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Abstract As the scale of computing platforms becomes increasingly extreme, the
requirements for application fault tolerance are increasing as well. Techniques to
address this problem by improving the resilience of algorithms have been developed,
but they currently receive no support from the programming model, and without such
support, they are bound to fail. This paper discusses the failure-free overhead and
recovery impact of the user-level failure mitigation proposal presented in the MPI
Forum. Experiments demonstrate that fault-aware MPI has little or no impact on
performance for a range of applications, and produces satisfactory recovery times
when there are failures.
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1 Introduction

In a constant effort to deliver steady performance improvements, the number of hard-
ware resources of high performance computing (HPC) systems, as observed by the
Top 500 ranking,1 has grown tremendously over the last decade. This trend is unlikely
to stop, as outlined by the International Exascale Software Project (IESP) [11] pro-
jection of the Exaflop platform, a milestone that should be reached as soon as 2019.
Based on the foreseeable limits of the infrastructure costs, an Exaflop capable machine
is expected to be built from gigahertz processing cores, with thousands of cores per
computing node, thus requiring millions of computing cores to reach the mark. Even
under the most optimistic assumptions about the individual components’ reliability,
probabilistic amplification from using millions of nodes has a dramatic impact on
the mean time between failure (MTBF) of the entire platform. The probability of a
failure happening during the next hour on an Exascale platform is disturbingly close
to 1; thereby many computing nodes will inevitably fail during the execution of an
application [9]. It is even more alarming that most popular fault tolerant approaches
(coordinated and uncoordinated checkpoint/restart) see their efficiency plummet at
Exascale [5,6], calling for application centric failure mitigation strategies [17].

The prevalence of distributed memory machines promotes the use of the message
passing model. An extensive and varied spectrum of domain science applications
depend on libraries compliant with the MPI standard.2 Although unconventional pro-
gramming paradigms are emerging [20,22], most delegate their data movements to
MPI and it is widely acknowledged that MPI is here to stay. However, MPI has to
evolve to effectively support the demanding requirements imposed by novel architec-
tures, programing approaches, and dynamic runtime systems. In particular, its support
for fault tolerance has always been inadequate [15]. To address the growing interest in
fault-aware MPI, a working group has been formed in the context of the MPI Forum.
Their User-Level Failure Mitigation (ULFM) [2] proposal features the basic interface
and new semantics to enable applications and libraries to repair the state of MPI and
tolerate failures. The purpose of this paper is to evaluate the tradeoffs that are needed
for the integration of this fault mitigation specification and its impact (or lack thereof)
on MPI performance and scalability. The contributions of this work are to evaluate
the difficulties faced by MPI implementors, and demonstrate the feasibility of a low-
impact implementation on the failure-free performance as well as an estimate of the
recovery time of the MPI state after a failure. This paper extends on the conference
version [3] by presenting a more scalable implementation of the Revoke construct,
and by deepening the performance analysis.

The remainder of this paper is organized as follows: the next section introduces a
short history of fault tolerance in MPI; Sect. 3 presents the constructs introduced by
the proposal; Sect. 4 discusses the challenges faced by MPI implementors; then the
performance impact of the implementation in Open MPI is discussed in Sect. 5 before
we conclude in Sect. 6.

1 http://www.top500.org/.
2 http://mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.
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2 Related work

Efforts toward fault tolerance in MPI have previously been attempted. Automatic fault
tolerance [7,8] is a compelling approach for users, as failures are completely masked
and handled internally by the MPI library, which requires no new interfaces to MPI or
application code changes. Unfortunately, many recent studies point out that automatic
approaches, either based on checkpoints or replication, will exhibit poor efficiency on
Exaflop platforms [5,6].

Application based fault tolerance (ABFT) [10,12,17] is another approach that
promises better scalability, at the cost of significant algorithm and application changes.
Despite some limited successes [4,15], MPI interfaces need to be extended to effec-
tively support ABFT. The most notable past effort is FT-MPI [13]. Several recovery
modes were available to the user. In the Blank mode, failed processes were replaced by
MPI_PROC_NULL; messages to and from them were silently ignored and collective
algorithms had to be significantly modified. In the Replace mode, faulty processes
were replaced with new processes. In all cases, only MPI_COMM_WORLD would be
repaired and the application was in charge of rebuilding any other communicators,
leading to difficult library composition. No standardization effort was pursued, and it
was mostly used as a playground for understanding the fundamental concepts.

