
The 7th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
12-14 September 2013, Berlin, Germany

Efficient Parallelization of Batch Pattern Training
Algorithm on Many-core and Cluster

Architectures
Volodymyr Turchenko1,2, George Bosilca1, Aurelien Bouteiller1 and Jack Dongarra1

1 Innovative Computing Laboratory, The University of Tennessee
1122 Volunteer Blvd., Knoxville, TN, 37996, USA

vtu@tneu.edu.ua, {bosilca, bouteill, dongarra}@icl.utk.edu
2 Research Institute for Intelligent Computer Systems, Ternopil National Economic University

3 Peremoga Square, 46009, Ternopil, Ukraine

Abstract—The experimental research of the parallel
batch pattern back propagation training algorithm on the
example of recirculation neural network on many-core high
performance computing systems is presented in this paper.
The choice of recirculation neural network among the
multilayer perceptron, recurrent and radial basis neural
networks is proved. The model of a recirculation neural
network and usual sequential batch pattern algorithm of its
training are theoretically described. An algorithmic
description of the parallel version of the batch pattern
training method is presented. The experimental research is
fulfilled using the Open MPI, Mvapich and Intel MPI
message passing libraries. The results obtained on many-
core AMD system and Intel MIC are compared with the
results obtained on a cluster system. Our results show that
the parallelization efficiency is about 95% on 12 cores
located inside one physical AMD processor for the
considered minimum and maximum scenarios. The
parallelization efficiency is about 70-75% on 48 AMD cores
for the minimum and maximum scenarios. These results are
higher by 15-36% (depending on the version of MPI library)
in comparison with the results obtained on 48 cores of a
cluster system. The parallelization efficiency obtained on
Intel MIC architecture is surprisingly low, asking for deeper
analysis.

Keywords—parallel batch pattern training; recirculation
neural network; parallelization efficiency; many-core system1

I. INTRODUCTION
Artificial neural networks (NNs) have excellent

abilities to model difficult nonlinear systems. They
represent a very good alternative to traditional methods for
solving complex problems in many fields, including
image processing, predictions, pattern recognition,
robotics, optimization, etc [1]. However, most NN models
require high computational load in the training phase. This
is, indeed, the main obstacle to face for an efficient use of
NNs in real-world applications. The use of general-

1 The 2012/2013 Fulbright Research Scholar grant of Dr.

V.Turchenko

purpose high performance computers and clusters to speed
up the training phase of NNs is one of the ways to
outperform this obstacle. Therefore the research of a
parallelization efficiency of NNs parallel training
algorithms on such kind of parallel systems is still
remaining an urgent research problem.

Taking into account the parallel nature of NNs, many
researchers have already focused their attention on NNs
parallelization. The authors of [2] investigate parallel
training of multi-layer perceptron (MLP) on symmetric
multiprocessor computer, cluster and computational grid
using MPI (Message Passing Interface) parallelization.
They have investigated big NN models, which process
huge number of the training patterns (around 20000)
coming from Large Hadron Collider. However their
implementation of relatively small MLP architecture 16-
10-10-1 (16 neurons in the input layer, two hidden layers
with 10 neurons in each layer and one output neuron) with
270 internal connections (number of weights of neurons
and their thresholds) does not provide positive
parallelization speedup due to large communication
overhead, i.e. the speedup is less than 1. The development
of parallel training algorithm of Elman’s simple recurrent
neural network (RNN) based on Extended Kalman Filter
on multicore processor and Graphic Processing Unit
(GPU) is presented in [3]. The author has showed a
reduction of the RNN training time using a GPU solution
(4 times better performance was achieved), however it is
impossible to assess the parallelization efficiency of this
parallel algorithm because it was not clearly stated a
number of GPU threads used for parallelization. The
authors of [4] have presented the development of parallel
training algorithm of fully connected RNN based on linear
reward penalty correction scheme.

The corresponding author of this paper has developed
the parallel algorithm of batch pattern back propagation
training for MLP [5], RNN [6], a neural network with
radial-basis functions (RBF) [7] and Recirculation Neural
Network (RCNN) [8]. Experimental analysis of this

algorithm on these models of NNs has showed its high
parallelization efficiency on general-purpose high
performance clustered architectures. Due to the last
technological achievements, many-core high performance
computing systems, i.e. multi-core architectures with an
especially high number of cores (tens or hundreds), have a
widespread use now in research and industry
communities. Therefore the estimation of the
parallelization efficiency of this parallel algorithm on this
kind of modern high performance systems is an actual
research task.

