
36	 This article has been peer-reviewed.� Computing in Science & Engineering

E x a s c a l e
C o m p u t i n g

PaRSEC: Exploiting Heterogeneity
to Enhance Scalability
New high-performance computing system designs with steeply escalating processor and
core counts, burgeoning heterogeneity and accelerators, and increasingly unpredictable
memory access times call for dramatically new programming paradigms. These new
approaches must react and adapt quickly to unexpected contentions and delays, and
they must provide the execution environment with sufficient intelligence and flexibility to
rearrange the execution to improve resource utilization.

“Nothing endures but change.”
This old adage certainly ap-
plies to the hardware avail-
able to computer scientists

since the dawn of the computing age. Beginning
in the 1970s, vector computing was indisputably
the technology for those seeking the highest pos-
sible performance; in the 1980s, the introduc-
tion of multiprocessor vector systems added a
new dimension to this approach. By the 1990s,
improvements to the price/performance ratio of
conventional microprocessors led to massively
parallel processor architectures. Interconnected
by network interface cards, they replaced vector
processor systems with symmetric multiprocessor
designs. This design dominated most of the mar-
ket until the end of the decade, when the concept
of cluster computing emerged. In the middle of
the 2000s, however, traditional processor designs
hit physical limits that prevented them from con-
tinuing the race for improved performance by

simply running the clock of each new generation
of processors at ever-higher frequencies.

Having reached a hard upper limit on clock
frequencies, designers began to seek higher
performance by increasing the number of
computing resources on each chip; the many-
core revolution began. Manycore designs have
indeed been able to sustain (now familiar) ex-
ponential improvements in processor perfor-
mance, but only at the cost of a sharp escalation
in the amount of parallelism inside a node. Fast
forward several years, and we find that issues
of power consumption and performance price
points have given rise to dedicated hardware
accelerators, providing a large number of spe-
cialized cores not directly under the control of
the traditional operating system. These accel-
erators come from diverse vendors, and because
each vendor usually has its own programming
paradigm, as well as frequently changing inter-
faces and design characteristics, they confront
software developers with a formidable set of new
programming challenges. The usual abstrac-
tions provided by the operating system and the
traditional software stack (programming mod-
els, execution environments, and tools) only
partially help the programmer striving to uti-
lize heterogeneous resources (http://herbsutter.
com/welcome-to-the-jungle); the additional
complexity hinders all efforts at writing high-
performing yet portable applications.

1521-9615/13/$31.00 © 2013 IEEE

Copublished by the IEEE CS and the AIP

George Bosilca, Aurelien Bouteiller, and Anthony Danalis
University of Tennessee
Mathieu Faverge
Bordeaux Institute of Technology
Thomas Herault and Jack J. Dongarra
University of Tennessee

CISE-15-6-Bosilca.indd 36 06/12/13 9:25 PM

November/December 2013 � 37

The challenging environment we describe
in the next section calls for flexible models that
can adapt the execution flow with respect to the
algorithms used to match not only the available
hardware’s capabilities but also its availabil-
ity. In short, a dynamic environment calls for
a dynamic execution model. Historically, this
idea has been investigated in other contexts,
typically in grid environments. But the increas-
ing complexity of execution environments has
brought this concept back to the fore for high-
performance computing (HPC), with models
exhibiting finer task granularity and runtimes
supporting larger and more heterogeneous
platforms. Several research groups are actively
investigating programming paradigms based
on ideas revolving around a runtime-supported
task-based graph concept.1–4 Here, we describe
our particular approach.

Today’s Challenging Environment
Looking outside the boundaries of a single pro-
cessor reveals several challenges: as the num-
ber of processors on a node increases beyond
a certain point, the use of flat interconnection
backbones is excluded. Consequently, the use of
deep Non-Uniform Memory Access (NUMA)
has become pervasive, with communication
delays varying according to the position of a
given process in the communication topology;
each synchronization results in an unpredict-
able waiting time, and intersocket memory
bandwidth becomes a scarce resource that must
be carefully managed to avoid contention.
Moreover, the heterogeneity of the comput-
ing resources involved further complicates the
challenge of ensuring an efficient distribution
of work among those resources, which in turn
generates unsolvable multidimensional opti-
mization problems. In summary, the massive
parallelism and multidimensional heterogene-
ity of current and expected high-performance
platforms both differentiates them sharply
from the machines of the past and, for the same
reasons, causes them to clash with the legacy
SPMD programming model.

