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Abstract
Algorithm-specific fault tolerant approaches promise unparalleled
scalability and performance in failure-prone environments. With
the advances in the theoretical and practical understanding of al-
gorithmic traits enabling such approaches, a growing number of
frequently used algorithms (including all widely used factorization
kernels) have been proven capable of such properties. These algo-
rithms provide a temporal section of the execution when the data
is protected by it’s own intrinsic properties, and can be algorithmi-
cally recomputed without the need of checkpoints. However, while
typical scientific applications spend a significant fraction of their
execution time in library calls that can be ABFT-protected, they in-
terleave sections that are difficult or even impossible to protect with
ABFT. As a consequence, the only fault-tolerance approach that is
currently used for these applications is checkpoint/restart. In this
paper we propose a model and a simulator to investigate the be-
havior of a composite protocol, that alternates between ABFT and
checkpoint/restart protection for effective protection of each phase
of an iterative application composed of ABFT-aware and ABFT-
unaware sections. We highlight this approach drastically increases
the performance delivered by the system, especially at scale, by
providing means to rarefy the checkpoints while simultaneously
decreasing the volume of data needed to be checkpointed.

Keywords fault-tolerance, resilience, high-performance comput-
ing, checkpoint, ABFT

1. Introduction
As processor count keeps increasing with each new generation
of high performance computing systems, the long dreaded relia-
bility wall is materializing and threatens to derail the efforts and
milestones toward Exascale computing. Despite continuous evo-
lutions, such as improvements to the individual processor relia-
bility, the integration of a large number of components leads, by
simple probabilistic amplification, to a stern decrease in the over-
all capacity of High Performance Computing (HPC) platforms to
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execute long running applications spanning a large number of re-
sources. Already today, leadership systems encompassing millions
of nodes experience a Mean Time Between Failures (MTBF) of
a few hours [15, 17, 26]. Even considering an optimistic sce-
nario with “fat” nodes, featuring heavily many-core systems and/or
GPU accelerators, projections of Exascale machine exhibit un-
precedented socket counts and will thereby suffer in terms of re-
liability [10].

The high performance community is not without resources to
face this formidable threat. Under the already serious pressure that
failures pose to currently deployed systems, checkpointing tech-
niques have seen a large adoption, and many production qual-
ity software effectively provide protection against failures with
application-level rollback recovery. During the execution, periodic
checkpoints are taken that capture the progress of the application.
When a failure occurs, the application is terminated, but can be
later restarted from the last checkpoint. However, checkpointing
techniques inflict severe overhead when failure frequency becomes
too high. Checkpoints generate a significant amount of I/O traffic
and often block the progression of the application; in addition, they
must be taken more and more often as the MTBF decreases in order
to enable steady progress of the application. Analytical projections
clearly show that sustaining Exascale computing solely with check-
pointing will prove challenging [4, 14].

The fault-tolerance community has developed a number of al-
ternative recovery strategies that do not employ checkpoint and
rollback recovery as their premise. Strategies such as Algorithm
Based Fault Tolerance (ABFT) [16], naturally fault tolerant iter-
ative algorithms [22], resubmission in master slave applications,
etc., can deliver more scalable performance under high stress from
process failures. As an example, ABFT protection and recovery ac-
tivities are not only inexpensive (typically less than 3% overhead
observed in experimental works [9, 12]), but also have a negligi-
ble asymptotic overhead when increasing node count, which makes
them extremely scalable. This is in sharp contrast with checkpoint-
ing that suffers from increasing overhead with system size. ABFT
has demonstrated to be a useful technique for production systems,
offering protection to important infrastructure software such as the
dense distributed linear algebra library ScaLAPACK [12]. In the
remainder of this paper, without loss of generality, we will use the
term ABFT broadly, so as to design any technique that uses algo-
rithm properties to provide protection and recovery without resort-
ing to rollback recovery.

In fact, the typical pattern of HPC applications is the follow-
ing: they do spend phases where they perform computations and
data movements that are incompatible with ABFT protection. Un-
fortunately, these ABFT-incompatible phases force users to re-
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sort to general-purpose (presumably checkpoint based) approaches
as their sole protection scheme. However, HPC applications also
spend quite a significant part of their total execution time inside a
numerical library, and in many cases, these numerical library calls
can be effectively protected by ABFT. We believe that the missing
link to provide fault tolerance at extreme scale is the ability to effec-
tively compose broad spectrum approaches (such as checkpointing)
and algorithm based recovery techniques, as is most appropriate for
different epochs within a single application.

Possible target applications are based on iterative methods ap-
plied across an additional dimension such as time or temperature.
Example of such applications range from heat dissipation to radar
cross-section, all of them being extremely time consuming appli-
cations, with usual execution time for real-size problems ranging
from several days to weeks. At the core of such applications a lin-
ear equation system is factorized and the solution integrated into a
larger context, the integration across the extra dimension. Looking
more in details at the execution of such application, it become ob-
vious that the most costly step is the factorization. Conveniently,
the factorizations algorithms are some of the first algorithms to
be extended with ABFT properties, both in the dense and sparse
[1, 6, 23] linear algebra world.

The main contribution of this paper is a new composite algo-
rithm that allows to take advantage of ABFT techniques in appli-
cations featuring phases for which no ABFT algorithm exists. We
investigate a composition scheme corresponding to the above men-
tioned type of applications, where the computation iteratively al-
ternates between ABFT protected and checkpoint protected phases.
This composite algorithm imposes forced checkpoints when enter-
ing (and in some cases leaving) library calls that are protected by
ABFT techniques, and uses traditional periodic checkpointing, if
needed, between these calls. When inside an ABFT-protected call,
the algorithm disables all periodic checkpointing. We describe a
fault tolerance protocol that allows to switch between fault toler-
ance mechanisms, and depicts how different parts of the dataset are
treated at each stage. Based on this scheme, we provide a perfor-
mance model and use it to outline the expected behavior of such a
composite approach on platforms beyond what is currently possible
through experimentation. We validate the model, by comparing its
predicted preformance to performance obtained with a simulator.

