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Abstract—The experimental research of the parallel 
batch pattern back propagation training algorithm on the 
example of recirculation neural network on many-core high 
performance computing systems is presented in this paper. 
The choice of recirculation neural network among the 
multilayer perceptron, recurrent and radial basis neural 
networks is proved. The model of a recirculation neural 
network and usual sequential batch pattern algorithm of its 
training are theoretically described. An algorithmic 
description of the parallel version of the batch pattern 
training method is presented. The experimental research is 
fulfilled using the Open MPI, Mvapich and Intel MPI 
message passing libraries. The results obtained on many-
core AMD system and Intel MIC are compared with the 
results obtained on a cluster system. Our results show that 
the parallelization efficiency is about 95% on 12 cores 
located inside one physical AMD processor for the 
considered minimum and maximum scenarios. The 
parallelization efficiency is about 70-75% on 48 AMD cores 
for the minimum and maximum scenarios. These results are 
higher by 15-36% (depending on the version of MPI library) 
in comparison with the results obtained on 48 cores of a 
cluster system. The parallelization efficiency obtained on 
Intel MIC architecture is surprisingly low, asking for deeper 
analysis. 

 

Keywords—parallel batch pattern training; recirculation 
neural network; parallelization efficiency; many-core system1 

I. INTRODUCTION 
Artificial neural networks (NNs) have excellent 

abilities to model difficult nonlinear systems. They 
represent a very good alternative to traditional methods for 
solving complex problems in many fields, including 
image processing, predictions, pattern recognition, 
robotics, optimization, etc [1]. However, most NN models 
require high computational load in the training phase. This 
is, indeed, the main obstacle to face for an efficient use of 
NNs in real-world applications. The use of general-

 
1 The 2012/2013 Fulbright Research Scholar grant of Dr. 

V.Turchenko 

purpose high performance computers and clusters to speed 
up the training phase of NNs is one of the ways to 
outperform this obstacle. Therefore the research of a 
parallelization efficiency of NNs parallel training 
algorithms on such kind of parallel systems is still 
remaining an urgent research problem. 

Taking into account the parallel nature of NNs, many 
researchers have already focused their attention on NNs 
parallelization. The authors of [2] investigate parallel 
training of multi-layer perceptron (MLP) on symmetric 
multiprocessor computer, cluster and computational grid 
using MPI (Message Passing Interface) parallelization. 
They have investigated big NN models, which process 
huge number of the training patterns (around 20000) 
coming from Large Hadron Collider. However their 
implementation of relatively small MLP architecture 16-
10-10-1 (16 neurons in the input layer, two hidden layers 
with 10 neurons in each layer and one output neuron) with 
270 internal connections (number of weights of neurons 
and their thresholds) does not provide positive 
parallelization speedup due to large communication 
overhead, i.e. the speedup is less than 1. The development 
of parallel training algorithm of Elman’s simple recurrent 
neural network (RNN) based on Extended Kalman Filter 
on multicore processor and Graphic Processing Unit 
(GPU) is presented in [3]. The author has showed a 
reduction of the RNN training time using a GPU solution 
(4 times better performance was achieved), however it is 
impossible to assess the parallelization efficiency of this 
parallel algorithm because it was not clearly stated a 
number of GPU threads used for parallelization. The 
authors of [4] have presented the development of parallel 
training algorithm of fully connected RNN based on linear 
reward penalty correction scheme. 

The corresponding author of this paper has developed 
the parallel algorithm of batch pattern back propagation 
training for MLP [5], RNN [6], a neural network with 
radial-basis functions (RBF) [7] and Recirculation Neural 
Network (RCNN) [8]. Experimental analysis of this 



 

 

algorithm on these models of NNs has showed its high 
parallelization efficiency on general-purpose high 
performance clustered architectures. Due to the last 
technological achievements, many-core high performance 
computing systems, i.e. multi-core architectures with an 
especially high number of cores (tens or hundreds), have a 
widespread use now in research and industry 
communities. Therefore the estimation of the 
parallelization efficiency of this parallel algorithm on this 
kind of modern high performance systems is an actual 
research task. 

The goal of this paper is to investigate the 
parallelization efficiency of a parallel batch pattern back 
propagation training algorithm on a many-core high 
performance parallel computing system and to compare 
the results with the efficiency on cluster architecture. The 
rest of this paper is organized as follows: Section 2 details 
the mathematical description of a batch pattern back 
propagation training algorithm for RCNN, Sections 3 
describes the parallel implementation of this algorithm, 
Section 4 presents the obtained experimental results and 
concluding remarks in Section 5 finishes this paper. 