In an attempt to accompany this evolution
on the software side, the HPC community has
brought about a complex ecosystem of middle-
ware dedicated to facilitating the use of the
massively parallel resources that constitute the
workhorse of computational simulation. Since
the mid-1980s, the ubiquitous programming
model for parallel applications has been both ex-
plicit message passing to exchange information

between computing nodes and parallel threads
inside the node (with explicit, or implicit, syn-
chronization) through a thread library, such as
Pthreads, or through the use of a parallel lan-
guage. These two dominant abstractions gave
birth to numerous highly successful supporting
stacks—for example, Parallel Virtual Machine
(PVM) and the Message Passing Interface
(MPI), on the side of explicit internode com-
munications, and OpenMP for shared-memory
machines. We could argue that these models
have been successful because they provided
a level of abstraction that delivered portable
performance—a code written in MPI, for in-
stance, could be deployed, unchanged, on many
target systems—yet still achieved reasonable
performance levels. However, the issue with all
these variations of the SPMD programming
model is that they encourage bulk-synchronous
programming (BSP), in which sequential pro-
cesses work in parallel and then synchronize,
sometimes globally, to ensure the computa-
tion’s consistency. Consequently, these models
don’t cope productively with the system noise,
variable completion times, and performance
heterogeneity of the processing units that we
see in the new era of massively manycore and
heterogeneous systems.

In addition, due to the multidimensional het-
erogeneity of modern architectures, it is becom-
ing increasingly clear that using only one of these
abstract models in a one-size-fits-all approach
fails to deliver the desired performance level.
With systems that encompass both large NUMA
shared-memory processors and the accelerators
gathered in large constellations, performance-
conscious developers are forced to employ mul-
tiple abstract models simultaneously. This is
evidenced by the way in which CUDA, OpenMP,
and MPI are sometimes combined in the same
application to map parallelism on different types
of hardware in the same machine. Unfortunately,
such hybrid programming efforts have had mixed
results; the desired performance boost often fails
to materialize after near-heroic investments in
software engineering.

One explanation of this regrettable phenom-
enon is that the separation-of-concerns barrier
is being violated. End user programmers must
decide which parts of the algorithm should be
expressed using a particular parallelism abstrac-
tion when developing their application. Hence,
the mapping of an application to a particular
type of computing resource becomes a static
decision. The burden imposed on application

CISE-15-6-Bosilca.indd 37 06/12/13 9:25 PM

38� Computing in Science & Engineering

developers to optimize and tune their code
in this way has become unsustainable: heavy
modifications to adapt the application to
cutting-edge architectures become a daunting
task, distracting the attention of scientists from
their core competencies. Supporting the devel-
opment of applications on a diversity of target
hardware architectures—while still achieving
efficiency and performance with minimum
programming effort—requires a far more flexi-
ble infrastructure. Such an infrastructure could
incorporate autoconfigurability as one possible
approach to achieving this goal.

Another significant concern is that legacy
programming approaches assume that a static
load balance, often completely under the pro-
grammer’s supervision, is enough to exploit the
machine’s parallel potential. However, due to
the variety of processing elements participat-
ing in the computation, programmers find it
increasingly difficult to express a load balance
that can hold for all types of hardware and for
the computation’s entire duration. It’s therefore
necessary to find solutions that dynamically
rebalance the work among resources so as to
tolerate the inevitable jitter that arises in het-
erogeneous compute nodes.

A Dynamic Runtime
for a Dynamic World
Task-based runtime systems have properties
that make them more versatile than legacy

execution models. For example, because such a
runtime system manages the execution, it can
perform dynamic, opportunistic scheduling
decisions. It can also orchestrate an adaptive
response to conditions of the resources it cur-
rently senses (idling accelerators, load imbal-
ance, network congestions, and so on), adapting
the way in which it maps and schedules compu-
tations onto resources, while at the same time
minimizing data transfers, either on the net-
work or with memory banks.

In this article, we make the case for a run-
time-supported dataflow programming model—
specifically, the PaRSEC (http://icl.cs.utk.edu/
parsec/)5 runtime system—to alleviate some of
the challenges imposed by changes at the hard-
ware level. We emphasize the fact that such
an approach not only has benefits for current
architectures but also provides a portable way
to automatically adapt algorithms to new hard-
ware trends. PaRSEC can boost the perfor-
mance of distributed, task-based algorithms, as
was demonstrated in the D-PLASMA5 library
(http://icl.cs.utk.edu/dplasma), which we devel-
oped using PaRSEC.

