
A Fast Batched Cholesky Factorization on a GPU

Tingxing Dong∗, Azzam Haidar∗, Stanimire Tomov∗, and Jack Dongarra∗†‡
∗ Innovative Computing Laboratory
University of Tennessee, Knoxville

Knoxville, TN 37916
† Oak Ridge National Laboratory, USA
‡ University of Manchester, UK

{tdong, haidar, tomov, dongarra}@utk.edu

Abstract—Currently, state of the art libraries, like
MAGMA, focus on very large linear algebra problems,
while solving many small independent problems, which
is usually referred to as batched problems, is not given
adequate attention. In this paper, we proposed a batched
Cholesky factorization on a GPU. Three algorithms – non-
blocked, blocked, and recursive blocked – were examined.
The left-looking version of the Cholesky factorization is
used to factorize the panel, and the right-looking Cholesky
version is used to update the trailing matrix in the recursive
blocked algorithm. Our batched Cholesky achieves up to
1.8× speedup compared to the optimized parallel imple-
mentation in the MKL library on two sockets of Intel
Sandy Bridge CPUs. Further, we use the new routines to
develop a single Cholesky factorization solver which targets
large matrix sizes. Our approach differs from MAGMA
by having an entirely GPU implementation where both
the panel factorization and the trailing matrix updates are
on the GPU. Such an implementation does not depend
on the speed of the CPU. Compared to the MAGMA
library, our full GPU solution achieves 85% of the hybrid
MAGMA performance which uses 16 Sandy Bridge cores,
in addition to a K40 Nvidia GPU. Moreover, we achieve
80% of the practical dgemm peak of the machine, while
MAGMA achieves only 75%, and finally, in terms of
energy consumption, we outperform MAGMA by 1.5× in
performance-per-watt for large matrices.

I. INTRODUCTION

Solving many small linear algebra problems is called
batched problem. A batched problem consists of a large
number of matrices (e.g., from thousands to millions
matrices) to be factorized, where the size of each matrix
is considered to be small (e.g., typically the size is around
hundreds of rows or columns). For example, batched
Cholesky factorization is widely used in computer vision,
and anomaly detection of images [1], [2]. In Magnetic
resonance imaging (MRI), billions small 8x8 and 32x32
eigenvalue problems need to be solved. Also, a batched

200x200 QR decomposition is required to be computed
in radar signal processing [3]. Hydrodynamic simulations
need to compute thousands of matrix-matrix (dgemm) or
matrix-vector(dgemv) products of matrices of well over
100x100 [6]. NVIDIA also includes batched dgemm,
LU and dtrsm in their recent CUBLAS release. Mo-
tivated by these applications, we proposed a batched
Cholesky factorization that targets many small matrices.

The one sided factorizations such as the Cholesky,
Gauss, and Householder factorizations are based on
block outer-product updates of the trailing matrix. Al-
gorithmically, this corresponds to a sequence of two
distinct phases: panel factorization and trailing matrix
update. Implementation of these two phases leads to a
straightforward iterative scheme shown in Algorithm 1.
Table I shows BLAS and LAPACK routines that should
be substituted for the generic routines named in the
algorithm.

Algorithm 1 Two-phase implementation of a one-sided
factorization.

for Pi ∈ {P1, P2, . . . , Pn} do
PanelFactorize(Pi)
TrailingMatrixUpdate(C(i))

end for

Cholesky Householder Gauss
PanelFactorize xPOTF2 xGEQF2 xGETF2

xTRSM
xSYRK xLARFB xLASWP

TrailingMatrixUpdate xGEMM xTRSM
xGEMM

TABLE I. ROUTINES FOR PANEL FACTORIZATION AND THE
TRAILING MATRIX UPDATE.

MAGMA currently focuses on the performance of
very large matrices using a hybrid (CPU-GPU) solution
[4]. Since the panel consists of Level 2 BLAS operations,



and hence is memory bound, MAGMA use the CPUs
to performs these operations, “the panel factorization”
and the GPU to update the trailing matrix. Note that in
order to perform the update of the trailing matrix on the
GPU, a memory transfer of the factorized panel from
the CPU to the GPU is required in each step. By using
an efficient scheduling technique, this memory transfer
can be overlapped with GPU computation. Although this
hybrid model makes use of both of the computing re-
sources, sometimes it might be a bottleneck. In particular,
when the GPU is working, the CPU might be needed
to perform other work, such as I/O, and thus cannot be
interleaved and synchronized with the GPU in every step.
Moreover, many clusters have weak CPUs and slow PCI-
E connections, so the panel factorization phase and the
memory transfer becomes very slow, thereby affecting
the overall performance of the hybrid algorithm. In these
cases, a full-GPU implementation might be of great
interest for many applications and users. In order to make
our implementation cover the classical case, we propose a
full-GPU implementation of the classical single Cholesky
factorization dpotrf targeting toward large matrix.