II. BATCH PATTERN BP TRAINING ALGORITHM FOR 
RECIRCU  NN LATION

The batch pattern training algorithm updates neurons’ 
weights and thresholds at the end of each training epoch, 
i.e. after processing of all training patterns, instead of 
updating weights and thresholds after processing of each 
pattern in the usual sequential training mode. It is 
expedient to choose the implementation of this algorithm 
for one of the developed models (Table 1) for the further 
investigation of its parallelization efficiency on many-core 
system. Table 1 shows the number of updating 
connections during training (neurons’ weights and 
thresholds) for the developed models on an example of a 
generic model with 40 input neurons. The numbers of 
hidden neurons is chosen the same 40 for the MLP, RNN 
and RBF models just for reference reason since this 
number should be chosen based on the number of training 
patterns within the real task. The number of hidden 
neurons of a RCNN is chosen 20 because the main task of 
a RCNN is to perform a compression task, the input 
neurons define the size of input data and the hidden 
neurons define the size of compressed data. The analysis 
of the parallelization efficiencies results of MLP and RNN 
[5-6] has showed that the model with the bigger number 
of updating connections provides higher parallelization 
efficiency of the algorithm. Therefore it is expedient to 
choose the RCNN model for the further research as the 
model with lesser number of updating connections. Thus 
the obtained results will show the lower margin of the 
parallelization efficiency that will be higher for all other 
cases of MLP, RNN and RBF. 

Recirculation neural network RCNN (Fig. 1) performs 
compression of the input pattern space X  to obtain the 
principal components. The principal components are the 

output values Y  of the neurons of the hidden layer. Then 
the RCNN restores the compressed data (principal 
components) into the output vector X . 

TABLE I.  IMPLEMENTATION DETAILS OF THE PARALLEL 
ALGORITHM FOR DIFFERENT NN MODELS 

Model Number of neurons in 
layers (Number of 

ns) connectio

Message passing size, 
elements (bytes) 

MLP 40-40-1 (1681) 1681 (13448) 
RNN 40-40-1 (3321) 3321 (26568) 
RBF 40-40-1 (1680) 1680 (13440) 
RCNN 40-20-40 (1600) 1600 (12800) 

 
The output value of the RCNN can be formulated as:  
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p
w′  is the weight of the synapse from the neuron  of the 
hidden layer to the neuron i  of the output layer, n  is the 
number of neurons in the input and output layers, ijw  is 
the weight from the input neuron i  to neuron  in the 
hidden layer,  are the input values [9].  
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Figure 1. The structure of a recirculation neural network 
 

Note that the principal components are calculated by 

expression . The logistic activation 

function 
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The batch pattern BP training algorithm consists of the 

lofol wing steps [9]: 
1. Set the desired Sum Squared Error (SSE) to a value 

 and the number of training epochs ; minE t
2. Initialize the weights of the neurons with values in 

range (-0.1…0.1) [9]; 
3. For the training pattern pt : 

3.1. Calculate the output value )(txi  by expr. (1); 



 

 

3.2. Calculate the errors of the output neurons 
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output value of the neuron j  of the hidden layer 
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4. Repeat the step 3 above for all training patterns pt , 
{ }PTpt ,...,1∈ , PT  is the size o

Update the neurons
f the training set; 

ghts using expressions 
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7. If )(tE  is greater than the desired error E
increase the number of training epochs to 1+t  and go 
to step 3, otherwise stop the training process. 

III. PARALLEL IMPLEMENTATION OF BATCH PATTERN 
BP TRAINING ALGORITHM OF RCNN 

The sequential execution of points 3.1-3.5 above for 
all training patterns in the training set could be 
parallelized, because the sum operations jiws ′Δ  and ijwsΔ  
are independent of each other. For the development of the 
parallel algorithm all the computational wo e 
divi

oints 3.1-3.5 and 4, only for its 

f delta weights jiws ′Δ  and ijws

rk should b
ded between the Master (executing assigning 

functions and calculations) and the Workers (executing 
only calculations) processors. 