A more recent effort to introduce failure handling mechanisms was the Run-
Through Stabilization proposal [18]. This proposal introduced many new constructs
for MPI including the ability to “validate” communicators as a way of marking failure
as recognized and allowing the application to continue using the communicator, or
using Failure Handlers for uniform failure notification. Because of the implementation
complexity imposed by resuming operations on failed communicators, this proposal
was eventually unsuccessful in its introduction to the MPI Standard.

3 New MPI constructs

This section succinctly presents the prominent interfaces proposed to enable effective
support of User-Level Failure Mitigation for MPI applications. For a more detailed
description of the proposed interfaces, the interested reader should refer to the tech-
nical document [2] and to the amended standard draft.3 This specification supports
the permanent crash failure mode, where a process acts correctly until it stops (as
the result of either a resource or a software error) and no subsequent results are
delivered. Transient or byzantine errors are outside the scope of this work, but we
will discuss in Sect. 4.2 how the common case of temporary network failures can be
resolved.

Designing the mechanism that users would use to manage failures was built around
three concepts: (1) simplicity, the API should be easy to understand and use in most
common scenarios; (2) flexibility, the API should allow varied fault tolerant models
to be built as external libraries and; (3) absence of deadlock, in every failure situa-
tion, the application can regain control and no MPI call (point-to-point or collective)

3 http://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323.
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is blocked indefinitely after a failure, but must either succeed or raise an MPI error.
Two major pitfalls must be avoided: jitter prone, permanent monitoring of the health
of peers a process is not actively communicating with, and expensive consensus
required for returning consistent errors at all ranks. The operative principle is then
that errors (MPI_ERR_PROC_FAILED) are not indicative of the return status on
remote processes, but are raised only at a particular rank, when a particular operation
cannot complete because a participating peer has failed.

When a failure occur, the state of MPI is left unchanged, only deliberate actions
from the user alters the state of MPI regarding post-failure behavior. Obviously, com-
munications involving a failed process (point-to-point or collective) will not be able to
complete anymore, an error is raised by the completion of the operation, indicating that
the operation could not complete as a consequence of process failures. However, the
internal state of MPI objects is left unchanged; the communicator object (or window
in the case of RMA) remains a valid object able to support further communications.
New operations posted on the communicator may complete or raise errors, following
the same semantic as before the first failure was reported, as described above. Notably,
operations that do not involve the failed process can continue to operate normally, even
on communicators that include failed processes (although most collective operations
are expected to systematically result in an error).

Another important feature is that any error related to process failure has a local
scope, it strictly indicates that the operation could not complete at the rank it has been
reported. In the general case, the semantic information given by the error code is insuf-
ficient to infer which rank has failed, or if that same error has been raised at all ranks.
Moreover, the operation may have successfully completed at other ranks, because
the failure happened after the necessary internal steps of the operation completed, or
because the failed process was not having an active role in the operation.

The proposed approach has the benefit of intruding the least with failure free oper-
ations, at the expense of a very relaxed consistency in the view of failures. The only
strong guarantee is that for any communication, the operation will either complete
with success, or raise an error (thereby ensuring that MPI programs can ensure the
non-deadlock property). Such a minimalistic error semantic would prove challenging
to overcome for many applications, as the MPI state being unchanged, errors would
continue to be raised during the remainder of the execution. The following functions
provide the basic blocks for restoring consistency and enabling recovery of the state
of MPI, into a state where all past failures have been accounted for and resolved in a
way that fits the application needs.
MPI_COMM_REVOKE: Because failure detection is not global to the communi-

cator, some processes may raise an error for an operation, while others do not. This
inconsistency in error reporting may result in some processes continuing their normal,
failure-free execution path, while others have diverged to the recovery execution path.
As an example, if a process, unaware of the failure, posts a reception from another
process that has switched to the recovery path, the matching send will never be posted.
Yet no failed process participates in the operation and it should not raise an error. The
receive operation is effectively deadlocked. The revoke operation provides a mecha-
nism for the application to resolve such situations before entering the recovery path. A
revoked communicator becomes improper for further communication, and all future
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or pending communications on this communicator will be interrupted and completed
with the new error code MPI_ERR_REVOKED. It is notable that although this oper-
ation is not collective (a process can enter it alone), it affects remote ranks without a
matching call.
MPI_COMM_SHRINK: The shrink operation allows the application to create a

new communicator by eliminating all failed processes from a revoked communicator.
The operation is collective and performs a consensus algorithm to ensure that all
participating processes complete the operation with equivalent groups in the new
communicator. This function cannot return an error due to process failure. Instead,
such errors are absorbed as part of the consensus algorithms and will be excluded from
the resulting communicator.
MPI_COMM_AGREE: This operation provides an agreement algorithm which can

