List

1.1
1.2
1.3

14

1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

1.13

1.14

of Figures

The software stack of PLASMA, Version 2.3.

QUARK dgemm (matrix multiply) task definition in PLASMA.

QUARK dgemm (matrix multiply) task invocation (queueing)
in PLASMA.
PLASMA functions, POTRF, TRTRI, LAUUM, computing the
inverse of a symmetric positive definite matrix using QUARK
for superscalar parallelization.
Three separate DAGs for the components of matrix inversion
and their combined DAG.
Trace of a small matrix inversion run on eight cores, with and
without barriers between phases.
Performance difference between matrix inversion codes with
and without barriers on a 48-core AMD-bases system. .
QUARK code for the QR factorization using CPU cores only.

QUARK code for the QR factorization using CPUs and a GPU.

Performance of the QR factorization using 24 AMD-based cores
and an NVIDIA Fermi GPU.
Execution breakdown for recursive tile LU factorization: fac-
torization of the first panel using the parallel kernel is followed
by the corresponding updates to the trailing submatrix.

Pseudo-code for the recursive panel factorization.
Fixed partitioning scheme used in the parallel recursive panel
factorization. o
Scalability study of the recursive parallel panel factorization
with various panel width 256.

11
11
12
13
13
14
15
16

18

19

List of Tables

Contents

1 Multithreading in the PLASMA Library
Jakub Kurzak, Piotr Luszczek, Asim YarKhan, Mathieu Faverge, Julien
Langou, Henricus Bouwmeester, and Jack Dongarra

1.1 Introduction

1.1.1

1.1.3 PLASMA Scheduling
1.2 Multithreading in PLASMA

PLASMA Desing Principles
1.1.2 PLASMA Software Stack

1.3 Dynamic Scheduling with QUARK
1.4 Parallel Composition
1.5 Task Aggregation

1.6 Nested Parallelism

1.6.1
1.6.2

1.6.3
1.6.4

1.6.5

Bibliography

The Case of Partial Pivoting

Implementation Details of Recursive Panel Factoriza-
tion

Data Partitioning

Scalability Results of the Parallel Recursive Panel Ker-
nel
Further Implementation Details and Optimization

Techniques

1

SOk W NN

oo

14
15

17
17

19

20

23

Chapter 1

Multithreading in the PLASMA
Library

Jakub Kurzak

University of Tennessee, Knoxuville

Piotr Luszczek

University of Tennessee, Knozville

Asim YarKhan

University of Tennessee, Knozuville

Mathieu Faverge

University of Tennessee, Knozxuville

Julien Langou

University of Colorado, Denver

Henricus Bouwmeester

University of Colorado, Denver

Jack Dongarra

University of Tennessee, Knoxville
Oak Ridge National Laboratory
University of Manchester

1.1 IntroducCtiOniiniii i e e

1.2
1.3
1.4
1.5
1.6

1.1.1 PLASMA Desing Principles ...,

1.1.2 PLASMA Software Stackcoiiiiiiiiiiiiiiiiiiaaananns
1.1.3 PLASMA Schedulingcouuiiiiiiiiiiiiiiiiiiiaiaiannns

Multithreading in PLASMA ... e
Dynamic Scheduling with QUARK oo,
Parallel Compositioniuiuiiiriti i
Task AgEregationc..iiuiiuniun ittt

Nested Parallelism
1.6.1 The Case of Partial Pivoting i,

1.6.2 Implementation Details of Recursive Panel Factorization
1.6.3 Data Partitioning o i
1.6.4 Scalability Results of the Parallel Recursive Panel Kernel
1.6.5 Further Implementation Details and Optimization Techniques ..

2 Book title goes here

1.1 Introduction

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)
is a numerical software library for solving problems in dense linear algebra
on systems of multicore processors and multi-socket systems of multicore pro-
cessors [2]. PLASMA offers routines for solving a wide range of problems in
dense linear algebra, such as: non-symmetric, symmetric and symmetric posi-
tive definite systems of linear equations, least square problems, singular value
problems and eigenvalue problems (currently only symmetric eigenvalue prob-
lems). PLASMA solves these problems in real and complex arithmetic and in
single and double precision. PLASMA is designed to give high efficiency on
homogeneous multicore processors and multi-socket systems of multicore pro-
cessors. As of today, the majority of such systems are on-chip symmetric mul-
tiprocessors with classic super-scalar processors as their building blocks (x86
and alike) augmented with short-vector SIMD extensions (SSE and alike).
PLASMA has been designed to supercede LAPACK [6], principally by restruc-
turing the software to achieve much greater efficiency on modern computers
based on multicore processors.