II. RELATED WORK

Hatem et al. presented left looking a Cholesky factor-
ization for multicore with GPU accelerators [8]. Volkov
et al. implemented LU, Cholesky, and QR with right-
looking on 8 GPUs [9]. Yang et al. factorized Cholesky
on both FPGAs and GPUs with right-looking [10].
Molero et al. developed a batched Cholesky solver for the
matrix in the hyperspectral image processing[1]. Their
matrix size is around hundreds.

Our paper is organized as follows. First, we describe
the Cholesky algorithms in III. Then, we detail our
batched implementations and demonstrate their perfor-
mance in IV. The performance and power of the CPU,
the GPU and the hybrid Cholesky implementations are
compared in V. Finally, we conclude in VI.

III. ALGORITHMS

The Cholesky factorization (or Cholesky decompo-
sition) is mainly used as a first step for the numerical
solution of linear equations Ax = b, where A is sym-
metric and positive definite. Such systems often arise in
physics applications, where A is positive definite due to
the nature of the modeled physical phenomenon.

The Cholesky factorization of an n×n real symmetric
positive definite matrix A has the form A = LLT ,

where L is an n × n real lower triangular matrix with
positive diagonal elements. In LAPACK, the double
precision algorithm is implemented by the dpotrf routine.
A single step of the algorithm is implemented by a
sequence of calls to the LAPACK and BLAS routines:
dsyrk (symmetric rank-k update), dpotf2 (unblocked
Cholesky factorization), dgemm (general matrix-matrix
multiplication), dtrsm (triangular solver). Throughout
the paper, we take the double precision as an example to
describe how we implemented, though other precisions,
including single, single complex and double complex are
also implemented.

A. Non-blocked Cholesky factorization

The following notations will be used throughout the
rest of the paper: a(i, j) is used to denote the (i, j)
element of the matrix A. The submatrix consisting of
i-th through j-th row and m-th through n-th column is
denoted as a(i : j,m : n).

A non-blocked Cholesky factorization (dpotf2) is
outlined in Figure 1. Due to the symmetry, the matrix
can be factorized either as an upper triangular matrix or
as a lower triangular matrix (e.g., only the shaded data
is accessed if the lower side is to be factorized). If A is
n × n, there are n steps. Steps go from the upper left
corner to lower right corner along the diagonal. At a step
j, the column vector a(j : n, j) is to be computed. First,
a dot product of the row vector a(j, 0 : j) is needed to
update the element a(j, j)(in black). Then the column
vector a(j + 1 : n − 1, j) (in red) is updated by a
dgemv a(j + 1 : n − 1, 0 : j − 1) × a(j, 0 : j − 1)
followed by a scaling operation with the updated element
a(j, j). This non-blocked Cholesky factorization involves
two Level 1 BLAS routines (dot and scal), as well as a
Level 2 BLAS routine dgemv. Since there are n steps,
these routines are called n times and thus one can expect
that the performance of this variants will depend on the
performances of Level 2 and Level 1 BLAS operations,
hence it is a slow memory bound algorithm.

B. Blocked right-looking

The blocked right-looking algorithm is described in
Algorithm 2 and depicted in Figure 2. The factorization
of the n × n matrix A proceeds in n/nb steps of size
nb. A single step is implemented by a sequence of
calls to the BLAS and the LAPACK routines: dpotf2
(unblocked Cholesky factorization), dtrsm (triangular
solve) and dsyrk (symmetric rank-k update) as described
in Algorithm 2.



Fig. 1. Non-blocked Cholesky factorization

Once a panel AiBi at a step i is computed it will never
be accessed. The trailing matrix Ci is now considered as
a new matrix and the loop is repeated. This algorithm
keeps updating the right hand side trailing matrix Ci,
so it is called right-looking. Note that the dtrsm and the
dsyrk routines are Level-3 BLAS [11], thus they perform
efficiently on both CPUs and GPUs architectures, for this
reason, the blocked implementation performs very well
and reaches high flops per seconds.