The algorithms for Master and Worker processors are 
depicted in Fig. 2. The Master starts with definition (i) the 

number of patterns PT in the training data set and (ii) the 
number of processors p used for the parallel executing of 
the training algorithm. The Master divides all patterns in 
equal parts corresponding to the number of the Workers 
and assigns one part of patterns to itself. Then the Master 

ndse s to the Workers the numbers of the appropriate 
patterns to train.  

Each Worker executes the following operations for 
each pattern pt of the PT/p patterns assigned to it: 
• calculates the p

assigned number of training patterns. The values of 
the partial sums o Δ are 

No

calculated there; 
• calculates the partial SSE for its assigned number of 

training patterns. 
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Figure 2. The algorithms of the Master (a) and the Worker (b) 
processors 

 
After processing all assigned patterns, only one all-

reduce collective communication operation (it provides 
the summation as well) is executed. Synchronization with 
other processors is automatically provided by internal 
implementation of this all-reduce oper [10]. ver 
from the algorithmic point of view it is showed as an 
independent operator in Fig. 2 before the operation of data 
reduce. Then the summarized values jiws ′Δ  and ijws

ation Howe

Δ  are 
sent to all processors working in parallel. Instead of three 
communication messages in [2], using only one all-reduce 
collective communica messa hich also returns the 
reduced values back to the Workers, allows decreasing a 

tion ge, w



 

 

The soft
he parallel part of th

 pre-encoding and post
encodi proves t tion efficiency 
of th rithm of a 
mu

DDoS attacks) in our experimental research ( 00 

ocessors with a clock rate of 2500 MHz 

s positioned the MIC card as a 

communication overhead in this point. Then the 
summarized values jiws ′Δ  and ijwsΔ  are placed into the 
local memory of each proces Each processor uses 
these values for updating the weights according to the 
point 5 of the algorithm above. These updated weights 
wil

sor. 

s. T

is

l be used on the next iteration of the training algorithm. 
As the summarized value of )(tE  is also received as a 
result of the reducing operation, the Master decides 
whether to continue the training or not. 

 routine is developed using C language 
with the standard MPI function
algo

ware
e 

supercomputer Lips with Many Integrated Core (Intel 
MIC) card and cluster Dancer located in the Innovative 
Computing Lab, the University of Tennessee, USA, are 
used for the computation: 
• Remus consists of two socket G34 motherboards 

RD890 (AMD 890FX chipset) connected each other 
by AMD Hyper Transport technology. Each 
motherboard contains two twelve-core AMD Opteron 
6180 SE pr

rithm starts with the call of MPI_Init() function. An 
MPI_Allreduce() function reduces the deltas of weights 

jiws ′Δ  and ijwsΔ , summarizes them and sends them back 
to all processors in the group.  

Since the weights are physically located in the 
different matrices of the software routine, we have done 
pre-encoding of all data into one communication message 
before sending and reverse post-decoding the data to the 
appropriate matrixes after message receiving in order to 
provide only one physical call of the function 
MPI_Allreduce() in the communication section of the 
algorithm. Function MPI_Finalize() finishes the parallel 
part of the algorithm. The results of experimental research 
described in [11] showed, that th -

ng approach im he paralleliza
e parallel batch pattern training algo

ltilayer perceptron on approx. 17.5% in average based 
on 20 parallelization scenarios.  

IV. EXPERIMENTAL RESULTS 
We have investigated the parallelization efficiency of 

the parallel batch pattern back propagation training 
algorithm of RCNN on the application task of data 
compression and Principal Component Analysis within 
NN-based method of intrusion detection and classification 
in computer networks [12-13]. We have considered 
different parallelization scenarios of the RCNN with 
changing the number of the neurons in the hidden layer 
(number of principal components) from 5 to 30 with the 
step of 5 neurons (5, 10, 15, 20, 25 and 30). Thus the 
RCNN model 41-5-41 will be having 420 updating 
connections (multiple per 8 = 3280 bytes of 
communication message) and the RCNN model 41-30-41 
will be having 2640 updating connections (19680 bytes of 
communication message). These two scenarios are the 
minimum and the maximum scenarios. It means that the 
parallelization efficiency results for any other RCNN 
model within these two boundaries will be located inside 
the obtained experimental results for these two scenarios 
as it was with the research results of this parallel algorithm 
for the MLP and RNN models on other type of parallel 
machines [14]. We have used a part of the database KDD 
cup 99 [15] containing information about computer 
network intrusions (the files with the descripti  the 

g patterns). In all ex

on of
only 10

trainin
trai

to c

periments, the RCNN was 
ned by 104 training epochs, the SSEs values of 0.0073 

… 0.0041 were reached. The learning rates )(2 tα  and 
)(3 tα  were fixed to 0.05. 