The rest of the paper is organized as follows. We start with a
brief overview of related work in Section 2. Then we provide a de-
tailed description of the composite approach in Section 3, and de-
rive the corresponding analytical performance model in Section 4.
Section 5 is devoted to evaluate the approach, comparing the perfor-
mance of traditional checkpointing protocols with that of the com-
posite approach with realistic scenarios. This comparison is per-
formed both analytically, instantiating the model with the relevant
parameters, and in simulation, through an event-based simulator
that we specifically designed to this purpose. We obtain an excel-
lent correspondence between the model and the simulations, and
we perform a weak-scalability study that demonstrates the full po-
tential of the composite approach at very large scale. Finally, we
provide concluding remarks in Section 6.

2. Related work
Both hardware and software errors can provoke application failure.
The resulting effect can take various forms in a distributed system:
a definitive crash of some processes, some process being very
slow to answer messages, erroneous results, or, at the extreme,
corrupted processes exhibiting malignant behavior. In the context
of HPC systems, most memory corruptions are captured by ECC
memory or similar techniques, leaving process crashes as the most
commonly observed type of failures.

The literature is rich in techniques that permit recovering the
progress of applications when crash failure strike. The most com-
monly deployed strategy is checkpointing, in which processes of
the application periodically save their state to some stable storage
so that computation can be resumed from that point when some fail-
ure disrupts the execution. Checkpointing strategies are numerous,
ranging from fully coordinated checkpointing to message logging
based uncoordinated checkpoint and recovery [13]. Despite a very
broad applicability, all of these checkpoint based recovery methods
suffer from the intrinsic limitation that both protection and recov-
ery generate an I/O workload that grows with failure probability,
and becomes unsustainable at large scale [4, 14] (even when con-
sidering optimizations such as diskless or incremental checkpoint-
ing [20].)

In contrast, Algorithm Based Fault Tolerance (ABFT) is based
on adapting the algorithm so that the application dataset can be
recomputed at any moment, without involving costly checkpoints.
ABFT was first introduced to deal with silent error in systolic ar-
rays [16]. In recent work, the technique has been employed to re-
cover from process failures [2, 9, 12] in dense and sparse linear
algebra factorizations [1, 6, 23] , but the idea extends widely to
numerous algorithms employed in crucial HPC applications. So
called Naturally Fault Tolerant algorithms can simply obtain the
correct result despite the loss of portions of the dataset (typical of
this are master-slave programs, but also iterative refinement meth-
ods, like GMRES or CG [7, 22]). Although generally exhibiting
excellent performance and resiliency, ABFT requires that the algo-
rithm is innately able to incorporate fault tolerance and therefore
stands as a less generalist approach. Another aspect that hinders
its wide adoption and production deployment is that it can protect
an algorithm, meanwhile applications assemble many algorithms,
which may not all have a readily available ABFT version, or em-
ploy different ABFT techniques.

To the best of our knowledge, this work is the first to introduce
an effective protocol for alternating between generalist (typically
checkpoint based) fault tolerance for some parts of the application
and custom, tailored techniques (typically ABFT) for crucial, time
consuming computational routines.

Many models are available to understand the behavior of check-
point/restart [5, 8, 19, 24], and thereby to determine the optimal
checkpoint period. [27] proposes a scalability model where the au-
thors evaluate the impact of failures on application performance.
A significant contribution compared with these works lays in the
inclusion of several new parameters to refine the model. A second
aspect of this work is to propose a generalized model for a proto-
col that alternates between checkpointing and ABFT sections. Al-
though most ABFT methods have a complete complexity analysis
(in terms of extra-flops, communications incurred by both protec-
tion activity and per-recovery cost [9, 12]), modeling the actual run-
time overhead of ABFT methods under failure conditions has never
been proposed. The composite model captures both the behavior
of checkpointing and ABFT phases, as well as the cost of switch-
ing between the two approaches, and thereby permits investing the
prospective gain from employing this mixed recovery strategy on
extreme scale platforms.

3. Composite approach
We consider a typical HPC application whose execution alternates
GENERAL phases and LIBRARY phases (see Figure 1). During
GENERAL phases, we have no information on the application be-
havior, and an algorithm-agnostic fault-tolerance technique, like
checkpoint and rollback recovery, must be used. On the contrary,
during LIBRARY phases, we know much more about the applica-
tion, and we can apply special-purpose fault-tolerance techniques,
such as ABFT, to ensure resiliency.
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Figure 2: ABFT&PERIODICCKPT composite approach

During a GENERAL phase, the application can access the whole
memory; during a LIBRARY phase, only the LIBRARY dataset (a
subset of the application memory, which is passed as a parameter to
the library call) is accessed. We call REMAINDER dataset the part
of the application memory that does not belong to the LIBRARY
dataset. A strong feature of ABFT is that in is that in case of failure,
the ABFT algorithm can recompute the lost ABFT-protected data
based only on the LIBRARY dataset of the surviving processors.

The main goal of this paper is to compare two fault tolerant
approaches:

PUREPERIODICCKPT Pure (Coordinated) Periodic Checkpoint-
ing refers to the traditional approach based on coordinated
checkpoints taken at periodic intervals, and using rollback re-
covery to recover from failures.

ABFT&PERIODICCKPT Algorithm-Based Fault Tolerance &
Periodic Checkpointing refers to the proposed algorithm, that
combines ABFT techniques in LIBRARY phases with Periodic
Checkpointing techniques in GENERAL phases. It is described
below.

Both approaches use PERIODICTCKPT techniques, but to a dif-
ferent extent: while PUREPERIODICCKPT uses PERIODICTCKPT
throughout the execution, ABFT&PERIODICCKPT uses it only
within GENERAL phases of the application.