Algorithm 2 The blocked right looking Cholesky factor-
ization.

for i ∈ {1, 2, 3, . . . , n/nb} do
Panel Factorize Li :=Cholesky(Ai) (dpotf2)

Compute Bi = Bi(L
T
i )
−1 (dtrsm)

Trailing Matrix Update Ci = Ci − BiB
T
i (dsyrk) where

Ci = a(i× nb : n, i× nb : n)

end for

Fig. 2. Blocked right-looking

C. Blocked left-looking

The difference between the left-looking and the right-
looking variants is in the update of the trailing matrix.
The right-looking variant operates in a panel and applies
its corresponding updates to the right (see Figure 2). The
left-looking applies all updates coming from the left up,
to the current panel, then factorize it, (as described in

Algorithm 3), and therefore delays subsequent updates
of the remaining right side columns of the matrix. For
example, in the second step of Figure 3, the panel
A2B2 is first updated by the resulting Li of step 1 then
factorized and so on for next steps. Yet, in the update of
panel A3B3, the data in B1 and B2 will be read again.
Because this algorithm needs to access all the previous
panel matrices Bi in the left side, it is called left-looking.

Algorithm 3 The blocked left looking Cholesky factor-
ization.

for i ∈ {1, 2, 3, . . . , n/nb} do
if (i > 1) then

Update Current panel AiBi = AiBi −
(T )′i−1(T )′i−1

T (dgemm), where (T )′i−1 = a((i− 1)× nb :

n, 0 : (i− 1)× nb)

end if
Panel Factorize Li :=Cholesky(Ai) (dpotf2)

Compute Bi = Bi(L
T
i )
−1 (dtrsm)

end for

Both the right-looking and the left-looking variants
have the same costs, n3/3 operations. Previous study
showed that there is little performance difference in
the serial code. However, one can be favored than the
other in a parallel design. The right-looking variant
generates more parallelism, but also has more writes
since the output matrix is large compared to a small
input, while the left-looking variant emphasizes the data
locality but have more reads. This difference is important
to our CUDA code implementations, and we found that a
merged implementation of both into a recursive algorithm
can provide us the best performance.

Fig. 3. Blocked left-looking

D. Recursive blocked Cholesky

In this section we propose a recursive mixed imple-
mentation of both left and right looking variants. Our



main algorithm proceeds as a right looking variant by
steps of size nb. The difference comes from improving
the panel factorization, which consists of the Level 2
BLAS operations dpotf2 and dtrsm. In order to achieve
higher performance, especially on GPU architecture, we
should make efforts to increase the use of blocked tech-
niques. The panel matrix Ai = LiL

T
i (dpotf2) and the

triangular solve Bi = Bi(L
T
i )

−1 (dtrsm) of Algorithm 2
can also be factorized using the blocked algorithm in-
stead of dpotf2 [12]. In theory, the matrix can be blocked
recursively until the blocking size can equal to a single
element. For that, we create a second level of blocking by
developing a new blocked CUDA implementation of the
panel factorization (dpotf2+dtrsm) routines. However,
achieving high performance is not straightforward. We
proposed a mixed left-right looking recursive technique
to factorize each panel and replace the (dpotf2+dtrsm)
routines. The panel factorization of Ai = A(i : n, nb)
follows a recursive pattern as described below.

Algorithm 4 The blocked right looking Cholesky factor-
ization.

define ib = nb
for i ∈ {1, 2, 3, . . . , n/nb} do

Panel Factorize of A(i× nb : n, nb)
a- define ib = ib/2
for k ∈ {1, 2} do

if ib < minblock then
unblocked panel factorization dpotf2

else
go to (a)

end if
b-update next panel using dgemm and
dtrsm

end for
Trailing Matrix Update Ci = Ci − BiB

T
i (dsyrk) where

Ci = a(i× nb : n, i× nb : n)

end for

IV. BATCHED IMPLEMENTATION AND

PERFORMANCE ON A GPU

A. Hardware Description and Setup

We conducted our experiments on a Intel multicore
system with dual-socket, 8-core Intel Xeon E5-2670
(Sandy Bridge) processors, each running at 2.6 GHz.
Each socket had 20 MB of shared L3 cache, and each
core had a private 256 KB L2 and 64 KB L1 cache.
The system is equipped with 52 GB of memory and the

theoretical peak in double precision is 20.8 Gflop/s per
core. The TDP (Thermal Design Power) of each socket is
115Watts. It is also equipped with a NVIDIA K40c cards
with 11.6 GB memory per card running at 825 MHz,
connected to the host via two PCIe I/O hubs at 6 GB/s
bandwidth. The TDP of K40c is 235Watts. A number of
software packages were used for the experiments. On the
CPU side, we used the MKL (Math Kernel Library) [5]
and on the GPU accelerator we used CUDA version 5.5.