The goal of this paper is to investigate the
parallelization efficiency of a parallel batch pattern back
propagation training algorithm on a many-core high
performance parallel computing system and to compare
the results with the efficiency on cluster architecture. The
rest of this paper is organized as follows: Section 2 details
the mathematical description of a batch pattern back
propagation training algorithm for RCNN, Sections 3
describes the parallel implementation of this algorithm,
Section 4 presents the obtained experimental results and
concluding remarks in Section 5 finishes this paper.

II. BATCH PATTERN BP TRAINING ALGORITHM FOR
RECIRCU NN LATION

The batch pattern training algorithm updates neurons’
weights and thresholds at the end of each training epoch,
i.e. after processing of all training patterns, instead of
updating weights and thresholds after processing of each
pattern in the usual sequential training mode. It is
expedient to choose the implementation of this algorithm
for one of the developed models (Table 1) for the further
investigation of its parallelization efficiency on many-core
system. Table 1 shows the number of updating
connections during training (neurons’ weights and
thresholds) for the developed models on an example of a
generic model with 40 input neurons. The numbers of
hidden neurons is chosen the same 40 for the MLP, RNN
and RBF models just for reference reason since this
number should be chosen based on the number of training
patterns within the real task. The number of hidden
neurons of a RCNN is chosen 20 because the main task of
a RCNN is to perform a compression task, the input
neurons define the size of input data and the hidden
neurons define the size of compressed data. The analysis
of the parallelization efficiencies results of MLP and RNN
[5-6] has showed that the model with the bigger number
of updating connections provides higher parallelization
efficiency of the algorithm. Therefore it is expedient to
choose the RCNN model for the further research as the
model with lesser number of updating connections. Thus
the obtained results will show the lower margin of the
parallelization efficiency that will be higher for all other
cases of MLP, RNN and RBF.

Recirculation neural network RCNN (Fig. 1) performs
compression of the input pattern space X to obtain the
principal components. The principal components are the

output values Y of the neurons of the hidden layer. Then
the RCNN restores the compressed data (principal
components) into the output vector X .

TABLE I. IMPLEMENTATION DETAILS OF THE PARALLEL
ALGORITHM FOR DIFFERENT NN MODELS

Model Number of neurons in
layers (Number of

ns) connectio

Message passing size,
elements (bytes)

MLP 40-40-1 (1681) 1681 (13448)
RNN 40-40-1 (3321) 3321 (26568)
RBF 40-40-1 (1680) 1680 (13440)
RCNN 40-20-40 (1600) 1600 (12800)

The output value of the RCNN can be formulated as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛⋅′= ∑ ∑
= =

p n

iijjii xwFwFx 23
j i1 1

where is the number of neurons in the hidden layer,

ji

, (1)

p
w′ is the weight of the synapse from the neuron of the
hidden layer to the neuron i of the output layer, n is the
number of neurons in the input and output layers, ijw is
the weight from the input neuron i to neuron in the
hidden layer, are the input values [9].

j

j

ix

jiw ′ijw

p

2x

nx

1x

n

1y
1x

n

2x

nx

2y

py

Figure 1. The structure of a recirculation neural network

Note that the principal components are calculated by

expression . The logistic activation

function

⎟
⎠

⎞
⎜
⎝

⎛= ∑
=

n

i
iijj xwFy

1
2

xe1
 is used for the neurons of the

hidden () and output layers ().

xF
−+

=
1)(

2F 3F
The batch pattern BP training algorithm consists of the

lofol wing steps [9]:
1. Set the desired Sum Squared Error (SSE) to a value

 and the number of training epochs ; minE t
2. Initialize the weights of the neurons with values in

range (-0.1…0.1) [9];
3. For the training pattern pt :

3.1. Calculate the output value)(txi by expr. (1);

3.2. Calculate the errors of the output neurons
))()(()(txtxt ptptpt −=γ , where iii)(tx pt is thi e

3.3.