be used to determine a consistent state between processes when such strong consis-
tency is necessary. The function is collective and forms an agreement over a boolean
value, even when failures have happened or the communicator has been revoked. The
agreement can be used to resolve a number of consistency issues after a failure, such
as uniform completion of an algorithmic phase or collective operation, or as a key
building block for strongly consistent failure handling approaches (such as transac-
tions).
MPI_COMM_FAILURE_ACK & MPI_COMM_FAILURE_GET_ACKED: These

two calls allow the application to determine which processes within a communicator
have failed. The acknowledgement function serves to mark a point in time which will
be used as a reference. The function to get the acknowledged failures refers back to this
reference point and returns the group of processes which were locally known to have
failed. After acknowledging failures, the application can resume MPI_ANY_SOURCE
point-to-point operations between non-failed processes, but operations involving failed
processes (such as collective operations) will likely continue to raise errors.

4 Implementation issues

In this section, we detail the challenges and advantages of the aforementioned MPI
constructs. They unfold along three main axis, the amount of supplementary state and
memory to be kept within the MPI library, the additional operations to be executed
on the critical path of communication routines, and the algorithmic cost of failure
recovery routines. We discuss, in general, options available to implementors, and
highlight issues with insight from a prototype implementation in Open MPI [14].

4.1 Impact on communication routines

Memory: Because a communicator cannot be repaired, tracking the state of failed
processes imposes a minimal memory overhead. From a practical perspective each
node needs a global list of detected failures, shared by all communicators; its size
grows linearly with the number of failures, and it is empty as long as no failures occur.
Within each communicator, the supplementary state is limited to two values: whether
the communicator is revoked or not, and an index in the global list of failures denoting

123



1176 W. Bland et al.

the last acknowledged failure (withMPI_COMM_FAILURE_ACK). For efficiency rea-
sons, an implementation may decide to cache the fact that some failures have happened
in the communicator so that collective operations and MPI_ANY_SOURCE receptions
can bail out quickly. Overall, the supplementary memory consumption from fault tol-
erant constructs is small, independent of the total number of nodes, and unlikely to
affect the cache and TLB hit rates. The size of messages sent on the network transport
is unchanged (including the size of the message header).

Conditionals: Another concern is the number of supplementary conditions on the
latency critical path. Indeed, most completion operations require a supplementary
conditional statement to handle the case where the underlying communication context
has been revoked. However, the prediction branching logic of the processor can be
hinted to favor the failure free outcome, resulting in a single load of a cached value and
a single, mostly well-predicted, branching instruction, unlikely to affect the instruction
pipeline. It is notable that non-blocking operations raise errors related to process failure
only during the completion step, and thus do not need to check for revocation before
the latency critical section.

Moreover, in order to cleanly release the resources in case of errors –an important
feature to avoid wasting precious machine time on zombie applications– most MPI
libraries, even those that are not fault tolerant, already include a conditional that checks
for failures and errors. That same conditional can be repurposed, by extending the
test condition, so that all error cases are handled without adding any supplementary
condition to existing implementations.

Matching logic: MPI_COMM_REVOKE does not have a matching call on other
processes on which it has an effect. As such, it might add detrimental complexity to
the matching logic. However, any MPI implementation needs to handle unexpected
messages. The order of revocation message delivery is loose enough that the handling
of revocation notices can be integrated within the existing unexpected message match-
ing logic. In our implementation in Open MPI, we leverage the active message low
level transport layer to introduce revocation as a new active message tag, without a
single change to the matching logic.

Collective operations: A typical MPI implementation supports a large number of
collective algorithms, which might be dynamically selected depending on criteria such
as communicator or message size and hardware topology. The loose requirements of
the proposal concerning process failure error reporting limits the impact it has on
collective operations. Typically, the collective communication algorithms and selec-
tion logic are left unchanged. The only new requirement is that failures happening at
any rank of the communicator cause all processes to exit the collective (successfully
for some, with an error for others). Due to the underlying loosely-connected topolo-
gies used by some algorithms, a point-to-point based implementation of a collective
communication is unlikely to detect all process failures. Fortunately, a practical imple-
mentation exists that does not require modifying any of the collective operations: when
a rank raises an error because of a process failure, it can revoke an internal, temporary
communication context associated with the collective operation. As the revocation
notice propagates on the internal communicator, it interrupts the point-to-point opera-
tions of the collective. An error code is returned to the high level MPI wrapper, which
in turn raises the appropriate error on the user’s communicator.
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4.2 Failure detector