B. Batched CUDA routines

In a batched problem, there are many small dense
matrices that must be factorized simultaneously. Each
matrix consists of an independent Cholesky problem,
where the factorization itself is a sequence of BLAS
calls. A natural way to implement this batched model
in CUDA is to organize it as a sequence of batched
BLAS routines. This means that all the matrices will be
processed simultaneously by the same kernel. Yet, each
matrix problem is still solved independently, identified
by a unique batch ID. We follow this model in our
batched implementations and developed a set of new
batched CUDA kernels. For the remainder of the paper,
the routine name refers to a batched version of the
respective routine without explicitly noted.

The batched CUDA routines that we implemented and
study in this paper are:

dsyrk,

dot,

scal,

dgemv, and

dgemm.

C. Batched non-blocked Cholesky

The performance of the non-blocked Cholesky is
shown in Figure 7. A K40 GPU is used for the tests
throughout the paper. A breakdown of the execution time
is shown in Figure 4. It shows that when the matrix
size increase, the dgemv dominates the overall execution
time. Since dgemv is a bandwidth bound routine, the
algorithm’s performance will be limited by the GPU’s
bandwidth. The performance achieved by the standard
dgemv routine is shown in Figure 5.



Fig. 4. Execution time breakdown of the non-blocked Cholesky
factorization for matrices of different sizes on a K40 GPU

0 2000 4000 6000 8000 10000 12000
5

10

15

20

25

30

35

40

45
DGEMV

Matrix Size

G
fl
o
p
/s

 

 

MAGMA

CUBLAS

Fig. 5. Performance in Gflop/s achieved by the dgemv on a K40
GPU

D. Batched blocked right-looking Cholesky

This implementation follows the steps described in
Algorithm 2, but it differ by merging the factorization
of the panel submatrix Ai and Bi into one kernel to
minimize the overhead of calling CUDA kernel for small
tasks. The trailing matrix Ci in Algorithm 2 is updated
using the Level 3 BLAS routine dsyrk, as shown in
Figure 2. Compared to the non-blocked algorithm, a
large number of Level 2 BLAS dgemv operations are
replaced by Level 3 BLAS dsyrk operations in the
blocked right-looking.

The performances using various batch sizes is shown
in Figure 6. For matrices of size larger than 500, the
performance impact of increasing the batch count is
insignificant, because the streaming multi-processors of
the GPU are slowly getting saturated. The blocking size
of our algorithm is tunable, and experimentally we deter-
mined that the optimal size for a K40 GPU is four. The
performance of the blocked algorithm slightly exceeds
the non-blocked one, as shown in Figure 7. Although this

algorithm outperforms the bandwidth-limited dgemv, it
is still not very satisfactory (see next).

0 100 200 300 400 500 600
0

10

20

30

40

50

60

Batched DPOTRF

Matrix Size

G
F

L
O

P
/s

 

 

batchCount=100

batchCount=500

batchCount=1000

batchCount=2000

Fig. 6. Performance of the batched blocked right-looking Cholesky
for various matrix and batch sizes

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200
Batched DPOTRF BatchCount=2000

Matrix Size

G
F

L
O

P
/s

 

 

Non−blocked

Blocked

Recursive blocked

16 parallel threads

Fig. 7. Performance of the three algorithms

E. Batched recursive blocked Cholesky

The technique of the batched recursive Cholesky is
similar to the one described in Algorithm 4. The reason
for this choice is that on the first hand, the right looking
variant used for updating the trailing matrix provides a
high level of parallelism – the update is for the entire
trailing matrix – and thus can be performed efficiently on
a GPU. On the other hand, the panels are factorized using
the recursive left schema. This provides better results as it
minimizes the costly writes back to the main memory by
keeping the data in cache for its reuse, and thus writes
back the final result only once and also it recursively
increases the inner blocking of the local panel operations
which will gives a Level 2.5 BLAS. Note that caching
is possible because of the small panel sizes.