To substantiate the claim that a runtime can in-
deed deliver superior performance, consider the
execution traces shown in Figure 1. The top trace
shows the execution of an application using MPI,
and the bottom trace shows the execution of the
same application using the PaRSEC runtime. In
both cases, the application is a QR factorization, a
dense direct matrix factorization commonly used
to solve a linear least square problem. In both
cases, the horizontal axis depicts time, and each
horizontal stripe (within each trace) represents
the behavior of one thread. Useful work is depict-
ed in red and yellow; idle time is depicted in gray.
Clearly, the highly dynamic scheduling approach
featured in PaRSEC utilizes the hardware much
more efficiently than static approaches, and al-
though the algorithm and dataset are the same in
both figures, Figure 1 demonstrates a significant
reduction in the execution time.

This dynamic runtime is only one side of the
necessary abstraction. To reach the desired level
of flexibility, we must be able to expose much
more of the available parallelism than we have tra-
ditionally done, and the runtime must be capable
of freely exploiting it to increase the opportuni-
ties for useful computation. A dynamic runtime
can adapt the execution to the current resources
condition, as long as it is able to discover con-
currency in the application. This calls for an
expression of the parallelism that is practical to

Figure 1. Comparison of execution traces for the same algorithm using
the single-program, multiple data message passing interface (SPMD/
MPI) programming model and the dataflow model. Gray areas denote
idle time; red and yellow depict useful work happening. The SPMD/
MPI approach makes it difficult to resolve imbalances that result in
a longer execution time and more idle/wait time. In the runtime-
supported dataflow model, most of the jitter and imbalance are
resolved through an adaptive rebalancing of the work.

SP
M

D
 /

 M
PI

Pa
RS

EC

Time

CISE-15-6-Bosilca.indd 38 06/12/13 9:25 PM

November/December 2013 � 39

end users, expressive, and avoids cumbersome re-
strictions that prevent the flexible scheduling of
operations on heterogeneous hardware.

The Dataflow Model
The concept of dataflow has been center-stage
for program execution since nearly the beginning
of computer science. As early as 1966, A.J. Bern-
stein postulated a set of conditions6 that describe
what operations can be executed in parallel with
any other, or how operations can be reordered
while preserving the program’s semantics. From
these conditions, you can deduce a program’s
dataflow. Compiler optimizations and hardware
designs aim to improve applications’ execution
speed, whether they’re parallel or serial, while
still observing the limitations set by the appli-
cations’ dataflow. Dataflow research has yielded
results at different levels of granularity and ap-
plicability, but in most cases, an appropriate unit
of computation is considered to be a set of atomic
computations that receives some input, performs
some operations, and generates some output. For
our purpose here, we refer to such a unit as a task.
The interactions between these tasks—what data
they use or produce—is the dataflow, which the
system (compiler, hardware, or runtime) builds

and uses to orchestrate the task execution and
data movement.

At the finest level of granularity, compiler
optimizations, such as instruction scheduling
or vectorization, and hardware features, such
as pipelining and superscalar execution, rely on
speeding up execution by analyzing the dataflow
of small blocks of a program to discover instruc-
tions that are independent and can thus proceed
concurrently. At this granularity, each instruction
becomes a task, and the dataflow analysis’s role is
to examine the operands of different instructions
to discover how they depend on one another.

At the other extreme of granularity, entire par-
allel programs can be written such that computa-
tion takes place in large groups of operations that
have well-defined dependencies with one another
and can thus be defined as tasks. In procedural
programming languages, such as C, C++, Fortran,
and so on, the natural unit of atomic computation
is a function (or subroutine, in Fortran parlance).
Functions that can behave as tasks have well-de-
fined entry and exit points and can be “pure”—
that is, have only side effects that can be described
in terms of their input and output data.

Figure 2 illustrates the idea of developing
programs that lend themselves to task-based

Figure 2. 1D Jacobi method in different programming styles. (a) Plain serial code. (b) Task-based serial
code. The task-based serial code expresses the problem as a combination of fine and coarse granularities.
The outer coarse grain loop can be analyzed to extract dataflow parallelism.

(a)

(b)

CISE-15-6-Bosilca.indd 39 06/12/13 9:25 PM

40� Computing in Science & Engineering

execution. Figure 2a shows a pseudocode im-
plementation of the 1D Jacobi method. The
program iterates until reaching a steady state;
in each iteration, every array element is re-
placed by the average of its previous value and
its immediate neighborhood. Figure 2b shows
a program that computes exactly the same re-
sult, only now the computation is logically
segmented, with every segment processed by
the function process_sgm(). This function is
pure in that it only modifies memory passed to
it through its arguments. Although both pro-
grams are serial, the latter can be readily pro-
cessed by a dataflow system and executed using
a task-based runtime.