The interesting part of PLASMA from the mutithreading perspective is the
variety of scheduling mechanism utilized by PLASMA. In the next subsection
the main desing principles of PLASMA are introduced. Section 1.2 discusses
the different multithreading mechanisms employed by PLASMA. Section 1.3
introduces PLASMA’s most powerfull mechanism of dynamic runtime task
scheduling with the QUARK scheduler and briefly iterates through QUARK’s
extensions essential to the implementation of a production-quality numerical
software. Section 1.4 highlights the advantages of dynamic scheduling for par-
allel task composition by showing how PLASMA implements explicit matrix
inversion using the Cholesky factorization. Section 1.5 covers the concept of
task aggregation when large clusters of tasks are offloaded to a GPU acceler-
ator. Finally, section 1.6 discusses the very important case of using QUARK
for exploiting nested parallelism.

1.1.1 PLASMA Desing Principles

The main motivation behind the PLASMA project are performance short-
comings of LAPACK [6] and ScaLAPACK [11] on shared memory systems,
specifically systems consisting of multiple sockets of multicore processors. The
three crucial elements that allow PLASMA to achieve performance greatly
exceeding that of LAPACK and ScaLAPACK are: the implementation of tile
algorithms, the application of tile data layout and the use of dynamic schedul-
ing. Although some performance benefits can be delivered by each one of these
techniques on its own, it is only the combination of all of them that delivers
maximum performance and highest hardware utilization.

Multithreading in the PLASMA Library 3

Tile algorithms are based on the idea of processing the matrix by square
tiles of relatively small size, such that a tile fits entirely in one of the cache
levels associated with one core. This way a tile can be loaded to the cache
and processed completely before being evicted back to the main memory. Of
the three types of cache misses, compulsory, capacity and conflict, the use of
tile algorithms minimizes the number of capacity misses, since each operation
loads the amount of data that does not “overflow” the cache.

Tile layout is based on the idea of storing the matrix by square tiles of
relatively small size, such that each tile occupies a continuous memory region.
This way a tile can be loaded to the cache memory efficiently and the risk of
evicting it from the cache memory before it is completely processed is mini-
mized. Of the three types of cache misses, compulsory, capacity and conflict,
the use of tile layout minimizes the number of conflict misses, since a contin-
uous region of memory will completely fill out a set-associative cache memory
before an eviction can happen. Also, from the standpoint of multithreaded
execution, the probability of false sharing is minimized. It can only affect the
cache lines containing the beginning and the ending of a tile.

Dynamic scheduling is the idea of assigning work to cores based on the
availability of data for processing at any given point in time and is also referred
to as data-driven scheduling. The concept is related closely to the idea of ex-
pressing computation through a task graph, often referred to as the DAG (Di-
rect Acyclic Graph), and the flexibility of exploring the DAG at runtime. Thus,
to a large extent, dynamic scheduling is synonymous with runtime scheduling.
An important concept here is the one of the critical path, which defines the
upper bound on the achievable parallelism and needs to be pursued at the max-
imum speed. This is in direct opposition to the fork-and-join or data-parallel
programming models, where artificial synchronization points expose serial sec-
tions of the code, where multiple cores are idle, while sequential processing
takes place.

1.1.2 PLASMA Software Stack

Starting from the PLASMA Version 2.2, released in July 2010, the library
is built on top of standard software components, all of which are either avail-
able as open source or are standard OS facilities. Some of them can be replaced
by packages provided by hardware vendors for efficiency reasons. Figure 1.1
presents the current structure of PLASMA’s software stack. Following is a
brief bottom-up description of individual components.

Basic Linear Algebra Subprograms (BLAS) [10] is a, de facto standard,
set of basic linear algebra operations, such as vector and matrix multipli-
cation. CBLAS is the C language interface to BLAS [14]. Most commercial
and academic implementations of BLAS also provide CBLAS. Linear Algebra
PACKage (LAPACK) [6] is a software library for numerical linear algebra, a
direct predecessor of PLASMA, providing routines for solving linear systems
of equations, linear least square problems, eigenvalue problems and singular

4 Book title goes here

S l
3 [PLASMA

S QUARK I
=

2

z [core BLAS] [POSIX threads][hwloc]
% [LAPACKE C API]

§ CBLAS

B [(C)LAPACK]

Q

£

£

8 [BLAS]

FIGURE 1.1: The software stack of PLASMA, Version 2.3.

value problems. CLAPACK [15] is a version of LAPACK available from Netlib,
created by automatically translating FORTRAN LAPACK to C with the help
of the F2C [16] utility. It provides the same, FORTRAN, calling convention
as the “original” LAPACK. LAPACKE C API 7?7 is a proper C language
interface to LAPACK (or CLAPACK).