As stated earlier, it is not necessary to implement a total failure detector, or to inject
jitter prone heartbeat messages for the proposed model to work. Indeed, as failures are
reported only when an operation cannot complete, failures are triggered only when
communicating directly with a failed processor. This approach match with the behavior
of most network transport layers which report (at least asynchronously) communica-
tions and links errors when the peer of a communication cannot be reached. As an
additional protection layer or for networks failing to exhibit the previous property, an
independent TCP overlay error detector can be used to monitor the health of all peers
actively communicating with. All other failures can be safely ignored, and there is
no need to trigger active monitoring of these processes, thereby reducing greatly the
latency and jitter generated by total failure detection. A notable exception is when
using wildcard receives from MPI_ANY_SOURCE: because all ranks in the commu-
nicator are potential sources, a process stalled waiting on such an operation may have
to trigger complete error detection on the communicator. In all other cases, errors are
detected only on-necessity, without intrusive failure detection actions.

The case of network errors (or transient errors, where a process is unresponsive for a
limited period of time before coming back online) can be handled at the implementation
level. Once a process has been reported as failed to a particular process, this process
will consistently ignore and discard further communications with this failed process.
As a result the transient error is promoted to a fail-stop error. Because failure reporting
is not consistent by default, it is already a possible outcome in a fail-stop only execution
that some processes do not detect a failure as early as another one. The usual recovery
routine (revoke and shrink) have the expected effect when a process invokes them to
react to a promoted fail-stop failure: the transient failure is promoted as fail-stop for all
processes on the communication object. It is to be noted that this behavior is a possible
implementation that tackles in a sensible way transient failures, not a requirement of
the specification.

4.3 Recovery routines

Some of the recovery routines described in Sect. 3 are unique in their ability to deliver
a valid result despite the occurrence of failures. This specification of correct behav-
ior across failures calls for resilient, more complex algorithms. In most cases, these
functions are intended to be called sparingly by users, only after actual failures have
happened, as a means of recovering a consistent state across all processes. The remain-
der of this section describes the algorithms that can be used to deliver this specification
and their cost.

Agreement: The agreement can be conceptualized as a failure-resilient reduction
on a boolean value. Many agreement algorithms have been proposed in the literature;
the log-scaling two-phase consensus algorithm used by the ULFM prototype is one of
many possible implementations of MPI_COMM_AGREE operation based upon prior
work in the field. Specifically, this algorithm is a variation of the multi-level two-phase
commit algorithms [21]. The algorithm first performs a reduction of the input values
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to an elected coordinator in the communicator. The coordinator then makes a decision
on the output value and broadcasts that value back to all of the alive processes in the
communicator. The complexity of the agreement algorithm appears when adapting to
an emerging process failure of the coordinator and/or participants. A more extensive
discussion of the algorithmic complexity has been published by Hursey et al. [19].
The algorithmic complexity of this implementation is O(log(n)) for the failure free
case, matching that of an MPI_ALLREDUCE operation over the alive processes in the
communicator.

Revoke: Although the revoke operation is not collective, the revocation notification
needs to be propagated to all alive processes in the specified communicator, even when
new failures happen during the revoke propagation. These requirements are not without
recalling those from the reliable broadcast [16]. Among the four defining qualities of
a reliable broadcast (Termination, Validity, Integrity, Agreement), the termination and
integrity criteria can be relaxed in the context of the revoke algorithm. If a failure during
the Revoke algorithm kills the initiator as well as all the already notified processes,
the Revoke notification is indeed lost, but the observed behavior, from the view of the
application, is indiscernible from a failure at the initiator before the propagation started.
As the algorithm still ensures agreement, there are no opportunities for inconsistent
views.

In the ULFM implementation, we use a Binomial Graph (BMG) [1]. The initiator
marks the communicator as revoked, and sends a Revoke message to log(n) other
processes (in a communicator of size n). Upon the reception of a revoke message,
if the communicator is not already revoked, it is then revoked and the process acts
as a new initiator. This topology has the advantage of featuring a lower message
count (O(nlog(n)) messages are exchanged, instead of O(n2)). Because the revoke
algorithm is asynchronous, the performance benefit, as observed by applications, is
low. However, complete flooding was suffering from a practical problem at scale: it
required opening a large number of connections, resulting in crashing the Open IB
driver. The BMG topology is protected against that defect, because in this topology,
the degree per node is O(log(n)); in the experiments, no crashes were observed. The
converse drawback is that if log(n) simultaneous failures strike in an exact pattern,
and the failure had been detected by only one process, the revoke algorithm could fail
to deliver the notification to some alive processes. The probability of such an outcome
is very low (it is a generalization of the birthday problem for log(n) simultaneous
birthdays), and we are confident that it will never be observed in practice.