We believe future high-performance applica-
tions and runtimes should be targeted at this coarse
level of granularity, which is achieved when whole
functions are defined as tasks. Operating at a coarse
granularity has significant practical implications.
Consider, for example, an application in which each
task has an execution time on the order of tens of
microseconds or above. In such a case, if additional
code execute every time a task ran, such that the ad-
ditional code complete in less than a few hundred
nanoseconds, then the overhead incurred by the
application would be less than 1 percent. Still,
hundreds of nanoseconds are sufficient time for a
modern computer to perform a large number of
operations, including traversals of several memory
structures; this is especially so if these structures are
traversed frequently and thus reside in some level
of the cache hierarchy. This tolerance for exter-
nal book-keeping operations enables coarse-grain,
task-based execution models to utilize runtime
engines that continuously monitor the applica-
tion’s progress and make dynamic decisions. This
is in stark contrast with the BSP model, in which
a static schedule is embedded into the algorithm’s
expression as explicitly specified by the program-
mer in the program’s code flow. Although the BSP
approach eliminates the need for management and
scheduling overhead and is therefore very efficient
for instruction-level handling, it lacks the flexibility
necessary to adapt to runtime conditions.

A runtime engine that’s aware of both the
tasks to be executed and the dataflow that con-
nects them provides other significant benefits.
A runtime engine that’s continuously aware of
the current state of execution and the next tasks
that will become available, as well as the data
that they’ll require, can automatically handle
the communication necessary to transfer this
data between nodes of a distributed memory
system. This capability makes the transition

from shared to distributed memory execution
seamless. Furthermore, the runtime can sched-
ule tasks based on specialized rules or con-
straints deduced from algorithmic priorities,
generated communication volume, cache locali-
ty, or several other (combinations of) heuristics.
These different scheduling heuristics can opti-
mize a variety of goals, such as task duration,
energy consumption, or the amount of com-
munication-computation overlap. Of course,
the further into the future of an application’s
execution that a runtime can see, the higher
quality the scheduling decisions it can make. In
the best case, an application’s component tasks
and the dataflow between them can be given an
algebraic expression that can be evaluated in
constant time, so that the application’s future
execution can be explored to arbitrary depths.
This programming and execution model is one
of the models that PaRSEC supports.

The PaRSEC Runtime
PaRSEC employs the dataflow programming
and execution model to provide a dynamic
platform that can address the challenges posed
by distributed heterogeneous hardware re-
sources. The system’s central component, the
runtime, combines the source program’s task
and dataflow information with supplementary
information provided by the user—such as data
distribution or hints about the importance of
different tasks—and orchestrates task execu-
tion on the available hardware.

From a technical perspective, PaRSEC is an
event-driven system. When an event occurs,
such as task completion, the runtime reacts by
examining the dataflow to discover what future
tasks can be executed based on the data generat-
ed by the completed task. The runtime handles
the data exchange between distributed nodes,
and thus it reacts to the events triggered by the
completion of data transfers as well. When no
events are triggered because the hardware is
busy executing application code, the runtime
gets out of the way, allowing all hardware re-
sources to be devoted to the application code’s
execution.

Due to the dataflow representation (see
Figure 3), communications become implicit
and thus are handled automatically as effi-
ciently as possible by the runtime. Specifical-
ly, in the PaRSEC model, data exchange isn’t
explicitly coded by the developers into their
application, as in MPI, but implied in the ap-
plication’s dataflow representation. Given that

CISE-15-6-Bosilca.indd 40 06/12/13 9:25 PM

November/December 2013 � 41

PaRSEC is aware of this representation and
has knowledge of the mapping of tasks onto
compute nodes, its runtime can perform all
necessary data exchanges without user inter-
vention. This has the benefit of simplifying
the development of distributed memory par-
allel applications; most importantly, it allows
the runtime to automatically make use of ef-
ficient nonblocking communication and ad-
vanced collective communication algorithms
to achieve communication-computation over-
lapping and hide significant parts of the com-
munication overhead.

Task scheduling within each node is also
one of the runtime’s responsibilities. Specifi-
cally, as tasks complete, they generate data that
enables the execution of other tasks. The run-
time keeps track of the tasks that have com-
pleted (the active tasks in Figure 3), discovers
the tasks that can execute next, and decides
which hardware resources (CPU cores, accel-
erators, and coprocessors) should be devoted
to each new task. Consequently, applications
that use PaRSEC can enjoy high efficiency
because of its advanced scheduling algorithms
for managing data locality, load balancing, and
algorithmic priorities. At the same time, it lib-
erates application developers from the diffi-
cult and tedious intricacies of micromanaging
processes, threads, and other exotic low-level
library primitives and interfaces. By exposing
a flat view of the system, the PaRSEC runtime
manages all this complexity internally.