3.1 ABFT&PERIODICCKPT Algorithm
The ABFT&PERIODICCKPT composite approach consists in us-
ing alternatively periodic checkpointing and rollback recovery on
one side, and ABFT on the other side, at different instants of the ex-
ecution. Every time the application enters a LIBRARY phase (that
can thus be protected by ABFT), a partial checkpoint is taken to
protect the REMAINDER dataset. The LIBRARY dataset, accessed
by the ABFT algorithm, needs not be saved in that partial check-
point, since it will be reconstructed by the ABFT algorithm inside
the library call.

When the call returns, a partial checkpoint covering the modi-
fied LIBRARY dataset is added to the partial checkpoint taken at the

beginning of the call, to complete it and to allow restarting from
the end of the terminating library call. Said otherwise, the combi-
nation of the entrance and exit partial checkpoints form a split, but
complete, coordinated checkpoint covering the entire dataset of the
application.

If a failure is detected while processes are inside the library call,
the crashed process is recovered using a combination of rollback re-
covery and ABFT. ABFT recovery is used to restore the LIBRARY
dataset before all processes can resume the library call, as would
happen with a traditional ABFT algorithm. The partial checkpoint
is used to recover the REMAINDER dataset (everything except the
data covered by the current ABFT library call) at the time of the
call, and the process stack, thus restoring it before quitting the li-
brary routine, see Figure 2. The idea of the algorithm is that ABFT
recovery will spare some of the time of redoing work, and peri-
odic checkpointing can be completely de-activated during the li-
brary calls.

During GENERAL phases, regular periodic coordinated check-
pointing is employed to protect against failures. In case of failure,
coordinated rollback recovery brings all processes back to the last
checkpoint (at most back to the split checkpoint capturing the end
of the previous library call).

3.2 Efficiency Considerations and Application-Specific
Improvements

A critical component to the efficiency of the PERIODICTCKPT al-
gorithm is the length of the checkpointing interval. A short inter-
val increases the algorithm overheads, by introducing many coordi-
nated checkpoints, during which the application experience slow-
down, but also reduces the amount of time lost when there is a
failure: the last checkpoint is never far ago, and little time is spent
re-executing part of the application. Conversely, a large interval re-
duces overheads, but increases the time lost in case of failure. The
PERIODICTCKPT protocol has been extensively studied, and good
approximations of the optimal checkpoint interval exist (known
as Young’ and Daly’s formula [8, 24]). These approximations are
based on the machine MTBF, checkpoint duration, and other pa-
rameters. We will consider two forms of PERIODICTCKPT algo-
rithms: the PUREPERIODICCKPT algorithm, where a single check-
pointing interval is used consistently during the whole execution,
and the BIPERIODICCKPT algorithm, where the checkpointing in-
terval may change during the execution, to fit different conditions
(see Section 4.3, Figures 5 and 6).

However, in the ABFT&PERIODICCKPT algorithm, we in-
terleave PERIODICTCKPT protected phases with ABFT protected
phases, during which periodic checkpointing is de-activated. Dif-
ferent cases have thus to be considered:

• When the time spent in GENERAL phases is larger than the op-
timal checkpoint interval, periodic checkpointing is used during
these phases in the case of ABFT&PERIODICCKPT (see Fig-
ure 3)

• When the time spent in GENERAL phases is smaller than the
optimal checkpoint interval, the ABFT&PERIODICCKPT al-
gorithm already creates a complete valid checkpoint per GEN-
ERAL phase by combining both partial checkpoints, so the algo-
rithm will not introduce additional checkpoints (see Figure 4).

Moreover, the ABFT&PERIODICCKPT algorithm forces (par-
tial) checkpoints at the entry and exit of library calls; thus if
the time spent in a library call is very small, this approach will
introduce more checkpoints than a traditional PERIODICTCKPT
approach. The time complexity of library algorithms usually de-
pends on a few input parameters related to problem size and re-
source number, and ABFT techniques have deterministic, well
known time overhead complexity. Thus, when possible, the ABFT-
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&PERIODICCKPT algorithm features a safeguard mechanism: if
the projected duration of a library call with ABFT protection (com-
puted at runtime thanks to the call parameters and the algorithm
complexity) is smaller than the optimal periodic checkpointing in-
terval, then ABFT is not activated, and the corresponding LIBRARY
phase is protected using PERIODICTCKPT technique only.

Furthermore, since only a subset of the entire data set is poten-
tially modified during a library call (the LIBRARY dataset), we will
consider incremental checkpointing techniques, when comparing
the efficiency of PERIODICTCKPT and ABFT&PERIODICCKPT
techniques. The incremental checkpointing technique consists of
saving only the subset of the memory that was modified since the
last checkpoint, when taking a new process checkpoint. This in-
fluences the duration of the checkpointing operation, and thus the
optimal checkpoint interval. In our models, we will take this pa-
rameter in consideration.

4. Model
In this section, we detail the application model and the various
parameters used to quantify the cost of checkpointing and ABFT
protection. Then we analytically derive the minimal overhead for
all scenarios.

In Section 4.1, we start by defining some parameters, and then
proceed in Section 4.2 to determining the cost of the composite
approach. We compare this cost to that of classical approaches in
Section 4.3.

4.1 Application and checkpoint parameters
The execution of the application is partitioned into epochs. Within
an epoch, there are two phases for the application: the first phase
is spent outside the library (it is a GENERAL phase), and only
periodic checkpointing can be employed to protect from failures
during that phase. Then the second phase (a LIBRARY phase) is
spent into a compute intensive library routine that has the potential
to be protected by an ABFT method.

Such a scenario is very general, and many scientific applications
obey this scheme alternating phases spent outside and within a
library call that can be protected by ABFT techniques. Since each
epoch can be analyzed independently, without loss of generality,
we focus on a single epoch.

Let us introduce some notations.The total duration of the epoch
is T0 = TG + TL, where TG and TL are the durations of the
GENERAL and LIBRARY phases, respectively. Let α be the fraction
of time spent in a LIBRARY phase: then we have TL = α×T0 and
TG = (1− α)× T0.

