delivering DP accuracy for some applications [34].
In particular, while the use of DP arithmetic is in general mandatory for the solution of sparse
linear systems, in [35], for instance, it is shown how the use of mixed SP–DP arithmetic and
iterative refinement leads to improved execution time and energy consumption for GPU-accelerated
solver-platforms. Our last experiment thus aims to evaluate the performance and energy efficiency
variations that can be expected when embedding a CG solver, which performs its arithmetic in SP
instead of DP, into the mixed precision iterative refinement framework.

Table X reports the results of this test, comparing the performance and energy efficiency of SP
and DP implementations of the optimized CG solvers in terms of their respective speed-ups. In
this case, we do not include results for IAT, as the CSB library does not provide the necessary SP
implementation of SPMV and, therefore, the collection of matrix cases that could be reported for
IAT is limited (on this platform, the CSB solution is optimal for A159, CRANK, and INLINE; see
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Table X. Speed-ups resulting from the use of the SP tuned implementations instead of the
double-precision versions.

Optimized w.r.t time Optimized w.r.t net energy

Speed-up in T Speed-up in Enet Speed-up in T Speed-up in Enet

ISB

A159 1.72 1.54 1.81 1.54
AUDI 1.53 1.40 2.34 1.38
BMW 1.64 1.53 1.51 1.54
CRANK 1.47 1.54 1.41 1.43
F1 1.59 1.42 1.48 1.50
INLINE 1.64 1.48 1.75 1.54
LDOOR 1.60 1.47 1.47 1.53

AVERAGE 1.60 1.48 1.68 1.49

KEP

A159 1.52 1.70 1.52 1.72
AUDI 1.34 1.47 1.34 1.49
BMW 1.30 1.45 1.29 1.47
CRANK 1.39 1.51 1.39 1.51
F1 1.31 1.45 1.31 1.48
INLINE 1.32 1.40 1.33 1.48
LDOOR 1.28 1.43 1.28 1.44

AVERAGE 1.35 1.49 1.35 1.51

Table VI). Furthermore, we found out that, for this particular architecture, in many cases, the opti-
mal configuration when operating with DP data differed from that identified for SP arithmetic. On
average, the variations are quite independent of the target platform, revealing acceleration factors
on performance, when optimizing w.r.t. time, that vary between 1.35� (KEP) and 1.60� (ISB). Sim-
ilar numbers are observed when the optimization is w.r.t. energy. It is, however, interesting to notice
that the usage of SP arithmetic is more beneficial to performance on the CPU-based systems, while
it renders larger improvement to the energy efficiency on the KEP GPU. If the hardware execution
parameters are configured for energy efficiency, the same effect occurs at a larger scale. This can be
explained by the fact that the algorithm is memory-bound, and decreasing frequency (and voltage)
has, in general, more effect on the core clock than on the memory clock rate.

5. SUMMARY AND FUTURE WORK

Current processor architectures take different roads toward delivering raw performance and energy
efficiency: in the form of low-power, general-purpose multicore designs and digital signal processors
(DSPs) for mobile and embedded appliances; power-hungrier, but more versatile, general-purpose
multicore architectures for servers; and hardware accelerators such as manycore graphics proces-
sors (GPUs) or the Intel Xeon Phi. In this paper, we have provided a broad overview about the
potential of representative samples of these three different approaches, assessing their performance
and energy efficiency using basic and advanced implementations of a crucial numerical algorithm:
the iterative CG method. We observed that the flops-per-watt rate of manycore systems, such as the
GPUs from NVIDIA, can be matched by low-power devices such as the Intel Atom, the ARM A9,
or a DSP from Texas Instruments; and clearly outperformed by the more recent ARM A15. While
GPUs traditionally deliver high energy efficiency with outstanding performance, the less energy
hungry architectures provide it less cores, a lower power dissipation and/or smaller memories. This
reduces the suitability of these inexpensive architectures for general-purpose computing, but makes
them appealing candidates for mobile and embedded scenarios (their original target) as well as spe-
cific applications. Despite the fact that conventional general-purpose processors attained neither the
performance of the GPUs nor the performance-per-watt rates of the low-power alternatives, they
provide an interesting balance between these two extremes.
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Future research will increase the scope of the study by adding problems not directly related
to sparse linear algebra, for example, the seven dwarfs [36], as well as more complex scientific
applications.
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