High-Productivity Ecosystem
Given the ongoing increase in system complex-
ity, it’s clear that any viable programming model
will need to help developers achieve the best
performance possible, even while helping them
keep their efforts below a reasonable threshold.
Arguably, then, for emerging system and pro-
gramming paradigms, ease of use and develop-
ment aren’t only relevant metrics but are often as
important as achievable performance. A system
that doesn’t promote usability can hardly expect
to be widely adopted by end users, even if it de-
livers better performance than the status quo.
In this section, using PaRSEC to illustrate the
case, we describe how a shift toward the data-
flow programming model from conventional
practices can preserve and enhance programmer
productivity while achieving superior efficiency
and scalability. It can accomplish this, in part,
by providing a unified, expressive, and power-
ful representation of application parallelism.

The resulting parallel workload of concurrent
tasks is managed by the runtime scheduler and
decouples the communication patterns from the
algorithm specification.

Parallelism Expression
PaRSEC expresses an algorithm as a Directed
Acyclic Graph (DAG) of tasks and an associ-
ated dataflow, implying a significant shift in
software engineering practice. It can enable
the use of much larger and much more complex
supercomputers, but only if users embrace it as
an effective way of developing production code.
To that end, we created, and are actively ex-
tending, tools that aim to help developers make
their codes “PaRSEC-enabled.” Because our
system’s users are parallel application develop-
ers, the primary tools we created for interfacing
with them are analysis and compilation tools.
Figure 4 illustrates how these tools integrate
in the larger perspective of existing productiv-
ity ecosystem (here represented by the Tensor

Figure 3. The PaRSEC runtime walks the DAG using a concise
representation that instantiates only the relevant tasks at each
computing node. Only the active, local tasks need to be stored and
considered.

Node0

Node1

Node2

Node3

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

Past

Active

Future

CISE-15-6-Bosilca.indd 41 06/12/13 9:25 PM

42� Computing in Science & Engineering

Contraction Engine). Specifically, our system
includes two compilation tools: the front-end
and back-end compilers.

The front-end compiler aims to make it as
easy as possible to use PaRSEC and to enable
a seamless upgrade of legacy software that was
created for multicore processors but not for
distributed heterogeneous systems. The input
to the front-end compiler must conform to a
canonical form, which enables the compiler to
extract and analyze all dataflow information.
After the analysis, the compiler produces a file
containing a parameterized task graph—rep-
resented in a PaRSEC-specific notation—that
describes the input program’s tasks and the
dependencies between them in a symbolic- and
problem-size-independent way.7

However, the source code’s canonical form lim-
its the input to affine codes. That is, loops with
bounds that might be parameterized but fixed—
neither the loop bounds nor the induction vari-
able can be altered within the loop, or depend on
function calls or user data—and memory accesses
are linear functions of the induction variables and
constant parameters. This is akin to programs
written using the DO loop construct of Fortran
77. Although several interesting problems meet

this limitation (dense linear algebra, tensor con-
traction, and so on), not all parallel applications
can be expressed as such. For this reason, PaR-
SEC allows the human developer to alter the
program’s dataflow representation or even write
it completely by hand. This way, the developer
can go beyond the front-end compiler’s limita-
tions and trade simplicity for expressivity.

There’s a significant difference between this
approach and what other task-based runtimes
typically do. In the latter, the execution flow
is directly derived from sequential execution
of the target application; discovering the task
graph in a scalable way in such cases is a chal-
lenge in distributed environments. In contrast,
PaRSEC’s parameterized task graph provides
a concise symbolic task representation that al-
lows scalable task discovery and scheduling in
distributed environments.