As already mentioned, another important parameter is the
amount of memory that is accessed during the LIBRARY phase (the
LIBRARY dataset). This parameter is important because the cost
of checkpointing in each phase is directly related to the amount
of memory that needs to be protected. The total memory foot-
print is M , and the associated checkpointing cost is C. We write
M = ML +ML̄, where ML is the size of the LIBRARY dataset,
and ML̄ is the size of the REMAINDER dataset. Similarly, we write
C = CL + CL̄, where CL is the cost of checkpointing ML, and
CL̄ the cost of checkpointing ML̄. We can define the parameter
ρ that defines the relative fraction of memory accessed during the
LIBRARY phase by ML = ρM , or, equivalently, by CL = ρC.

4.2 Cost of the composite approach
We now detail the cost of resilience during each phase of the
composite approach. We start with the intrinsic cost of the method
itself, i.e. assuming a fault-free execution. Then we account for the
cost of failures.

4.2.1 Fault-free execution
During the GENERAL phase, we envision two cases. First, if the du-
ration TG of this phase is short (smaller than PG, defined below),
then we simply take a partial checkpoint at the end of this phase,
before entering ABFT-protected mode. This checkpoint is of dura-
tionCL̄, because we need to save only the REMAINDER dataset be-
fore switching modes. Otherwise, if TG is large enough, we rely on
periodic checkpointing during the GENERAL phase: more specif-
ically, the regular execution is divided into periods of duration
PG =W +C. HereW is the amount of work done per period, and
the duration of each periodic checkpoint is C = CL̄+CL, because
the whole application footprint must be saved during a GENERAL
phase. The optimal value of PG will be computed below. Without
loss of generality, we assume an integer number of periods, and
the last periodic checkpoint replaces that of size CL̄ preceding the
switch to ABFT-protected mode.

Altogether, the length T ff
G of a fault-free execution of the GEN-

ERAL phase is the following:

• If TG < PG, then T ff
G = TG + CL̄

• Otherwise, we have TG
W

periods of length PG, so that

T ff
G =

TG
PG − C

× PG (1)

Now consider the LIBRARY phase: we use the ABFT-protection
algorithm, whose cost is modeled as an affine function of the
time-spent: if the computation time of the library routine is t, its
execution with the ABFT-protection algorithm becomes φ×t. Here,
φ > 1 accounts for the overhead paid per time-unit in ABFT-
protected mode. We used a linear model for the ABFT overhead,
because it fits the existing algorithms for linear algebra, but other
models could be considered.

In addition, we pay a checkpoint CL when exiting the library
call (to save computed data). Therefore, the fault-tree execution
time is

T ff
L = φ× TL + CL (2)

Finally, the fault-free execution time of the whole epoch is
simply

T ff = T ff
G + T ff

L (3)
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where T ff
G and T ff

L are computed according to the Equations (1)
and (2).

4.2.2 Cost of failures
Next we have to account for failures. During t time units of execu-
tion, the expectation of the number of failures is t

µ
, where µ is the

mean time between failures of the platform. Note that if the plat-
form if made of N identical resources whose individual mean time
between failures is µind, then µ = µind

N
. This relation is agnostic

of the granularity of the resources, which can be anything from a
single CPU to a complex multi-core socket.

For each phase, we have a similar equation: the final execution
time is the fault-free execution time, plus the number of failures
multiplied by the (average) time lost per failure:

T final
G = T ff

G +
T final
G

µ
× tlost

G (4)

T final
L = T ff

L +
T final
L

µ
× tlost

L (5)

Equation (4) reads as follows: T ff
G is the failure-free execution

time, to which we add the time lost due to failures; the expected
number of failures is T final

G
µ

, and tlost
G is the average time lost per fail-

ure. We have a similar reasoning for Equation (5). There remains
to compute tlost

G and tlost
L .

For tlost
G (GENERAL phase), we discuss both cases:

• If TG < PG: since we have no checkpoint until the end of
the GENERAL phase, we have to redo the execution from the
beginning of the phase. In average, the failure strikes at the
middle of the phase, hence the expectation of loss is T ff

G
2

time
units. We then need to add the downtime D (time to reboot the
resource or set up a spare) and the recovery R. Here R is the
time needed for a complete reload from the checkpoint (and
R = C if read and write operations from/to the stable storage
have the same speed). We derive that

tlost
G = D +R+

T ff
G

2
(6)

• If TG > PG: in this case, we have periodic checkpoints, and the
amount of execution which needs to be re-done after a failure
corresponds to half a checkpoint period in average, so that

tlost
G = D +R+

PG
2

(7)

For tlost
L (LIBRARY phase), we derive that

tlost
L = D +RL̄ + ReconsABFT

Here, RL̄ is the time for reloading the checkpoint of the REMAIN-
DER dataset (and in many cases RL̄ = CL̄) . As for the LI-
BRARY dataset, there is no checkpoint to retrieve, but instead it
must be reconstructed from the ABFT checksums, which takes a
time ReconsABFT.

4.2.3 Optimization
We check from Equations (2) and (5) that T final

L is always a constant.
Indeed, we derive that

T final
L =

1

1− D+RL̄+ReconsABFT
µ

× (φ× TL + CL) (8)

As for T final
G , it depends on the value of TG: it is constant when

TG is small. In that case, we derive that

T final
G =

1

1− D+R+
TG+CL̄

2
µ

× (TG + CL̄) (9)
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The interesting case is when TG is large: in that case, we have to
determine the optimal value of the checkpointing period PG which
minimizes T final

G . From Equations (1), (4) and (7), we derive that

T final
G =

TG
X

where X =

(
1− C

PG

)(
1−

D +R+ PG
2

µ

)
(10)

We rewrite

X = (1− C

2µ
)− PG

2µ
− C(µ−D −R)

µPG

The maximum of X gives the optimal period P opt
G . Differentiating

X as a function of PG, we find that it is obtained for

P opt
G =

√
2C(µ−D −R) (11)

Plugging the value of P opt
G back into Equation (10) provides the

optimal value of T final
G when TG is large.