The many-core parallel supercomputer Remus, 

and 132 GB of local RAM. Thus the total number of 
computational cores is 48 on Remus. Each processor 
has the L2 cache of 12x512 Kb and the L3 cache of 
2x6 Mb.  

• On Lips machine we use the MIC card Intel ® Xeon 
Phi™ Coprocessor 5110P, which has 60 cores with 
1.053 GHz, 8GB total RAM and 30Mb cache. 

• Cluster Dancer consists of 16 nodes, nodes n1-n8 are 
connected by Infiniband G10 interface, nodes n9-n16 
are connected by Infiniband G20 interface. We have 
used the second part, nodes n9-n16, for the 
experiments. Each node has two four-core Intel(R) 
Xeon(R) processors E5520 with a clock rate of 2270 
MHz and 12 GB of local RAM. Each processor has 
the L2 cache of 4x256 Kb and the L3 cache of 8 Mb.  

We run the experiments using current releases of two 
message passing libraries Open MPI 1.6.3 [16] and 
Mvapich 1.4.1p1 [17] on Remus and Dancer. Since the 
function MPI_Allreduce() is used for the communication, 
we have used the tuned collectives’ module of Open MPI 
using all its internal communication algorithms of 
MPI_Allreduce() [10] (0- default, 1-basic linear, 2-non-
overlapping, 3-recursive doubling, 4-ring, 5-segmented 
ring). Thus the better results on both machines we have 
received using the 3-recursive doubling internal 
communication algorithm of MPI_Allreduce(). We run 
our parallel routine in a standard way under Mvapich 
library on both systems. We have used the Intel MPI 
Library 4.1 for compilation and running the parallel 
routine on Intel MIC card embedded in Lips 
supercomputer. Intel ha
standard x86 device that does not need a major re-writing 
of the code of the routine. It needs only the compilation of 
the routine and the transfer of the executable code directly 
to the MIC to run [18].  

The expressions S=Ts/Tp and E=S/p×100% are used 
alculate the speedup and efficiency of parallelization, 

where Ts is the time of sequential executing of the routine, 
Tp is the time of executing of the parallel version of the 
same routine on p processors of parallel system.  

The computational times of the sequential and parallel 
versions of the batch pattern training algorithm of RCNN 
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l MIC systems. 

TABLE II.  EX  TIME FOR TWO RIO E L SY EMS 

x ti n C e

are collected in Table 2 for the minimum and maximum 
scenarios on three parallel systems. The appropriate 
parallelization efficiencies of the parallel algorithm are 
depicted in Figs. 3 and 4. The letters ‘r’, ‘d’ and ‘l’ on the 
legend boxes mean that the results are obtained on Remus, 
Dancer and Lips (Intel MIC) respectively. The analysis of 
the results have shown (Table 3), that the parallelization 
efficiency on many-core system is better than on cluster 
on 15.9% and 12.6% in average (among all 8 
parallelization results on 2, 4, 8, 16, 24, 32, 40 and 48 

9.4% respectively for the maximum scenario. 
Furthermore, the parallelization efficiency on many-core 
system is better than on Intel MIC on 12.9% and 7.8% for 
the minimum and maximum scenarios respectively. 
However we have experienced much bigger differences on 
bigger number of processors. The differences are 36.1% 
(Open MPI) and 17.4% (Mvapich) for the minimum 
scenario and 22.4% (Open MPI) and 14.9% (Mvapich) for 
the maximum scenario on 48 cores of many-core and 
cluster systems. These differences are 26.2% 