Data Affinity and Movement
As communications are implicit in the dataflow
model, the algorithm’s expression is indepen-
dent of task placement and data affinity. Yet,
maximum performance on distributed memory
machines demands that the developer control
(even loosely) the communication volume and

Figure 4. The PaRSEC environment. At a high level, productivity tools convert domain-specific codes into a
dataflow representation. The dataflow representation is combined with the PaRSEC runtime library to form
the versatile application representation.

zgeqrt

zgeqrt

zgeqrt2

zgeqrt2

dormqr

zgeqrt

zgeqrt

zttqrt

zttqrtzttmqr zttmqr

zttmqr

zttmqr

zttmqr

dormqr

dormqr dormqr

zgeqrt2 zgeqrt2

zgeqrt2dormqr dormqr

dormqr

dormqr2

dormqr

dormqr

zgeqrt

zgeqrt2

zttqrtdormqr

zgeqrt

zgeqrt2

dormqr dormqr

zttmqr zttm

dormqr

zgeqrt2

dormqr

dormqr

dormqr2

zgeq

dormqr

zgeqrt

zgeqrt2

zttqrtdormqr dormqrmqr

zttmqr zttmqr

zgeqrt

r

zgeqrt2

zttmqr

r

Domain science

High-level languages

Domain-specific languages

Sequential
source code

Parametric
DAG

Dynamic task
discovery

Data
distribution

Annotate loop nests
using PaRSEC specific
language extensions

D
ev

el
op

er
s

PaRSEC APIs provide:
–data distribution
–data organization
–data serialization
–object manipulation Scheduling

hints

chemistry, nuclear physics, ...

for i, j, k

for i = 1:N
for j = 1:M
for k = 1:L
T[j,k] = X[i,j,k]* Y[k,j,i]

z = sum (x)

z = sum (x)

x_ijk Y_kji

H�Ψ> = E�Ψ>

CISE-15-6-Bosilca.indd 42 09/12/13 2:45 PM

November/December 2013 � 43

pattern. By default, PaRSEC expresses task
placement as affinity functions to data follow-
ing the “owner computes” rule; common data
distributions, such as 2D-cyclic matrices, are
provided in the PaRSEC toolkit. The program-
mer can write functions to describe arbitrary
distributions for both input data and task place-
ment. This three-stage development process—
algorithm, data distribution, and optional task
placement—helps improve code portability.
Application developers first focus on expressing
the algorithm in the most efficient manner with
respect to parallelism. Then, they need to define
an appropriate data distribution to fit the algo-
rithm’s specifics. Finally, if required, developers
can fine tune communication volumes and pat-
terns by replacing the owner computes rule with
a different strategy for mapping tasks to data.
When transporting the code to new hardware
featuring a different (and possibly exotic) net-
work topology, only the data and/or task distri-
bution functions need to be tuned. The general
algorithm can remain unchanged, thereby im-
proving productivity when porting codes.

Fine Tuning and Expert Interface
When the input program’s dataflow represen-
tation has been generated, PaRSEC provides a
second compilation tool, the back-end compiler
that translates this representation into C code
stubs that are PaRSEC-enabled. This generated
code can be compiled and linked with PaRSEC’s
runtime library using a traditional C compiler
such as the GNU C Compiler (gcc) or Intel C
Compiler (icc). This generated C code consists
of the actual steps that will be taken when the
program runs and has no limitation regarding
its behavior. Therefore, an expert developer
could alter or directly write code at this level.

Offering the option for such low-level pro-
gramming might sound counterproductive, but
it’s similar to the familiar fact that, 40 years af-
ter C’s creation, expert programmers still write
critical code snippets in assembler. We believe
that offering application developers a choice in
the level of complexity versus expressivity, as
well as the ability to combine different levels,
offers the best promise for delivering excellent
performance while keeping the amount of pro-
grammer effort within reasonable limits.

Performance and Correctness Analysis
While tools to facilitate the conversion from leg-
acy programming models to dataflow representa-
tions are essential, it’s also important to provide

tools for debugging and analysis that are adapted
to the new model. Programmers are then placed
at the center of a feedback loop (as illustrated in
Figure 5), taking input from a variety of correct-
ness and performance analysis tools to fine tune
their code at all levels of the PaRSEC compilers
stack. An application programmer might want to
verify that a parameterized task graph, whether
automatically or manually written, correctly de-
scribes a given program’s data dependencies. For
this reason, we provide a tool for generating and
displaying the application’s graph of tasks at a
developer-specified level of detail. Figure 3 shows
the algorithm’s dependency graph with four dif-
ferent kernels. This representation displays useful
information for the developer—the graph’s shape
indicates the length of the algorithm’s critical
path, as well as the potential parallelism that can
be automatically extracted from the application.
The developer might want to generate a wider
DAG to increase the available parallelism. To do
so, at least two solutions are possible: rethink or
change the algorithm to minimize or remove
the need for synchronization or generate smaller
grain computational tasks. The first solution
might be impossible, and the second might lead
to larger scheduling overhead. For this reason, we
also provide an instrumentation framework for
gathering low-level information at the task level.