The performance of the three algorithms described
above, along with the comparison to an optimized par-
allel batched Cholesky on CPUs using the Intel MKL



library, is shown in Figure 7. The matrix sizes range from
32 to 512. To be fair, we tuned the CPU implementation
as optimal as we can. A simple way of using the CPU
batched Cholesky is to call the multi-thread version of
the MKL Library and to factorize the small matrices
one after one. Such implementation provided a bad
performance around 30 Gflop/s. Since the matrix size is
in an order of hundreds, thus more than 8 small matrices
can fit into the L3 cache level of the CPU and so an
optimized CPU implementation might be achieved by
threading “pthread” independent sequential factorization
on each thread using the sequential MKL BLAS. Our
experiments shows that this technique is the best among
many other CPU implementations. Therefore, for the
batched problem the threading should be on the batched
level rather than inside the processing of each matrix.
In our test, 2,000 matrices were distributed onto 16
OpenMP threads running sequential MKL BLAS. The
results shows that except for matrices of size 64, where
the matrix fit the private L2 cache level of each thread
which makes the CPU variant faster, our proposed recur-
sive blocked algorithm on the GPU always gives the best
performance. Compared to MKL, the recursive algorithm
achieves up to 1.8 × speedup.

The recursive blocked algorithm has the least number
of BLAS-2 operations and achieves a performance that
is characteristic for Level 3 BLAS. However, all the al-
gorithms have the same amount of BLAS-1 scal and dot
routines. A breakdown of the time is shown in Figure 8.
A specific CUDA dgemm kernel that we developed is
used in the left looking panel factorization. dsyrk is used
in the update of the right looking trailing matrix. The
optimal blocking size in the recursive algorithm, which
is the size of the panel matrix A, is 32. The optimal
blocking size of A is 8. Since 32 is the panel size,
there is no dsyrk at size 32. For small matrix sizes, the
performance of the dot product is critical for the overall
performance. The dot product (reduction) is performed
along the rows, resulting in consecutive threads reading
elements at a step of lda. Since the data is stored in
column major, the memory accesses are non-coalesced,
which has negative effect on its performance. With the
matrix size increasing, this reduction is not significant
compared to the more flops intensive dsyrk routine.

F. Comparison with CUBLAS batched routines

CUBLAS does not have a batched dsyrk routine, but
has a batched dgemm – cublasDgemmBatched. To be a
fair, we compared it with our batched dgemm, as shown

Fig. 8. A breakdown of the recursive blocked Cholesky

in Figure 9. Our batched dgemm is 2 × faster than the
CUBLAS routine. In our code, we use our batched dsyrk
version which is 4 × faster (than a dsyrk based on the
batched dgemm from CUBLAS). The only difference
is our dsyrk writes in the lower triangular part of the
output matrix. The performance of dsyrk is important
to the overall performance, since it takes a big part of
the running time. Our test showed that if we took the
cublasDgemmbatched, the overall performance will be
down to 100 Gflop/s at size 512.

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Matrix Size

T
im

e
(m

s
)

 

 

Batched DSYRK

Batched DGEMM

cublasDgemmBatched

Fig. 9. Performance of our batched DSYRK, batched DGEMM and
cublasDgemmbatched

CUBLAS has included a batched LU (getrfBatched)
since version 5.5, but does not have a batched Cholesky.
Cholesky can be treated as a special version of LU
decomposition tailored to symmetric and positive definite
matrices. For the same data input, LU is two times
slower than Cholesky, because LU accesses the whole
matrix instead of a lower or upper side. We compared
our implementation with cublasDgetrfBatched and our
Cholesky is up to 9× faster than the CUBLAS routine
as shown in Figure 10.



Fig. 10. Performance of our batched Cholesky vs cublasDgetrf-
Batched

V. CHOLESKY FOR LARGE MATRICES AND ITS

ENERGY CONSUMPTION

In contrast to the batched problems on small matrices
from the previous sections, this section focuses on a
classical Cholesky dpotrf for large matrices. The entire
matrix size is at least a few thousands, while its panel
size is in the order of hundreds. The difference between
MAGMA and our implementation is that the factorization
of the panel is performed on the GPU, while in MAGMA
is on the CPU. The differences are shown in Table II. In
this section, we call our implementation full-GPU-dpotrf
to make the name more self-explanatory.