3.4.

output value of the i output neuron and)(tx pt
i is

put pattern;
 Calculate the errors of the hidden layer neurons

∑
=

′⋅′⋅=
n

i

pt
iji

pt
i

pt
j tSFtwtt

1
3))(()()()(γγ , where

)(tS pt
i is the weighted sum of the i

the value with inde f RCNN inx i

a wei
e v

 o

a

 outp

u

ut
neuron, 3F ′ is a derivative of the logistic
activation function with pt

ns and
s pattern

)())(()(3 tytSFtwsws pt
j

pt
i

pt
ijiji ⋅′⋅+′Δ=′Δ γ ,

)())(()(2 txtSFtwsws pt
i

pt
j

pt
jijij ⋅′⋅+Δ=Δ γ , where

)(tS pt and y pt

)(tSi argument;
 Calculate the delt ghts for all neuro
add the result to th lue of the previo

j)(tj are the weighted sum and the
output value of the neuron j of the hidden layer
respectively;

3.5. Calculate the SSE using

()2)()(1)(txtxtE pt
i

pt
i

pt −= ;
2

4. Repeat the step 3 above for all training patterns pt ,
{ }PTpt ,...,1∈ , PT is the size o

Update the neurons
f the training set;

ghts using expressions
jijiji wstwPTw ′

5. ’ wei
Δ⋅−′=′)()0()(3α and

ijijij wstwPTw Δ⋅−=)()0()(2α , where)0(jiw′
)0(ijw are the values of the weights of the hidden and

revio

an

ng epoch

min th

d

output layers from the p us training epoch,)(2 tα
and)(tα are the learning rates for the neurons of the
hidden s r

3

 and output layer
late the total SSE

e
(t
spectively;

6. Calcu on the traini

en

) E t

using ∑
=

=
PT

pt

pt tEtE
1

)()(;

7. If)(tE is greater than the desired error E
increase the number of training epochs to 1+t and go
to step 3, otherwise stop the training process.

III. PARALLEL IMPLEMENTATION OF BATCH PATTERN
BP TRAINING ALGORITHM OF RCNN

The sequential execution of points 3.1-3.5 above for
all training patterns in the training set could be
parallelized, because the sum operations jiws ′Δ and ijwsΔ
are independent of each other. For the development of the
parallel algorithm all the computational wo e
divi

oints 3.1-3.5 and 4, only for its

f delta weights jiws ′Δ and ijws

rk should b
ded between the Master (executing assigning

functions and calculations) and the Workers (executing
only calculations) processors.

The algorithms for Master and Worker processors are
depicted in Fig. 2. The Master starts with definition (i) the

number of patterns PT in the training data set and (ii) the
number of processors p used for the parallel executing of
the training algorithm. The Master divides all patterns in
equal parts corresponding to the number of the Workers
and assigns one part of patterns to itself. Then the Master

ndse s to the Workers the numbers of the appropriate
patterns to train.

Each Worker executes the following operations for
each pattern pt of the PT/p patterns assigned to it:
• calculates the p

assigned number of training patterns. The values of
the partial sums o Δ are

No

calculated there;
• calculates the partial SSE for its assigned number of

training patterns.

Yes

No

Yes

Start

Read the input data

Update jiw ′ and ijw ,
according to p.5

Reduce and Sum jiws ′Δ ,

ijwsΔ ,)(tE from all
processors and send it

back to them

Start

Read the input data

min)(EtE >

End a)

Define PT and p

Receive PT/p patterns
from Master

b)

Send PT/p patterns to
each Worker

Calculate p.3 and p.4 for
own training patterns

Synchronization with
other Workers

Message to
finish work?

Calculate p.3 and p.4 for
assigned training patterns

Synchronization with
other Workers & Master

Reduce and Sum jiws ′Δ ,

ijwsΔ ,)(tE from all
Workers & Master

Update jiw′ and ijw
according to p.5

End

Figure 2. The algorithms of the Master (a) and the Worker (b)
processors

After processing all assigned patterns, only one all-

reduce collective communication operation (it provides
the summation as well) is executed. Synchronization with
other processors is automatically provided by internal
implementation of this all-reduce oper [10]. ver
from the algorithmic point of view it is showed as an
independent operator in Fig. 2 before the operation of data
reduce. Then the summarized values jiws ′Δ and ijws

ation Howe

Δ are
sent to all processors working in parallel. Instead of three
communication messages in [2], using only one all-reduce
collective communica messa hich also returns the
reduced values back to the Workers, allows decreasing a

tion ge, w

The soft
he parallel part of th

 pre-encoding and post
encodi proves t tion efficiency
of th rithm of a
mu

DDoS attacks) in our experimental research (00

ocessors with a clock rate of 2500 MHz

s positioned the MIC card as a

communication overhead in this point. Then the
summarized values jiws ′Δ and ijwsΔ are placed into the
local memory of each proces Each processor uses
these values for updating the weights according to the
point 5 of the algorithm above. These updated weights
wil

sor.