The DAG representation is helpful for de-
bugging purposes as well as for providing hints
on parallelism available in the algorithm. How-
ever, it doesn’t provide helpful information re-
garding the algorithm’s efficiency in exploiting
system resources. One common way to study
the performance of parallel applications is to
measure the elapsed time on each section of
the code contained between synchronization
points. The most expensive section is then
analyzed to reduce the time spent on it. How-
ever, an algorithm’s dataflow representation re-
moves most, if not all, of the synchronization
points. Therefore, in the case of data-driven,
task-based execution, two things must be stud-
ied. The first is the performance of the tasks
themselves, which is observed by collecting
statistics such as time spent, cache misses, and
so on. The second is scheduling efficiency to
ensure that the correct choices have been made
for a given DAG. PaRSEC lets the developer
collect this kind of detailed information about
tasks and scheduling so that system behavior
can be analyzed, understood, and tuned.

For performance reasons, the developer must
make sure that the choices are an efficient

CISE-15-6-Bosilca.indd 43 06/12/13 9:25 PM

44� Computing in Science & Engineering

compromise between keeping data locality for
local performance and maximizing parallel-
ism within the DAG. To validate those choic-
es, PaRSEC provides the ability to visualize
execution traces as Gantt diagrams, such as
those in Figure 1. Execution traces, coupled
with the dataflow’s DAG representation, show
the set of active tasks at a given time with re-
spect to the number of available resources.
This functionality is an asset in understand-
ing and adapting the scheduling to each class
of problems.

In addition to “legacy”-type analysis tools,
there’s also a clear need for new tools to explore
the complementary aspects of data and/or task
distribution. Such tools will help programmers
determine task efficiency and the way in which
tasks affect the memory and computational
load balance, both between and within the het-
erogeneous resources available on computa-
tional nodes. The community has only begun
to explore the needs for debugging and analysis
tools that these new algorithm representations
are introducing.

Compute-intensive simulation has be-
come a pillar of scientific discovery in
the modern age. Ensuring that such
simulations can run efficiently with

high performance and accuracy on current and
future parallel machines is critical to high scien-
tific throughput and, consequently, is likely to
have a significant impact on the pace of scientific
progress.

Although the classical programming para-
digm of hybrid message passing and shared
memory served this purpose well over the past
two decades, the complexity and heterogeneity
of new hardware has relentlessly eroded its ef-
fectiveness. Despite possible improvements in
the performance of some narrow benchmarks,
without a changing of the guard in accepted
programming models, we risk seeing declining
benefits for real-world applications. As the gap
between peak and sustained performance con-
tinues to increase, algorithms will be unable to
reach their maximum performance potential,
and fall short on both energy efficiency and
resilience. The dataflow-driven programming
paradigm described in this article, together
with a corresponding runtime, provides an ex-
citing opportunity to close this gap and increase
code portability at the same time.

The era of dynamic and heterogeneous
hardware that’s now dawning clearly requires
radical changes in the standard execution en-
vironment, and we believe that a model based
on task graphs meets that requirement well.
To further improve productivity and por-
tability, new domain-specific extensions, as
well as tools to better analyze, understand,
and improve runtime behavior, should also
be developed. Similar twists and turns on the
narrow climb to exascale are likely to provide
many more such exciting perspectives and
challenges.�

References
1.	 C. Augonnet et al., “StarPU: A Unified Platform for

Task Scheduling on Heterogeneous Multicore Archi-

tectures,” J. Concurrency and Computation: Practice &

Experience, vol. 23, no. 2, 2011, pp. 187–198.

2.	 H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX:

An Advanced Parallel Execution Model for Scaling-

Impaired Applications,” Int’l Conf. Parallel Processing,

IEEE, 2009, pp. 394–401.

3.	 C. Lauderdale and R. Khan, “Towards a Codelet-

Based Runtime for Exascale Computing: Position

Paper,” Proc. 2nd Int’l Workshop Adaptive Self-Tuning

Computing Systems for the Exaflop Era, ACM, 2012,

pp. 21–26.

4.	 J. Planas, R. M. Badia, E. Ayguade, and J . Labarta.

“Hierarchical Task-Based Programming with StarSs,”

Int’l J. High-Performance Computing Applications,

vol. 23, no. 3, 2009, pp. 284–299.

5.	 G. Bosilca et al., “Dense Linear Algebra on Distrib-

uted Heterogeneous Hardware with a Symbolic DAG

Approach,” Scalable Computing and Communications:

Theory and Practice, Jan. 2013, pp. 699–733.