MAGMA has adopted the left-looking Cholesky algo-
rithm. The panel factorization on the CPU is overlapped
and hidden by dgemm computations on the GPU [7].

The panel factorization in our algorithm is based
on our batched recursive blocked algorithm.Since the
panel size is small and therefore its computation will
not saturate all computational resources of the GPU,
one can try to overlap the panel computation with the
trailing matrix update. One way of doing it, is to put the
two computations through two different CUDA streams.
However, experiments showed that, it might not be fully
overlapped with the dgemm computations. The first
explanation of this behavior is that the CUDA kernels
are non-preemptive [17]. Once a kernel is issued and
starts running on the GPU, it will try to occupy all the
computational resources it needs. If the kernel uses all
the computing units of the GPU, then no other kernel
can be started. Thus the CUDA scheduler might not be
able to initiate and overlap all the small BLAS in the
recursive blocked panel with the large dgemm com-
putation. Therefore, the panel factorization will prevent

TABLE II. THREE CHOLESKY IMPLEMENTATIONS

Name Panel Matrix A Panel Matrix B Trailing Matrix C
MKL CPU CPU CPU

MAGMA CPU GPU GPU
full-GPU-dpotrf GPU GPU GPU

the full-GPU-dpotrf algorithm to match the MAGMA
performance. In our case, since the dgemm computation
for the trailing matrix update is large, it takes up all
the resources after it is issued. Only close to the end of
its computation, a few of the panel factorization kernels
can be launched, as shown in Figure 12. Therefore, the
panel factorization can not be completely overlapped.
Despite this, our profiler show that the GPU is fully busy
doing either the panel factorization or the trailing matrix
update.

The performance of the three implementations is
shown in Figure 11. For small matrix sizes, less than
1,500, MKL is the fastest. This is expected as matrices
of size up to 2,200 fit the L3 cache of the CPU. For
matrices larger than 2,200, MKL stagnates at the same
performance which is the peak it can reach. MAGMA’s
performance rises quickly before size of 10,000, and
outperforms the full-GPU-dpotrf by 300 Gflop/s at
10,000. After that, MAGMA’s performance slowly levels,
while the full-GPU-dpotrf’s performance continues to
rise steadily. The difference is narrowed to less than
100 Gflop/s at around matrices of size 25,000. Since
the practical peak performance of the CPUs is around
300 Gflop/s, we consider that compared to MAGMA
which uses the CPUs, a difference below 200 Gflop/s
to be acceptable, and for less than 100 Gflop/s to be
very good. We compute the ratio that can be reached
by either of the Cholesky algorithms in proportion to the
resources used. Our implementation reaches around 80%
of the available practical dgemm peak on the K40c GPU
which is around 1200 Gflop/s, while MAGMA reaches
around 75% of the practical peak of the resources it uses
(1200+300 Gflop/s).

A. Performance-per-watt

Besides performance, energy consumption has be-
come another major concern in HPC. An indicator for it
is given by the performance-per-watt measure. As Eq. 3
demonstrates, it evaluates how many flops are performed
for one joule of energy. The higher the number, the more
efficient the computation is.



0 0.5 1 1.5 2 2.5 3

x 10
4

0

200

400

600

800

1000

1200
LARGE−DPOTRF

Matrix Size

G
F

L
O

P
/s

 

 

Full−GPU

Hybrid−MAGMA

MKL

Fig. 11. Performance of the full-GPU, MAGMA Hybrid and MKL
solution of Cholesky factorization

Fig. 12. The CUDA profiler showed that only a few routines in panel
factorization were able to be launched at the end stage of dgemm.
The vertical lines are the footage of the routines. The width represents
the running time.

Performance(Flop/s) =
Flops

T ime(Sec)
(1)

Power(Watt) =
Energy(Joule)

Time(Sec)
(2)

Dividing equation 1 by 2 give:

Performance− per − watt =
Flops

Joule
(3)

We use PAPI to measure the CPU power [14] [15]
and NVML to measure the GPU power [16]. The
measurement frequency provided by these tools is one
millisecond. The K40 GPU power usage of the MAGMA
hybrid and the full-GPU-dpotrf are shown in Figures 13
and 15, respectively. To collect more meaningful data,
we made one hundred runs for each routine. This is
needed because the kernels for small matrix sizes run
at hundreds of microseconds, which is less than the
resolution (millisecond) provided by PAPI and NVML.