s. T

is

l be used on the next iteration of the training algorithm.
As the summarized value of)(tE is also received as a
result of the reducing operation, the Master decides
whether to continue the training or not.

 routine is developed using C language
with the standard MPI function
algo

ware
e

supercomputer Lips with Many Integrated Core (Intel
MIC) card and cluster Dancer located in the Innovative
Computing Lab, the University of Tennessee, USA, are
used for the computation:
• Remus consists of two socket G34 motherboards

RD890 (AMD 890FX chipset) connected each other
by AMD Hyper Transport technology. Each
motherboard contains two twelve-core AMD Opteron
6180 SE pr

rithm starts with the call of MPI_Init() function. An
MPI_Allreduce() function reduces the deltas of weights

jiws ′Δ and ijwsΔ , summarizes them and sends them back
to all processors in the group.

Since the weights are physically located in the
different matrices of the software routine, we have done
pre-encoding of all data into one communication message
before sending and reverse post-decoding the data to the
appropriate matrixes after message receiving in order to
provide only one physical call of the function
MPI_Allreduce() in the communication section of the
algorithm. Function MPI_Finalize() finishes the parallel
part of the algorithm. The results of experimental research
described in [11] showed, that th -

ng approach im he paralleliza
e parallel batch pattern training algo

ltilayer perceptron on approx. 17.5% in average based
on 20 parallelization scenarios.

IV. EXPERIMENTAL RESULTS
We have investigated the parallelization efficiency of

the parallel batch pattern back propagation training
algorithm of RCNN on the application task of data
compression and Principal Component Analysis within
NN-based method of intrusion detection and classification
in computer networks [12-13]. We have considered
different parallelization scenarios of the RCNN with
changing the number of the neurons in the hidden layer
(number of principal components) from 5 to 30 with the
step of 5 neurons (5, 10, 15, 20, 25 and 30). Thus the
RCNN model 41-5-41 will be having 420 updating
connections (multiple per 8 = 3280 bytes of
communication message) and the RCNN model 41-30-41
will be having 2640 updating connections (19680 bytes of
communication message). These two scenarios are the
minimum and the maximum scenarios. It means that the
parallelization efficiency results for any other RCNN
model within these two boundaries will be located inside
the obtained experimental results for these two scenarios
as it was with the research results of this parallel algorithm
for the MLP and RNN models on other type of parallel
machines [14]. We have used a part of the database KDD
cup 99 [15] containing information about computer
network intrusions (the files with the descripti the

g patterns). In all ex

on of
only 10

trainin
trai

to c

periments, the RCNN was
ned by 104 training epochs, the SSEs values of 0.0073

… 0.0041 were reached. The learning rates)(2 tα and
)(3 tα were fixed to 0.05.

The many-core parallel supercomputer Remus,

and 132 GB of local RAM. Thus the total number of
computational cores is 48 on Remus. Each processor
has the L2 cache of 12x512 Kb and the L3 cache of
2x6 Mb.

• On Lips machine we use the MIC card Intel ® Xeon
Phi™ Coprocessor 5110P, which has 60 cores with
1.053 GHz, 8GB total RAM and 30Mb cache.

• Cluster Dancer consists of 16 nodes, nodes n1-n8 are
connected by Infiniband G10 interface, nodes n9-n16
are connected by Infiniband G20 interface. We have
used the second part, nodes n9-n16, for the
experiments. Each node has two four-core Intel(R)
Xeon(R) processors E5520 with a clock rate of 2270
MHz and 12 GB of local RAM. Each processor has
the L2 cache of 4x256 Kb and the L3 cache of 8 Mb.

We run the experiments using current releases of two
message passing libraries Open MPI 1.6.3 [16] and
Mvapich 1.4.1p1 [17] on Remus and Dancer. Since the
function MPI_Allreduce() is used for the communication,
we have used the tuned collectives’ module of Open MPI
using all its internal communication algorithms of
MPI_Allreduce() [10] (0- default, 1-basic linear, 2-non-
overlapping, 3-recursive doubling, 4-ring, 5-segmented
ring). Thus the better results on both machines we have
received using the 3-recursive doubling internal
communication algorithm of MPI_Allreduce(). We run
our parallel routine in a standard way under Mvapich
library on both systems. We have used the Intel MPI
Library 4.1 for compilation and running the parallel
routine on Intel MIC card embedded in Lips
supercomputer. Intel ha
standard x86 device that does not need a major re-writing
of the code of the routine. It needs only the compilation of
the routine and the transfer of the executable code directly
to the MIC to run [18].