We have successfully computed the final execution time T final of
our composite approach in all cases. In the experiments provided in
Section 5, we report the corresponding waste. The waste is defined
as the fraction of time that platform resources do not progress
application’s computation (due to the intrinsic overhead of the
resilience technique and to failures that strike the application during
execution). The waste is given by

WASTE = 1− T0

T final (12)

We conclude this section with a word of caution: the optimal
value of the waste is only a first-order approximation, not an exact
value. Equation (11) is a refined version of well known formulas
by Young [24] and Daly [8]. But just as in [8, 24], the formula only
holds when µ, the value of the MTBF, is large in front of the other
parameters. Owing to this hypothesis, we can neglect the probabil-
ity of several failures occurring during the same checkpointing pe-
riod. However, when doing simulations in the experiments, we ac-
count for all unlikely scenarios and re-execute the work until each
period is successfully completed.

4.3 Comparison with conservative approaches
A fully conservative approach, agnostic of the ABFT library, would
perform periodic checkpoints throughout the execution of the
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whole epoch. As already mentioned, we call this approach PURE-
PERIODICCKPT (see Figure 5). Let T final

PC be the final execution
time with this PUREPERIODICCKPT approach; it can be computed
from the results of Section 4.2 as follows:

• No ABFT: α = 0 and T final
L = 0

• We optimize T final
PC = T final

G just as before, with the same optimal
period P opt

PC = P opt
G , employed throughout the epoch.

One can reduce the cost of PUREPERIODICCKPT by noticing
that during the LIBRARY epoch, only the LIBRARY dataset is mod-
ified (namely ML). Employing incremental checkpointing would,
in this case, yield a checkpoint cost reduction (down to CL). Ob-
viously, with a different cost of checkpointing, the optimal check-
point period is different. Therefore, a semi-conservative approach
(called BIPERIODICCKPT, see Figure 6) assumes that the check-
point system can recognize that the program has entered a library
routine that modifies only a subset of the dataset, and switches to
the optimal checkpoint period according to the application phase.
During the GENERAL phase, the overhead of failures and protec-
tion remains unchanged, but during the LIBRARY phase, the cost of
a checkpoint is reduced to CL (instead of C); however, the cost of
reloading from a checkpoint remains R (since the different incre-
mental checkpoints must be combined to recover the entire dataset
at rollback time). This leads to two different checkpointing peri-
ods, one for each phase. The new optimal checkpoint period can be
modeled as follows:

• T final
PC = T final

G + T final
LPC , where T final

G is computed as before
• T final

LPC is computed similarly as T final
G , but with different param-

eters:

T final
LPC =

1

1− D+R+
PBPC

2
µ

× PBPC
PBPC − CL

× TL (13)

and the optimal period is

P opt
BPC =

√
2CL(µ−D −R) (14)

5. Evaluation
In this section, we evaluate the ABFT&PERIODICCKPT protocol
in simulation, and compare its performance to PUREPERIODIC-
CKPT and BIPERIODICCKPT in different scenarios. We start with
a description of the simulator and experiments in Section 5.1. Then
we detail the results of the comparison of the different protocols in
Section 5.2. In Section 5.2, we compare simulation results and pre-
dicted performance results analytically computed from the models
presented in Sections 4.2 and 4.3, and we do obtain a very good
correspondence. Finally, we conduct a weak scalability study in
Section 5.3, in order to assess the performance of the various pro-
tocols at very large scale.

5.1 Validation
To validate the performance models, we have implemented a sim-
ulator, based on discrete event simulation, that reproduces the be-
havior of the different algorithms, even in cases that the perfor-
mance models cannot cover. Indeed, as mentioned in Section 4.2.3,
a few approximations have been made when considering the math-
ematical models, to make their expression tractable. For example,
the model assumes that a single failure may hit the system, until
its recovery. The effect of events like overlapping failures, which
is uncommon when the MTBF is large enough, is neglected in
the proposed performance model. The simulator, however, takes
these events into account, accurately reproducing the correspond-
ing costs.

In the simulator, failures are generated following an Exponential
distribution law parameterized to fix the MTBF to a given value.
Then the application, and the chosen fault tolerance mechanism,
are unfolded on that set of failures, triggering rollbacks, and other
protocol-specific overheads, to measure the duration of the execu-
tion. For each scenario, and each parameter, the average termina-
tion time over a thousand executions is returned by the simulator.

We present in [3] an exhaustive evaluation of the different pa-
rameters independently, comparing the results as predicted by the
models, and the simulation. In this paper, we focus the analysis on a
smaller subset. We consider an application that executes for a week
when there are neither a fault tolerance mechanism nor any failure.
The time to take a checkpoint and rollback the whole application
is 10 minutes (C, R), a consistent order of magnitude for current
applications at large scale [14]. We consider that the ratio of the
memory that is modified by the LIBRARY phase (ρ) is fixed, at 0.8
(to vary a single parameter at a time in our simulation), and the
overhead due to ABFT is φ = 1.03.

Figure 7 presents 6 evaluations of that scenario. We vary in the
x-axis the MTBF of the system, and in the y-axis the ratio of time
spent in the LIBRARY phase (α). In Figures 7a to 7f, we present the
waste as predicted by the model, and the difference between the
waste as measured by the simulator and the waste as predicted by
the model, for a given combination of parameters and protocol.

From the validation perspective, the figures on the right side
show an excellent correspondence between predicted (from the
model) and actual (obtained form simulation) values. For small
MTBF values, the model tend to slightly under-estimate the waste.
That under-estimation does not exceed 12% in the worst case,
fastly decrease to below 5%. Qualitatively, this under-estimation
was expected, because of the approximations that must be done to
allow a closed formula representation is to assume that failures will
not hit processors while they are recovering from a previous failure.
In reality, when the MTBF is very small, this event can sometimes
happen, forcing the system to start a new recovery, and introducing
additional waste.