en MPI and Mvapich respectively for the 
age figures are 9.5% and 

minimum scenario and 13.6% for
on 48 cores of many-core and Inte

ECUTION SCENA S ON THRE  PARALLE ST

Scenario E ecution mes o PUs, s conds 
Ts, sec Tp, sec 

2 4 8 16 24 32 40 48 60 
Remus, many-core, Open MPI, 41-5-41 116.51 58.38 29.65 15.52 8.15 5.74 4.68 3.90 3.40 - 
Remus, many-core, Open MPI, 41-30-41      565.27 291.65 145.38 73.79 37.69 27.01 21.86 18.38 16.13 - 
Dancer, cluster, Mvapich, 41-5-41 41.81 21.14 10.89 6.07 3.76 2.60 2.13 1.86 1.69 - 
Dancer, cluster, Mvapich, 41-30-41 165.95 83.54 42.40 22.72 13.02 9.39 7.58 6.62 5.78 - 
Lips, Intel MIC, Intel MPI, 41-5-41 170.28 87.13 45.32 23.86 13.30 10.24 8.82 7.70 7.87 7.43 
Lips, Intel MIC, Intel MPI, 41-30-41 680.57 356.27 178.46 91.49 52.39 35.05 30.80 26.38 23.91 20.46 
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Figure 3. Parallelization efficiency for RCNN minimum scenario 41-5-41 

Dancer

100

2 4 8 16 24 32 40 48
50

55

60

65

70

75

80

85

90

95

CPUs

E
ffi

ci
en

cy
, %

 100

 

r: ompi:2640c/19680b
r: mvapich:2640c/19680b
l: IntelMpi:2640c/19680b

2 4 8 16 24 32 40 48
50

55

60

65

70

75

80

85

90

95

CPUs

E
ffi

ci
en

cy
, %

 

d: ompi:2640c/19680b
d: mvapich:2640c/19680b

 

 
Figure 4. Parallelization efficiency for RCNN maximum scenario 41-30-41 on many-core (left, r: Remus, l: Lips (Intel MIC)) and cluster (right, d: 

Dancer) architectures 
 



 

 

 
 

ABLE III.  AVERA IFFERENCES OF PARALLELIZATION E ENCIES ON MANY-CORE AND CLUSTE  

Scenario Many-core better than cluster Many-core better than cluster under 
apich,

Many-core under Open MPI better 

T GE D FFICI R SYSTEMS

under Open MPI, average % Mv  average % than MIC, average % 
Minimum 15.9 12.6 12.9 
Maximum 9.5 9.4 7.8 

 
As highlighted by previous analysis of the parallel 

batch pattern algorithm of MLP [14], the drop of the 
parallelization efficiency is due to a communication 
overhead. This is clearly indicated by the strong increase 
of the overhead for the two scenarios for the three 
analyzed systems as depicted in Fig. 5. These results show 
that better parallelization efficiency on the many-core 
architecture is caused by better characteristics of the AMD 
HyperTransport protocol, which provides around 25.6 
Gb/s of communication speed against of 10 Gb/s by 
Infiniband G20 protocol. However, despite on very high 
memory bandwidth of 320 Gb/s within 16 memory 
channels, the parallelization efficiency of the algorithm 
is much lower on the Intel MIC architecture in comparison 
with many-core architecture. 

The results of experimental analysis have showed high 
parallelization efficiency of the parallel batch pattern back 
propagation training algorithm on many-core high 
performance computing system, up to 95% on 12 cores 
located inside one physical processor for the considered 
minimum and maximum scenarios. The parallelization 
efficiency decreases to about 70-75% on 48 cores of the 
whole many-core system both for minimum and 
maximum scenarios. These results are higher by 15-36% 
(depending on the version of MPI library) in comparison 
with the results obtained on 48 cores of a cluster system. 

 
 

Also the parallelization efficiency obtained on Intel MIC
architecture is surprisingly low, asking for deeper
analysis. 
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V. CONCLUSIONS 
The results of the experimental research of the parallel 

batch pattern back propagation training algorithm on the 
example of recirculation neural network on the many-core 
high performance system and Intel MIC (Many Integrated 
Core) are presented in this paper. This experimental 
research is fulfilled using the Open MPI, Mvapich and 
Intel message passing libraries and the results are 
compared with the results obtained on the cluster system. 
The parallelization efficiency is about 95% on 12 cores 
located inside one physical processor of the many-core 
system for the considered minimum and maximum 
scenarios. The parallelization efficiency is about 70-75% 
on 48 cores of the whole many-core system both for the 

Figure 5. Absolute durations of communication time for

ts on 
a cluster system. 

 GPGPU technologies. 
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minimum and maximum scenarios. These results are 
higher by 10-36% (depending on the version of MPI 
library) in comparison with the results obtained on 48 
cores of the cluster system. The results obtained on Intel 
MIC are surprisingly low and correspond to the resul

The future direction of the research is to focus the 
development efforts into integration with hybrid 
programming approaches, such as OpenMP, and to 
investigate the parallelization efficiency of the presented 
algorithm using CUDA
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