While the hybrid MAGMA runs faster, its power is
also higher than that of the full-GPU solution for the

same matrix size, because the GPU during the MAGMA
run only performs the flop intensive BLAS-3 routines.

The two socket CPU power usage of the three im-
plementations is shown in Figures 14, 16 and 17. The
red line is one socket and the blue line is the other
socket. In these tests, we gradually increase the matrix
size from 1,088 to 10,320. Each spike represents one
run. The bigger the matrix, the longer the run time and
the wider the bar. From the power usage, we can see that
the hybrid and the full-GPU-dpotrf only use a small part
of the CPU capability, because they only achieved 50-
70 W, while MKL achieves 110 W for one socket. This
indicates that a less powerful CPU is enough to achieve
the same performance. For the full-GPU Cholesky the
CPU is only used to drive the GPU code. CPU’s narrow
power bars in this case mean that the CPU is at the idle
power most of the time.

The performance and GPU power of the full-GPU-
dpotrf is shown in Figure 18. With the size increasing,
the performance increases linearly, but the power rises
slowly and levels off.

The performance-per-watt is shown in Figure 19. The
watts include both CPU and GPU power. For the full-
GPU-dpotrf we consider two metrics:

• Full-GPU-1: where we consider the CPU power

• Full-GPU-2: where we do NOT consider the CPU
power

We consider the Full-GPU-2, because the watt usage
in the Full-GPU-1 are exaggerated since a less power-
ful CPU using less watts is able to achieve the same
GPU performance. Second, we want to compare it with
the peak performance-per-watt of the GPU. The peak
performance-per-watt of a K40 in double precision is
6 Gflops/W [18]. It is interesting that the trend for the
performance-per-watt in Figure 19 is almost the same as
that in Figure 11. At the very beginning, MKL is the
best, since the GPU wake-up power is a big contributor
to other curves. For moderate matrix sizes in the range
of 2,000 to 5,000, MAGMA performs the best due to its
performance advantage in this range. Its performance-
per-watt then levels off, as its performance also levels
off. After that, the full-GPU takes the lead since its
performance increases linearly before 10K, but the power
levels off as in Figure 18. The performance-per-watt for
our Cholesky factorization is 4.5, compared to 3 for
MAGMA at matrix of size 10K. In all, our performance-
per-watt is 75% of the theoretical performance-per-watt



for the K40.

0 200 400 600 800 1000
60

80

100

120

140

160

180

200
GPU Power of Hybrid DPOTRF

W
at

ts

Time(ms)

 

 

N=1024

N=2048

N=5120

N=8196

N=10240

Fig. 13. GPU power of the MAGMA hybrid factorization.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

W
a
tt
s

Time(s)

CPU Power of Hybrid DPOTRF

Fig. 14. CPU power of the MAGMA hybrid factorization.

0 200 400 600 800 1000
60

70

80

90

100

110

120

130

140

150

160
GPU Power of full−GPU DPOTRF

W
a
tt
s

Time(ms)

 

 

N=1024

N=2048

N=5120

N=8196

N=10240

Fig. 15. GPU power of the full-GPU factorization.

VI. CONCLUSION

We designed different techniques for developing high-
performance batched dense linear algebra kernels in a
GPU accelerator environments. In particular, we have im-
plemented a batched Cholesky factorization using GPUs

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

W
a
tt
s

Time(s)

CPU Power of FULL−GPU DPOTRF

Fig. 16. CPU power of the full-GPU factorization.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

W
a
tt
s

Time(s)

CPU Power of MKL DPOTRF

Fig. 17. CPU power of MKL with 32 threads.

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

700

Full−GPU DPOTRF: Perforamnce & Power

Matrix Size

G
F

L
O

P
/s

 W
a
tt
s

 

 

GFLOP/s

GPU Watts

Fig. 18. Performance and power of the full-GPU Cholesky factor-
ization.

hardware targeting thousands of small matrices of size
hundreds by hundreds. We compared three variants of
the algorithm, the non-blocked, the blocked right-looking
and the recursive blocked left-right-looking implemen-
tation. The performance of the non-blocked version is
bounded by the performance of the Level 2 BLAS routine
dgemv. The blocked right-looking performs better than



0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6
P

e
rf

o
rm

a
n

c
e

−
p

e
r−

w
a

tt

Matrix Size

 

 

Full−GPU−1

Full−GPU−2

Hybrid

MKL

K40 Peak

Fig. 19. Performance-per-watt.

the non-blocked one. We adopted a recursive hybrid
algorithm, where a recursive left-looking technique is
used in the panel factorization while a right-looking one
is used in the update of the trailing matrix. To maxi-
mize the performance, we implemented and optimized
a set of batched new CUDA kernels (routines). Their
performance exceeded their counterparts in CUBLAS by
2 × and 9 ×. Our CUDA code achieved up to 1.8 ×
speedup than an optimized implementation that uses the
Intel MKL library on two sockets of Intel Sandy Bridge
CPUs.