Figures 8 and 9 represent the same comparison, but varying
respectfully the amount of memory modified by the ABFT routine,
and the overhead of the ABFT technique. In these cases, we fixed
the time spent in the LIBRARY phase to 80% of the epoch duration.

The same analysis can be conducted in all cases: Simulation
and Model predict the same behaviors, but the Model tend to
slightly under-estimate the waste, when the MTBF becomes very
small. The model proves however very close to the times obtained
by simulations, and we will continue the analysis considering the
model results only.

5.2 PUREPERIODICCKPT, BIPERIODICCKPT, and
ABFT&PERIODICCKPT

Consider Figures 7a and 7b, that represent the waste of PURE-
PERIODICCKPT as a function of the MTBF (µ) and the amount
of time spent in the LIBRARY routine (α): it is obvious that the
PUREPERIODICCKPT protocol, which is oblivious of the different
phases of the application, presents a waste that is function of the
MTBF only. As already evaluated and explained in many other
works, when the MTBF increases, the waste decreases, because
the overheads due to failure handling tend to 0, and the optimal
checkpointing period can increase significantly, reducing the waste
due to resilience in a fault-free execution.

Comparatively, for the protocol BIPERIODICCKPT, presented
in Figures 7c and 7d, the parameter α influences the optimal peri-
ods used in the LIBRARY phase and the one used in the GENERAL
phase. Since the cost of checkpointing for these phases differ by
20% (CL = 0.8C), when the relative time spent in the GENERAL
routine increases (α goes to 0), then the protocol behaves more and

6 2013/9/13



T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2
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(a) Waste of PUREPERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2
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(b) PUREPERIODICCKPT: Difference of the measured waste by simu-
lation minus the predicted waste by the model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2
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(c) Waste of BIPERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2
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(d) BIPERIODICCKPT: Difference of the measured waste by simulation
minus the predicted waste by the model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2
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(e) Waste of ABFT&PERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, ρ=0.8, φ=1.03, ReconsABFT=2
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(f) ABFT&PERIODICCKPT: Difference of the measured waste by sim-
ulation minus the predicted waste by the model

Figure 7: Waste as a function of MTBF and fraction of time spent in LIBRARY phase; comparison of results obtained by the models, and the
simulator. W =1 week, C =R =10 minutes, CL =0.8C, φ =1.03, ReconsABFT =2s.
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T0=1w, C=R=10min, D=1min, α=0.8, φ=1.03, ReconsABFT=2
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(a) Waste of PUREPERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, α=0.8, φ=1.03, ReconsABFT=2

 60  80  100  120  140  160  180  200  220  240

MTBF system (minutes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
a
ti
o
 o

f 
M

e
m

o
ry

 m
o
d
if
ie

d
 i
n
 L

ib
ra

ry
 P

h
a
s
e
 (

ρ
)

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) Waste of PUREPERIODICCKPT: Simulation

T0=1w, C=R=10min, D=1min, α=0.8, φ=1.03, ReconsABFT=2
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(c) Waste of BIPERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, α=0.8, φ=1.03, ReconsABFT=2
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(d) Waste of BIPERIODICCKPT: Simulation

T0=1w, C=R=10min, D=1min, α=0.8, φ=1.03, ReconsABFT=2
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(e) Waste of ABFT&PERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, α=0.8, φ=1.03, ReconsABFT=2
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(f) Waste of ABFT&PERIODICCKPT: Simulation

Figure 8: Waste as a function of MTBF and amount of memory modified by the ABFT routine. W =1 week, C =R =10 minutes, CL =0.8C,
φ =1.03, ReconsABFT =2s.
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(a) Waste of PUREPERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, α=0.8, ρ=0.8, ReconsABFT=2
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(b) Waste of PUREPERIODICCKPT: Simulation

T0=1w, C=R=10min, D=1min, α=0.8, ρ=0.8, ReconsABFT=2
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(c) Waste of BIPERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, α=0.8, ρ=0.8, ReconsABFT=2
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(d) Waste of BIPERIODICCKPT: Simulation

T0=1w, C=R=10min, D=1min, α=0.8, ρ=0.8, ReconsABFT=2

 60  80  100  120  140  160  180  200  220  240

MTBF system (minutes)

 0

 0.2

 0.4

 0.6

 0.8

 1

O
v
e
rh

e
a
d
 d

u
e
 t
o
 A

B
F

T
 t
e
c
h
n
iq

u
e
 (

φ
-1

)

 0

 0.2

 0.4

 0.6

 0.8

 1

(e) Waste of ABFT&PERIODICCKPT: Model

T0=1w, C=R=10min, D=1min, α=0.8, ρ=0.8, ReconsABFT=2
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(f) Waste of ABFT&PERIODICCKPT: Simulation

Figure 9: Waste as a function of MTBF and the ABFT overheads. W =1 week, C =R =10 minutes, CL =0.8C, φ =1.03, ReconsABFT =2s.
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more as PUREPERIODICCKPT. When α is almost 1, on the con-
trary, the behavior would be similar to a PUREPERIODICCKPT, but
with a checkpoint cost reduced of 20%. Thus, the waste becomes
minimal when α tends to 1.

In Figures 7e and 7f, we represent the waste for the ABFT-
&PERIODICCKPT protocol. When α tends to 0, as above, the pro-
tocol behaves as PUREPERIODICCKPT, and no benefit is shown. At
50% of time spent in the LIBRARY routine, the benefit, compared
to PUREPERIODICCKPT, but also compared to BIPERIODICCKPT
is already visible: for 50% of the failure handling (when the failure
hits during a LIBRARY phase), the cost of recovery is limited to
20% of the rollback cost, and the constant overhead of ABFT re-
covery. Moreover, periodic checkpointing is disabled during 50%
of the time, producing yet another gain compared to BIPERIODIC-
CKPT which still requires to save 80% of the memory periodically.
In this case, the waste induced by additional computations done
during the LIBRARY phase because of the ABFT protocol is com-
pensated by the gain in checkpoint avoidance. When going to the
extreme case of 100% of the time spent in the LIBRARY phases, the
overhead tends to that induced by the slowdown factor of ABFT
(φ = 1.03, hence 3% overhead).