“core BLAS” is a set of serial kernels, the building blocks for PLASMA’s
parallel algorithms. PLASMA scheduling mechanisms coordinate the execu-
tion of these kernels in parallel on multiple cores. PLASMA relies on POSIX
threads for access to the systems multithreading capabilities and on the
hwloc 7?7 library for the control of thread affinity. PLASMA employs static
scheduling, where threads have their work statically assigned and coordinate
execution through progress tables, but can also rely on the QUARK [25] sched-
uler for dynamic (runtime) scheduling of work to threads.

1.1.3 PLASMA Scheduling

By now, multicore processors are ubiquitous in both low-end consumer
electornics and high-end servers and supercomputer installations. This led to
the emergence of a myriad of multithreading frameworks, both academic and
commercial, embracing the idea of task scheduling: Cilk [12], OpenMP (task-
ing features) [22], Intel Threading Building Blocks [24], just to name a few
prominent examples. One expecially important category are multithreading
systems based on dataflow principles, which represent the computation as a
Direct Acyctlic Graph (DAG) and schedule tasks at runtime through resolu-
tion of data hazards: Read after Write (RaW), Write after Read (WaR) and
Write after Write (WaW). PLASMA’s scheduler QUARK is an example of
such a system. Two other, very similar, academic projects are also available:
StarSs [9] from Barcelona Supercomputer Center and StarPU [8] fron IN-

Multithreading in the PLASMA Library 5

RIA Bordeaux. While all three systems have their strength and weaknesses,
QUARK has vital extensions for use in a numerical library.

1.2 Multithreading in PLASMA

PLASMA has to be intialized with the call to the PLASMA_Init function,
before any calls to its computational routines can be made. When the user’s
(master) thread calls the PLASMA_Init function and specifies N as the number
of cores to use, PLASMA launches N —1 additional (worker) threads and puts
them in a waiting state. In the master thread, control returns to the user.
When the user calls PLASMA’s computational routine, the worker threads
are woken up and all the threads, including the user’s master thread, enter
the routine. Upon completion, worker threads return back to the waiting state,
while the master thread returns from the call. A call to the PLASMA Finalize
function terminates the worker threads.

PLASMA is thread-safe. Multiple PLASMA instances, referred to as con-
terts can be active at the same time without conflicts, with the restriction
that one user thread can be associated with one context only, i.e., one thread
can only call PLASMA_Init once, before it calls PLASMA Finalize. (Currently
contexts are managed implicitly. Context handle is not provided to the user.)
The typical usage scenario is to have a serial code (with a single thread) and
launch one instance of PLASMA to use all the cores in the system. However, it
is also possible for the user to spawn, e.g., four threads, each of which creates
a four-thread instance of PLASMA, in order to exploit 16-way parallelism.
In such case, each PLASMA instance synchronizes its four threads, while
the user has to manage synchronization among the four PLASMA instances.
PLASMA provides mechanisms for managing thread affinity, i.e. controlling
the placement of threads on the physical cores.

PLASMA'’s statically scheduled routines follow the Single Program Mul-
tiple Data (SPMD) programming paradigm. Each thread knows its thread
ID (PLASMA_RANK) and the total number of threads within the context
(PLASMA_SIZE) and follows a specific execution path based on that infor-
mation. Synchronization is implemented though shared progress tables and
busy waiting. If a thread cannot progress, it yields the core to the OS
(sched_yield). PLASMA'’s dynamically scheduled routines follow the super-
scalar programming paradigm, where the code is written sequentially and
parallelized at runtime through the analysis of the dataflow between different
tasks. When a static routine is called, all the threads simply enter the SPMD
code of the routine. When a dynamic routine is called, the master thread en-
ters the superscalar routine and begins queueing tasks using QUARK’s task
queueing calls. At the same time all the worker threads enter QUARK’s worker
loop, where they keep executing the queued tasks until notified by the master.

6 Book title goes here

The master also participates in the execution of tasks, unless overwhelmed
with the job of queueing.