The expressions S=Ts/Tp and E=S/p×100% are used
alculate the speedup and efficiency of parallelization,

where Ts is the time of sequential executing of the routine,
Tp is the time of executing of the parallel version of the
same routine on p processors of parallel system.

The computational times of the sequential and parallel
versions of the batch pattern training algorithm of RCNN

cores) using Op
minimum scenario. These aver

for the
 the maximum scenario
l MIC systems.

TABLE II. EX TIME FOR TWO RIO E L SY EMS

x ti n C e

are collected in Table 2 for the minimum and maximum
scenarios on three parallel systems. The appropriate
parallelization efficiencies of the parallel algorithm are
depicted in Figs. 3 and 4. The letters ‘r’, ‘d’ and ‘l’ on the
legend boxes mean that the results are obtained on Remus,
Dancer and Lips (Intel MIC) respectively. The analysis of
the results have shown (Table 3), that the parallelization
efficiency on many-core system is better than on cluster
on 15.9% and 12.6% in average (among all 8
parallelization results on 2, 4, 8, 16, 24, 32, 40 and 48

9.4% respectively for the maximum scenario.
Furthermore, the parallelization efficiency on many-core
system is better than on Intel MIC on 12.9% and 7.8% for
the minimum and maximum scenarios respectively.
However we have experienced much bigger differences on
bigger number of processors. The differences are 36.1%
(Open MPI) and 17.4% (Mvapich) for the minimum
scenario and 22.4% (Open MPI) and 14.9% (Mvapich) for
the maximum scenario on 48 cores of many-core and
cluster systems. These differences are 26.2%

en MPI and Mvapich respectively for the
age figures are 9.5% and

minimum scenario and 13.6% for
on 48 cores of many-core and Inte

ECUTION SCENA S ON THRE PARALLE ST

Scenario E ecution mes o PUs, s conds
Ts, sec Tp, sec

2 4 8 16 24 32 40 48 60
Remus, many-core, Open MPI, 41-5-41 116.51 58.38 29.65 15.52 8.15 5.74 4.68 3.90 3.40 -
Remus, many-core, Open MPI, 41-30-41 565.27 291.65 145.38 73.79 37.69 27.01 21.86 18.38 16.13 -
Dancer, cluster, Mvapich, 41-5-41 41.81 21.14 10.89 6.07 3.76 2.60 2.13 1.86 1.69 -
Dancer, cluster, Mvapich, 41-30-41 165.95 83.54 42.40 22.72 13.02 9.39 7.58 6.62 5.78 -
Lips, Intel MIC, Intel MPI, 41-5-41 170.28 87.13 45.32 23.86 13.30 10.24 8.82 7.70 7.87 7.43
Lips, Intel MIC, Intel MPI, 41-30-41 680.57 356.27 178.46 91.49 52.39 35.05 30.80 26.38 23.91 20.46

100

2 4 8 16 24 32 40 48
30

40

50

60

70

80

90

E
ffi

ci
en

cy
, %

 100

CPUs

r: ompi:410c/3280b
r: mvapich:410c/3280b
l: IntelMpi:410c/3280b

2 4 8 16 24 32 40 48
30

40

50

60

70

80

90

E
ffi

ci
en

cy
, %

d: ompi:410c/3280b
d: mvapich:410c/3280b

CPUs
on many-core (left, r: Remus, l: Lips (Intel MIC)) and cluster (right, d:

) architectures
Figure 3. Parallelization efficiency for RCNN minimum scenario 41-5-41

Dancer

100

2 4 8 16 24 32 40 48
50

55

60

65

70

75

80

85

90

95

CPUs

E
ffi

ci
en

cy
, %

 100

r: ompi:2640c/19680b
r: mvapich:2640c/19680b
l: IntelMpi:2640c/19680b

2 4 8 16 24 32 40 48
50

55

60

65

70

75

80

85

90

95

CPUs

E
ffi

ci
en

cy
, %

d: ompi:2640c/19680b
d: mvapich:2640c/19680b

Figure 4. Parallelization efficiency for RCNN maximum scenario 41-30-41 on many-core (left, r: Remus, l: Lips (Intel MIC)) and cluster (right, d:

Dancer) architectures

ABLE III. AVERA IFFERENCES OF PARALLELIZATION E ENCIES ON MANY-CORE AND CLUSTE

Scenario Many-core better than cluster Many-core better than cluster under
apich,

Many-core under Open MPI better

T GE D FFICI R SYSTEMS

under Open MPI, average % Mv average % than MIC, average %
Minimum 15.9 12.6 12.9
Maximum 9.5 9.4 7.8

As highlighted by previous analysis of the parallel

batch pattern algorithm of MLP [14], the drop of the
parallelization efficiency is due to a communication
overhead. This is clearly indicated by the strong increase
of the overhead for the two scenarios for the three
analyzed systems as depicted in Fig. 5. These results show
that better parallelization efficiency on the many-core
architecture is caused by better characteristics of the AMD
HyperTransport protocol, which provides around 25.6
Gb/s of communication speed against of 10 Gb/s by
Infiniband G20 protocol. However, despite on very high
memory bandwidth of 320 Gb/s within 16 memory
channels, the parallelization efficiency of the algorithm
is much lower on the Intel MIC architecture in comparison
with many-core architecture.

The results of experimental analysis have showed high
parallelization efficiency of the parallel batch pattern back
propagation training algorithm on many-core high
performance computing system, up to 95% on 12 cores
located inside one physical processor for the considered
minimum and maximum scenarios. The parallelization
efficiency decreases to about 70-75% on 48 cores of the
whole many-core system both for minimum and
maximum scenarios. These results are higher by 15-36%
(depending on the version of MPI library) in comparison
with the results obtained on 48 cores of a cluster system.

Also the parallelization efficiency obtained on Intel MIC
architecture is surprisingly low, asking for deeper
analysis.

2 4 8 16 24 32 40 48
0

0.5

1

1.5

2

2.5

3

3.5

CPUs

m
m

un
ic

at
io

n
tim

e
fo

r
41

0c
/3

28
0b

 s
ce

na
rio

, s
ec

 10

C
o

2 4 8 16 24 32 40

Remus:ompi
Remus:mvapich
Dancer:ompi
Dancer:mvapich
Lips:IntelMpi

48
0

1

2

3

4

5

6

7

8

9

C
ni

ca
tio

n
tim

e
fo

r
26

40
c/

19
68

0b
 s

ce
na

rio
, s

ec

Remus:ompi
Remus:mvapich
Dancer:ompi
Dancer:mvapich
Lips:IntelMpi

CPUs

om
m

u

 the minimum (left) and maximum (right) scenarios

V. CONCLUSIONS
The results of the experimental research of the parallel

batch pattern back propagation training algorithm on the
example of recirculation neural network on the many-core
high performance system and Intel MIC (Many Integrated
Core) are presented in this paper. This experimental
research is fulfilled using the Open MPI, Mvapich and
Intel message passing libraries and the results are
compared with the results obtained on the cluster system.
The parallelization efficiency is about 95% on 12 cores
located inside one physical processor of the many-core
system for the considered minimum and maximum
scenarios. The parallelization efficiency is about 70-75%
on 48 cores of the whole many-core system both for the

Figure 5. Absolute durations of communication time for

ts on
a cluster system.

 GPGPU technologies.

AC NT

the corresponding author, Dr. Volodymyr Turchenko,

minimum and maximum scenarios. These results are
higher by 10-36% (depending on the version of MPI
library) in comparison with the results obtained on 48
cores of the cluster system. The results obtained on Intel
MIC are surprisingly low and correspond to the resul

The future direction of the research is to focus the
development efforts into integration with hybrid
programming approaches, such as OpenMP, and to
investigate the parallelization efficiency of the presented
algorithm using CUDA

KNOWLEDGME

The 2012/2013 Fulbright Research Scholar grant of

Arti

training of recirculation neural network”, Proceedings of the 9th
International Conference on Informatics in Control, Automation
and Robotics (ICINCO 2012), Rome, Italy, 2012, pp. 644-650.

lation (HPCS 2012), Madrid,

[15]

funded by the U.S. Department of State, financially
supports this research.