Shrink: The shrink operation is, algorithmically, an agreement on which the
consensus is done on the group of failed processes. Hence, the two operations
have the same algorithmic complexity. Indeed, in the prototype implementation,
MPI_COMM_AGREE and MPI_COMM_SHRINK share the same internal implementa-
tion of the agreement.

5 Performance analysis

The following analysis used a prototype of the ULFM proposal based on the develop-
ment trunk of Open MPI [14] (r26237). The test results presented were gathered from
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Fig. 1 Netpipe latency and bandwidth impact of enabling fault tolerance support (on smoky)

Table 1 Standard deviation of the NetPIPE results (on smoky)

Interconnect Vanilla Std. Dev. FT Std. Dev. Difference

1-Byte latency (microseconds) (cache hot)
Shared memory 0.8008 0.0093 0.8016 0.0161 0.0008
TCP 10.2564 0.0946 10.2776 0.1065 0.0212
OpenIB 4.9637 0.0018 4.9650 0.0022 0.0013

Bandwidth (Mbps) (cache hot)
Shared memory 10,625.92 23.46 10,602.68 30.73 −23.24
TCP 6,311.38 14.42 6,302.75 10.72 −8.63
OpenIB 9,688.85 3.29 9,689.13 3.77 0.28

the Smoky system at Oak Ridge National Laboratory. Each node contains four quad-
core 2.0 GHz AMD Opteron processors with 2 GB of memory per compute core.
Compute nodes are connected with gigabit Ethernet and InfiniBand. Some shared-
memory benchmarks were conducted on Romulus, a 6 × 8-core AMD Opteron 6180
SE with 256 GB of memory (32 GB per socket) at the University of Tennessee.

The NetPIPE benchmark (v3.7) was used to assess the 1-byte latency and bandwidth
impact of the modifications necessary for the ULFM support in Open MPI. We compare
the vanilla version of Open MPI (r26237) with the ULFM enabled version on smoky
(labelled as FT). Figure 1 compares the bandwidth and latency achieved by these
two builds of Open MPI. As can be observed, for the entire range of message sizes,
the performance difference is insignificant, either when using the Infiniband network
transport, or with the shared-memory interface, which is most susceptible to latency.
Table 1 presents the standard deviation across 100 runs, and further highlights the fact
that the differences in performance are not only well below the noise limit, but that
the standard deviation difference is negligible, thus proving the performance stability
and lack of impact.

The impact on shared memory systems, which are sensitive even to small modi-
fications of the MPI library, has been further assessed on the Romulus machine—a
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Fig. 2 The intel MPI benchmarks: relative difference between ULFM and the vanilla Open MPI on shared
memory (Romulus). Standard deviation ≈5 % on 1,000 runs

large shared memory machine—using the IMB benchmark suite (v3.2.3). As shown
in Fig. 2, the difference on all the benchmarks (point-to-point and collective) remains
below 5 %, within the standard deviation of the implementation on that machine.

To measure the impact of the prototype on a real application, we used the Sequoia
AMG benchmark.4 This MPI intensive benchmark is an Algebraic Mult-Grid (AMG)
linear system solver for unstructured mesh physics. A weak scaling study was con-
ducted up to 512 processes following the problem Set 5. In Fig. 3, we compare the time
slicing of three main phases (Solve, Setup, and SStruct) of the benchmark, with, side
by side, the vanilla version of the Open MPI implementation, and the ULFM enabled
one. The application itself is not fault tolerant and does not use the features proposed
in ULFM. The goal of this benchmark is to demonstrate that a careful implementation
of the proposed semantic does not impact the performance of the MPI implementation,
and ultimately leaves the behavior and performance of legacy applications unchanged.
The results show that the performance difference is negligible.