Figure 5. PaRSEC productivity tools. A rich ecosystem of tools supports
the developer in converting legacy applications and high-level
programming into a dataflow representation. The programmer has
access and can directly alter the dataflow representation. A variety of
debugging and performance-analysis tools are available to investigate
the correctness and performance of the program’s dataflow.

Dataflow
analysis

Back-end
compilerC

om
p

ila
tio

n
to

ol
s

Canonical
source code

Dataflow
representation

PaRSEC-enabled
parallel program

Ex
ec

ut
io

n
tr

ac
e

Pe
rf

or
m

an
ce

 a
na

ly
si

s DAG
visualization

Performance
counters

Gantt
charts

CISE-15-6-Bosilca.indd 44 06/12/13 9:25 PM

November/December 2013 � 45

6.	 A.J. Bernstein, “Analysis of Programs for Parallel Pro-

cessing,” IEEE Trans. Electronic Computers, vol. 15,

no. 5, 1966, pp. 757–763.

7.	 M. Cosnard and E. Jeannot, “Automatic Paralleliza-

tion Techniques Based on Compact DAG Extraction

and Symbolic Scheduling,” Parallel Processing Letters,

vol. 11, 2001, pp. 151–168.

George Bosilca is an assistant research profes-
sor at the University of Tennessee’s Innovative
Computing Laboratory. His research interests
range from low-level communication protocols
to high-level constructs to support novel paral-
lel programming paradigms. Bosilca received a
PhD from the University of Paris. Contact him at
bosilca@icl.utk.edu.

Aurelien Bouteiller is a researcher at the University
of Tennessee’s Innovative Computing Laboratory. His
research is focused on improving performance and
reliability of distributed memory systems, algorithm-
based fault tolerance, mechanisms to improve com-
munication speed and balance of many-core clusters,
and emerging dataflow programming models.
Bouteiller received a PhD from the University of Paris.
Contact him at bouteill@icl.utk.edu.

Anthony Danalis is a research scientist at the Uni-
versity of Tennessee’s Innovative Computing Labora-
tory. His research interests are in high-performancing
computing (HPC), compiler analysis and optimiza-
tion, system benchmarking, MPI, and accelerators.
Danalis received a PhD in computer science from the
University of Delaware. Contact him at danalis@icl.
utk.edu.

Mathieu Faverge is an assistant professor at the
Bordeaux Institute of Technology, France. His main
research interests are numerical linear algebra algo-
rithms for sparse and dense problems on massively
parallel architectures, especially DAG algorithms re-
lying on dynamic schedulers. Faverge received a PhD
in computer science from the University of Bordeaux
1, France. Contact him at mathieu.faverge@inria.fr.

Thomas Herault is a research scientist at the Univer-
sity of Tennessee’s Innovative Computing Labora-
tory. His research interests include fault tolerance,
HPC, and distributed algorithms. Herault received a
PhD from the University of Paris-Sud. Contact him at
herault@icl.utk.edu.

Jack J. Dongarra holds an appointment at the Uni-
versity of Tennessee, Oak Ridge National Laboratory,
and the University of Manchester. He specializes in

numerical algorithms in linear algebra, parallel com-
puting, the use of advanced-computer architectures,
programming methodology, and tools for parallel
computers. Dongarra is a Fellow of the American
Association for the Advancement of Science (AAAS),
ACM, IEEE, and Society for Industrial and Applied
Mathematics (SIAM) and a member of the National
Academy of Engineering. Contact him at dongarra@
icl.utk.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

March/April 2013

Interactive Surfaces

Game Analytics

Haptic-Based Training

Interactive
Public Displays

May/June2013

Building Virtual Worlds

Viewing Art on Interactive Tabletops

GPU Shaders for Visualization

IEEE C
O

M
PU

TER G
R
A

PH
IC

S A
N

D
 A

PPLIC
ATIO

N
S

M
ay/June 2013

Scattering

VO
LU

M
E 33 N

U
M

BER 3

IEEE Computer Graphics and
Applications is indispensable
reading for people who want to

• stay current on the latest tools
and applications,

• gain invaluable practical and
research knowledge, and

• read objective and trustworthy
content.

www.computer.org/cga

July/August 2013

Fingerprint IdentificationPersonalized Garment Catalogs
Game User Research

IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
Ju

ly/A
u

g
u

st 2
013

B
ig

-D
ata V

isu
alizatio

n

V
O

LU
M

E 33
 N

U
M

B
ER 4

CISE-15-6-Bosilca.indd 45 09/12/13 7:19 PM