5.3 Weak Scalability
As illustrated above, the ABFT&PERIODICCKPT approach shows
better performance when a significant time is spent during the
LIBRARY phase, and when the failure rate implies a small optimal
checkpointing period. If the checkpointing period is large (because
failures are rare), or if the duration of the LIBRARY phase is small,
then the optimal checkpointing interval becomes larger than the
duration of the LIBRARY phase, and the algorithm automatically
resorts to the BIPERIODICCKPT protocol. This can also be the
case when the epoch itself is smaller than (or of the same order
of magnitude as) the optimal checkpointing interval (i.e., when the
application does a fast switching between LIBRARY and GENERAL
phases).

However, consider such an application that frequently switches
between (relatively short) LIBRARY and GENERAL phases. When
porting that application to a future larger scale machine, the num-
ber of nodes that are involved in the execution will increase, and at
the same time, the amount of memory on which the ABFT oper-
ation is applied will grow (following Gustafson’s law). This has
a double impact: the time spent in the ABFT routine increases,
while at the same time, the MTBF of the machine decreases. In this
section, we evaluate quantitatively how this scaling factor impacts
the relative performance of the ABFT&PERIODICCKPT, PURE-
PERIODICCKPT and BIPERIODICCKPT algorithms.

First, we consider the case of an application where the LIBRARY
and GENERAL phases scale at the same rate. We take the example
of linear algebra kernels operating on 2D-arrays (matrices), that
scale in O(n3) of the array order n (in both phases). Following
a weak scaling approach, the application uses a fixed amount of
memory Mind per node, and when increasing the number x of
nodes, the total amount of memory increases linearly as M =
xMind. Thus O(n2) = O(x), and the parallel completion time
of the O(n3) operations, assuming perfect parallelism, scales in
O(
√
x).

To instantiate this case, we take an application that would it-
erate over a thousand epochs, each epoch consisting of 80% of a
LIBRARY phase, and 20% of a GENERAL phase. At 10,000 nodes,
the duration of a single epoch is arbitrarily set to 1 minute, and
the scaling factor of the corresponding O(n3) operation is applied,
when varying the number of nodes that participate in the computa-
tion. We set the duration of the complete checkpoint and rollback
(C and R, respectively) to 1 minute when 10,000 nodes are in-
volved, and we scale this value linearly with the total amount of
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Figure 10: Completion Time for ABFT&PERIODICCKPT, BI-
PERIODICCKPT and PUREPERIODICCKPT, compared to the fault-
free execution, when considering the weak scaling of an application
with fixed ratio of 80% spent in a LIBRARY routine

memory, when varying the number of nodes. The MTBF at 10,000
nodes is set to 1 failure every day, and this also scales linearly with
the number of components. The ABFT overheads, and the down-
time, are set to the same values as in the previous section, and 80%
of the application memory (ML) is touched by the LIBRARY phase.

Given these parameters, Figure 10 shows (i) the relative waste of
PUREPERIODICCKPT, BIPERIODICCKPT, and ABFT&PERIODIC-
CKPT, as a function of the number of nodes, and (ii) the average
number of faults that each execution will have to deal with to com-
plete. The expected number of faults is the ratio of the application
duration by the platform MTBF (which decreases when the number
of nodes increases, generating more failures). The fault-free execu-
tion time increases with the number of nodes (as noted above), and
the fault-tolerant execution time is also increased by the waste due
to the protocol. Thus, the total execution time of PUREPERIODIC-
CKPT or BIPERIODICCKPT is larger at 1 million nodes than the
total execution time of ABFT&PERIODICCKPT at the same scale,
which explains why more failures happen for these protocols.

When comparing BIPERIODICCKPT and PUREPERIODIC-
CKPT, one can see the benefit of incremental checkpointing, which
spares about 20% of the checkpoint time during 80% of the check-
points: this benefit shows up by a small linear reduction of the
waste for BIPERIODICCKPT. However, both approaches perform
similarly with respect to the number of nodes in this weak-scaling
experiment.

Up to approximately 100,000 nodes, the fault-free overheads
of ABFT negatively impacts the waste of the ABFT&PERIODIC-
CKPT approach, compared to BIPERIODICCKPT or PUREPERIODIC-
CKPT. Because the MTBF of the platform is very large compared
to the application execution time (and hence to the duration of each
LIBRARY phase), periodic checkpointing approaches have a very
large checkpointing interval, introducing very few checkpoints,
thus a small failure-free overhead. Because failures are rare, the
cost due to time lost at rollbacks does not overcome the benefits
of a small failure-free overhead, while the ABFT technique must
pay the linear overhead of maintaining the redundancy information
during the whole computation of the LIBRARY phase.

When the number of nodes reaches 100,000 nodes, or more,
however, two things happen: failures become more frequent, and
the time lost due to failures starts to impact rollback recovery
approaches. Thus, the optimal checkpointing interval of periodic
checkpointing becomes smaller, introducing more checkpointing
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Figure 11: Completion Time for ABFT&PERIODICCKPT, BI-
PERIODICCKPT and PUREPERIODICCKPT, compared to the fault-
free execution, when considering the weak scaling of an application
with variable ratio of time spent in a LIBRARY routine

overheads. During 80% of the execution, however, the ABFT-
&PERIODICCKPT approach can avoid these overheads, and when
they reach the level of linear overheads due to the ABFT technique,
ABFT&PERIODICCKPT starts to scale better than both periodic
checkpointing approaches.