To assess the overheads of recovery constructs, we developed a synthetic benchmark
that mimics the behavior of a typical fixed-size tightly-coupled fault-tolerant appli-
cation. Unlike a normal application it performs an infinite loop, where each iteration
contains a failure and the corresponding recovery procedure. Each iteration consists
of 5 phases: in the first phase (Detection), all processes but a designated victim enter
a Barrier on the intracommunicator. The victim dies, and the failure detection mecha-
nism makes all surviving processes exit the Barrier, some with an error code. In Phase 2
(Revoke), the surviving processes that detected a process-failure related error during the
previous phase invoke the new construct MPI_COMM_REVOKE. Then they proceed to
Phase 3 (Shrink) where the intracommunicator is shrunk using MPI_COMM_SHRINK.
The two other phases serve to repair a full-size intracommunicator using MPI-2 spawn
and intercommunicator merge operations to allow the benchmark to proceed to the
next round.

4 https://asc.llnl.gov/sequoia/benchmarks/#amg.
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Fig. 4 Fault injection benchmark with full recovery on smoky. The top graph presents absolute times, the
bottom graph presents the same results divided by the number of processes, to highlights scalability trends

In Fig. 4, we present the timing of each phase, averaged upon 50 iterations of
the benchmark loop, for a varying number of processes on the smoky machine. The
scaled graph presents the same result, but scaled down accordingly to the number of
processors used; the resulting normalized unit is irrelevant, but improves readability
for small deployments and better highlight scalability trends.

The failure detection is mildly impacted by the scale. In the prototype implemen-
tation, the detection happens at two levels, either in the runtime system or in the MPI
library (when it occurs on an active link). Between the two detectors, all ranks get
notified within 30ms of the failure (this compares to the 1s timeout at the link level).

Although the revoke call injects a logarithmic number of messages in the network
to implement the level of reliability required for this operation, the duration of this
call itself is under 50 µs and is not visible in the figure. The network is disturbed for a
longer period, due to the processing of the messages, but this disturbance will appear
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in the network only after a failure occurred. According to the performance of the next
operation (shrink), this disturbance has no practical consequences.

The duration of the new construct to shrink a communicator behaves similarly to
other communicator manipulation operations (as illustrated by comparing with the
intercomm merge operation). Indeed, the shrink operation includes two operations,
one is the agreement on the group of failed processes, the second one is the allocation
of a new communicator identifier (an operation that also appears in intercomm merge).
Because in this benchmark, no new failure disrupts the (shrink-internal) agreement
operation, it completes in the same time as a regular collective communication would.
Consequently, a significant portion of the time of the Shrink operation is spent in the
underlying communicator creation functions (unmodified from MPI-2).

The Spawn operation, directly inherited from MPI-2, and left unmodified in the
ULFM prototype, exhibits poor performance and scalability. The reason is mostly
historical: MPI_COMM_SPAWN has seen little use in the past, and thereby has not
been the focus of intensive optimizations from implementors. Should the use of this
construct become more ubiquitous, it is expected that a careful implementation would
reach adequate performance, for it is not prevented by theoretical difficulties.

An interesting observation is that all three operations shrink, spawn, an merge pay
for the cost of the allocation of a communicator identifier; an overhead that appears to
be significant at scale. This suggests that the ULFM specification could benefit from
the addition of an operation realizing these three operations at once, thereby dividing
this overhead by three.

6 Conclusion

Many responsible voices agree that sharp increases in the volatility of future, extreme
scale computing platforms are likely to jeopardize our ability to use them to max-
imize the research productivity of advanced long-running applications that deliver
meaningful scientific results. Moreover, it become clear that any lightweight tech-
niques developed to address this volatility must be supported in the programming
and execution model. Since MPI is currently, and will likely continue to be—in the
medium-term—both the de-facto programming model for distributed applications and
the default execution model for large scale platforms running at the bleeding edge,
MPI is the place in the software infrastructure where semantic and run-time support
for application faults needs to be provided.

The ULFM proposal is a careful but important step forward toward accom-
plishing this goal. It not only delivers support for a number of new and innova-
tive resilience techniques, it provides this support through a simple, straightforward
and familiar API that requires minimal modifications of the underlying MPI imple-
mentation. It maintains the backward compatibility with previous versions of the
MPI standard, so that non fault-tolerant applications (legacy or otherwise) are sup-
ported without any changes to the code. At the same time it provided a low-level
portable API, that will allow other fault tolerant approaches to be implemented as
libraries. Perhaps most significantly, applications can use ULFM-enabled MPI with-
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out experiencing any degradation in their performance, as we demonstrate in this
paper.

Several applications, ranging from Master-Worker to tightly coupled, are currently
being refactored to take advantage of the semantics in this proposal. Beyond appli-
cations, the expressivity of this proposal is investigated in the context of providing
extended fault tolerance models as convenience, portable libraries.
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