REFERENCES
[1] S. Haykin, Neural Networks and Learning Machines, Prentice

Hall, 2008, 936 p.
[2] R.M. de Llano, J.L. Bosque, “Study of neural net training methods

in parallel and distributed architectures”, Future Generation
Computer Systems, Vol. 26, Issue 2, 2010, pp. 183-190.

[3] M. Cernansky, “Training recurrent neural network using
multistream extended Kalman filter on multicore processor and
CUDA enabled graphic processor unit”, Lecture Notes in
Computer Science, Volume 5768, 2009, Part I, pp. 381-390.

[4] U. Lotric, A. Dobnikar, “Parallel implementations of recurrent
neural network learning”, ICANNGA 2009, LNCS 5495, Springer-
Verlag, Berlin, Heidelberg, 2009, pp. 99-108.

[5] V. Turchenko, L. Grandinetti, “Efficiency research of batch and
single pattern MLP parallel training algorithms”, Proceedings 5th
IEEE International Workshop on Intelligent Data Acquisition and
Advanced Computing Systems IDAACS2009, Rende, Italy, 2009,
pp. 218-224.

[6] V. Turchenko, L. Grandinetti, “Parallel batch pattern BP training
algorithm of recurrent neural network”, Proceedings of the 14th
IEEE International Conference on Intelligent Engineering
Systems, Las Palmas of Gran Canaria, Spain, 2010, pp. 25-30.

[7] V. Turchenko, V. Golovko, A. Sachenko, “Parallel training
algorithm for radial basis function neural network”, Proceedings
of the 7th International Conference on Neural Networks and

ficial Intelligence (ICNNAI’2012), Minsk, Belarus, 2012, pp.
47-51.

[8] V. Turchenko, V. Golovko, A. Sachenko, “Parallel batch pattern

[9] V. Golovko, A. Galushkin, Neural Networks: Training, Models
and Applications. Moscow: Radiotechnika, 2001 (in Russian).

[10] V. Turchenko, L. Grandinetti, G. Bosilca, J. Dongarra,
“Improvement of parallelization efficiency of batch pattern BP
training algorithm using Open MPI”, Elsevier Procedia Computer
Science, Volume 1, Issue 1, 2010, pp. 525-533.

[11] V. Turchenko, L. Grandinetti, “Scalability of enhanced parallel
batch pattern BP training algorithm on general-purpose
supercomputers”, Advances in Intelligent and Soft-Computing,
Vol. 79, Springer, Heidelberg, 2010, pp. 518-526.

[12] L. Vaitsekhovich, V. Golovko, “Intrusion detection in TCP/IP
networks using immune systems paradigm and neural network
detectors”, XI International PhD Workshop OWD, 2009, pp. 219-
224.

[13] M. Komar, V. Golovko, A. Sachenko, S. Bezobrazov, “Intelligent
system for detection of networking intrusion”, Proceedings of the
6th IEEE International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications
(IDAACS2011), Vol. 1, Prague, Czech Republic, 2011, pp. 374-
377.

[14] V. Turchenko, L. Grandinetti, A. Sachenko, “Parallel batch pattern
training of neural networks on computational clusters”,

ional Conference on HighProceedings of the 2012 Internat
Performance Computing & Simu
Spain, 2012, pp. 202-208.
1999 KDD Cup Competition. – Information
on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[16] http://www.open-mpi.org/
ttp://mvapich.cse.ohio-state.edu/[17] h

L.Q. Nguyen, “Using the Intel® MPI library on Intel® Xeon
Phi™ coprocessor
systems”, http://software.intel.com/sites/default/files/article/33613
9/using-intel-mpi-on-intel-xeon-phi-coprosessor-systems-v1.3.pdf

http://software.intel.com/sites/default/files/article/336139/using-intel-mpi-on-intel-xeon-phi-coprosessor-systems-v1.3.pdf
http://software.intel.com/sites/default/files/article/336139/using-intel-mpi-on-intel-xeon-phi-coprosessor-systems-v1.3.pdf
http://software.intel.com/sites/default/files/article/336139/using-intel-mpi-on-intel-xeon-phi-coprosessor-systems-v1.3.pdf

	I. Introduction
	II. Batch Pattern BP Training Algorithm For Recirculation NN
	III. Parallel Implementation of Batch Pattern BP Training Algorithm of RCNN
	IV. Experimental Results
	V. Conclusions
	Acknowledgment
	References