All protocols have to resort to checkpointing during the GEN-
ERAL phase of the application. Thus, if failures hit during this
phase (which happens 20% of the times in this example), they
will all have to resort to rollbacking and lose some computation
time. Hence, when the number of nodes increase and the MTBF de-
creases, eventually, the time spent in rollbacking and re-computing,
which is linear in the number of faults, will increase the waste of all
algorithms. However, one can see that this part is better controlled
by the ABFT&PERIODICCKPT algorithm.

Next we consider the case of an unbalanced GENERAL phase:
consider an application where the LIBRARY phase has a costO(n3)
(where n is the problem size), as above, but where the GENERAL
phase consists of O(n2) operations. This kind of behavior is re-
flected in many applications where matrix data is updated or mod-
ified between consecutive calls to computation kernels. Then, the
time spent in the LIBRARY phase will increase faster with the num-
ber of nodes than the time spent in the GENERAL phase, varying α.
This is what is represented in Figure 11. We took the same scenario
as above for Figure 10, but α is a function of the number of nodes
chosen such that at 10,000 nodes, α = T final

L /T final = 0.8, and ev-
erywhere, T final

L = O(n3) = O(
√
x), and T final

PC = O(n2) = O(1).
We give the value of α under the number of nodes, to show how the
fraction of time spent in LIBRARY phases increase with the number
of nodes.

The PUREPERIODICCKPT protocol is not impacted by this
change, and behaves exactly as in Figure 10. Note, however, that
T final = T final

L + T final
PC progresses at a lower rate in this scenario

than in the previous scenario, because T final
PC does not increase with

the number of nodes. Thus, the average number of faults observed
for all protocols is much smaller in this scenario. Because more
and more time (relative to the duration of the application) is spent
in the LIBRARY phase, where 20% of the memory does not need
to be saved, the BIPERIODICCKPT algorithm increases its bene-
fit, compared to PUREPERIODICCKPT: less overhead is paid for
checkpoint that happen during LIBRARY phases, and the optimal
period of checkpointing during these phases are longer. The cost
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Figure 12: Completion Time for ABFT&PERIODICCKPT, BI-
PERIODICCKPT and PUREPERIODICCKPT, compared to the fault-
free execution, when considering the weak scaling of an application
with variable ratio of time spent in a LIBRARY routine, and constant
checkpointing time

of failures, however, remains the same, since the state of the entire
application (LIBRARY memory, and REMAINDER memory) must
be restored at rollback time.

The benefit on ABFT&PERIODICCKPT, however, is more sig-
nificant. The latter protocol, benefits from the increased α ratio in
both cases: since more time is spent in the LIBRARY phase, pe-
riodic checkpointing is de-activated for relatively longer periods.
Moreover, this increases the probability that a failure will happen
during the LIBRARY phase, where the recovery cost is greatly re-
duced using ABFT techniques. Thus, ABFT&PERIODICCKPT is
capable of mitigating failures at a much smaller overhead than sim-
ple periodic checkpointing, and more importantly with a much bet-
ter scalability.

In both previous evaluations, we have always considered that
the checkpointing (and rollback recovery) time is proportional to
the global amount of memory that needs to be saved in these
checkpoints. This is realistic, if the checkpoint needs to be stored in
a remote place, to guarantee its availability after a failure occurs. In
this case, the interconnect (or the bandwidth capacity of the disks)
eventually becomes a bottleneck, and the saving time becomes
proportional to the number of computing resource that try to save
their state simultaneously.

To mitigate the negative effect of this bottleneck, system design-
ers are studying a couple of alternative approaches. One consists in
featuring each computing node with local storage capability, en-
suring through the hardware that this storage will remain available
during a failure of the node. Another approach consists in using
the memory of the other processors to store the checkpoint, pair-
ing nodes as “buddies”, thus allowing to take advantage of the high
bandwidth capability of the high speed network to design a scalable
checkpoint storage mechanism [11, 18, 21, 25].

It might thus be reasonable to consider in the future that the
checkpoint storage time will not increase with the number of nodes,
but on the contrary will remain constant. This is the scenario that
we contemplate in Figure 12. The scenario is identical to the pre-
vious scenario of Figure 11, but the checkpoint time (C) and roll-
back recovery time (R) is independent of the number of nodes that
checkpoint, and is fixed at 60s.

One can see a noteworthy benefit on both periodic checkpoint-
ing protocols: even at 1 million nodes, the waste due to the pro-
tocols and the few faults that have the time to happen during the
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execution (up to 6 failures in average during the whole execu-
tion) accumulate both below 15%. At the same time, the ABFT
technique continues to introduce its constant overhead (due to ad-
ditional computation) during the whole execution, and appears to
present a waste that is almost constant when the number of nodes
increases.

Noticeably, the number of failures that happen under the
ABFT&PERIODICCKPT protocol is close to (but smaller than)
the number of failures that happen when considering the periodic
checkpointing, although the waste of the ABFT&PERIODICCKPT
protocol is significantly smaller (at large scale) than the waste of the
other protocols. This illustrates the fact that the relative overheads
to handle each fault using the ABFT&PERIODICCKPT protocol
diminish faster than the corresponding relative overheads of the
periodic checkpointing protocols.

6. Conclusion
In this paper, we have proposed a new algorithm that composes
fault tolerance approaches for applications that alternate between
ABFT-aware and ABFT-unaware sections. Each of these sections
are protected by it’s own mechanism, ABFT in one case and check-
point/restart in the other. We presented a performance model for
this algorithm, and compared its performance with traditional peri-
odic checkpointing with rollback recovery algorithms. To validate
the model, we developed a simulator, and compared the simu-
lated values with the predicted performance. Our model predicts
that the cost of a “checkpoint only” approach will inflict a rea-
sonable overhead only under highly optimistic assumptions where
the checkpointing cost stagnates when the number of computa-
tional resources increases. However, under more realistic assump-
tions where the checkpointing cost increases with the number
of resources, the composite approach will provide significantly
greater benefits compared with checkpoint/restart, by minimizing
the waste and thus increasing the performanceplatform through-
put. A weak scalability study shows that the gain of the composite
approach is expected to grow even more at very large scale.
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