We also implemented a full GPU implementation of
the Cholesky factorization targeting to a larger matrix
on the GPU. Compared to the MAGMA hybrid solution,
our full-GPU solution achieved 85% of the practical peak
performance with 1.5× performance-per-watt.

Furthermore, despite the complexity of the hardware,
acceleration was achieved at a surprisingly low software
development effort using a high-level methodology of
developing hybrid techniques. In particular, we obtained
high fraction of the practical peak performance of the
GPU. The promise shown so far motivates and opens
opportunities for future research and extensions, e.g.,
tackling more batched one-sided factorizations, like the
Gaussian elimination “LU”, and the QR decomposition
and also batched eigenvalue solver.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Foundation, the Department of Energy, NVIDIA and
MAGMA project support.

REFERENCES

[1] J.M. Molero, E.M. Garzn, I. Garca,E.S. Quintana-Ort and
A. Plaza. Poster: A Batched Cholesky Solver for Local RX
Anomaly Detection on GPUs. PUMPS

[2] https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-
cholesky-factorization-/

[3] Anderson, M.J. Sheffield, D. Keutzer, K. A Predictive Model
for Solving Small Linear Algebra Problems in GPU Registers,
Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International

[4] http://icl.cs.utk.edu/magma/
[5] Intel Math Kernel Library. http://software.intel.com/intel-mkl/.
[6] Tingxing Dong, Veselin Dobrev, Tzanio Kolev, Robert Rieben,

Stanimire Tomov, Jack Dongarra A Step towards Energy Effi-
cient Computing: Redesigning A Hydrodynamic Application on
CPU-GPU. Parallel Distributed Processing Symposium (IPDPS),
2014 IEEE 28th International

[7] Ichitaro Yamazaki, Stanimire Tomov, and Jack Dongarra One-
sided dense matrix factorizations on a multicore with multiple
GPU accelerators in MAGMA. International Conference on
Computational Science, ICCS 2012

[8] Hatem Ltaief , Stanimire Tomov , Rajib Nath , Jack Dongarra
Hybrid Multicore Cholesky Factorization with Multiple GPU
Accelerators. University of Tennessee Computer Science Tech-
nical Report, 2010.

[9] Vasily Volkov, James W. Demmel. LU, QR and Cholesky Factor-
izations using Vector Capabilities of GPUs LAPACK Working
Note 202

[10] Depeng Yang, Junqing Sun, JunKu Lee, Getao Liang, David
D. Jenkins, Gregory D. Peterson, and Husheng Li. Performance
Comparison of Cholesky Decomposition on GPUs and FPGAs,
Symposium on Application Accelerators in High Performance
Computing, 2010

[11] Gallivan, K., Jalby, W., and Meier, U. 1987. The use of BLAS3
in linear algebra on a parallel processor with a hierarchical
memory. SIAM J. Sci. Stat. Comp. 8, 10791084.

[12] Gustavson, F. G. 1997. Recursion leads to automatic variable
blocking for dense linear-algebra algorithms. 346 IBM J. Res.
Dev. 41, 6, 737755.

[13] CUDA Programming Guide v5.0:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[14] V.M. Weaver, M.Johnson, K.Kasichayanula, J.Ralph,
P.Luszczek, D.Terpstra, S.Moore. Measuring Energy and
Power with PAPI, Parallel Processing Workshops, 2012 41st
International Conference on Sep, 2012

[15] Intel 64 and IA-32 Architectures Software Developer’s.
http://download.intel.com/products/processor/manual/

[16] https://developer.nvidia.com/nvidia-management-library-nvml
[17] Jon Calhoun, Hai Jiang, ”Preemption of a CUDA Kernel

Function,” snpd, pp.247-252, 2012 13th ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, 2012

[18] http://www.nvidia.com/object/tesla-servers.html