PLASMA’s computational routines are implemented using either static
or dynamic scheduling or both. PLASMA provides a switch, which can be
changed at runtime, to decide if static or dynamic scheduling is preferred, for
routines with both implementations. If a sequence of user’s calls invokes a
mixed set of routines with static implementations only and dynamic imple-
mentation only, PLASMA switches the scheduling mode on the flight. Stat-
ically scheduled rouitnes are separated with barriers and each switch from
static scheduling to dynamic scheduling, and vice versa, invokes a barrier.
However, any continuous sequence of dynamically scheduled routines is free
of barriers.

1.3 Dynamic Scheduling with QUARK

The QUARK scheduler targets multicore, multi-socket shared memory sys-
tems. The main design principle behind QUARK is implementation of the
dataflow model, where scheduling is based on data dependencies between tasks
in the task graph. The second principle is constrained use of resources, with
bounds on space and time complexity. The dataflow model is implemented
through analysis of data hazards, discussed in the following paragraphs. The
constrained use of resources is accomplished by exploration of the task graph
by a sliding window.

Even relatively small problems in dense linear algebra (such that can be
handled by a laptop or a desktop computer) can easily generate DAGs with
hundreds of thousands or even millions of tasks. Generation and exploration
of the entire DAG of such size would not be feasible. Instead, as execution
proceeds, tasks are continuously generated and executed. At any given point in
time, only a relatively small number of tasks (on the order of one thousand) is
stored in the task pool. The size of the sliding window is a tunable parameter,
allowing for trading the time and space overhead for scheduling flexibility.

Parallelization using QUARK relies on two steps: transforming function
calls to task definitions and replacing function calls with task queueing con-
structs. Figure 1.2 shows how PLASMA defines QUARK dgemm (matrix mul-
tiply) task using a call to CBLAS. Similarly to Cilk and SMPSs, functions
implementing parallel tasks must be side-effect free (cannot use global vari-
ables, etc.) The task definition takes QUARK handle as its only parameter,
declares all arguments as local variables, fetches them from QUARK using the
quark_unpack_args_ construct and executes the work (which in this example
is just calling the cblas_dgemm function).

In order to change a function call to a task invocation, one needs to:
replace the function call with a call to QUARK_Insert_Task(), pass the task

Multithreading in the PLASMA Library 7

void CORE._dgemm_quark (Quark xquark) {
int transA, transB;
int m, n, k;
double alpha, beta;
double xA, xB, xC;
int lda, ldb, ldc;

quark_unpack_args_13 (quark, transA, transB, m, n, k,
alpha, A, lda, B, 1ldb, beta, C, ldc);
cblas_.dgemm (CblasColMajor ,
(CBLAS_.TRANSPOSE) transA , (CBLAS_.TRANSPOSE) transB ,
m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);

s

FIGURE 1.2: QUARK dgemm (matrix multiply) task definition in
PLASMA.

name (pointer) as the first parameter, preceede each parameter with its size
and follow with direction. Array (pointer) arguments are preceeded with the
size of memory they occupy, in bytes, and followed with one of the directions:
INPUT, OUTPUT or INOUT. Scalar arguments are passed by a reference (pointer),
preceeded with the size of their datatype, and followed by VALUE in place of
the direction. Although scalar arguments are passed by reference, passing of
scalars has the pass by value semantics. (A copy of each scalar argument is
made at the time of call to Insert_Task().)

QUARK_Insert_Task (quark, CORE_dgemm_quark, task_flags ,

sizeof (PLASMA _enum) , &transA , VALUE,

sizeof (PLASMA _enum) , &transB , VALUE,
sizeof(int), &m, VALUE,
sizeof(int), &n , VALUE,

sizeof (int), &k, VALUE,

sizeof (double) , &alpha , VALUE,

sizeof (double)*nbxnb, A, INPUT,
sizeof(int), &lda , VALUE,

sizeof (double)*nbxnb, B, INPUT,
sizeof (int), &ldb , VALUE,

sizeof (double), &beta , VALUE,

sizeof (double)*nbxnb, C, INOUT,
sizeof(int), &ldec , VALUE,

0);

FIGURE 1.3: QUARK dgemm (matrix multiply) task invocation (queueing)
in PLASMA.

QUARK schedules tasks at runtime through the resolution of data hazards
(dependencies): Read after Write (RaW), Write after Read (WaR) and Write
after Write (WaW). The Read After Write (RaW) hazard, often referred to as
the true dependency, is the most common dependency. It defines the relation
between a task writing (“creating”) the data and the task reading (“consum-
ing”) the data. In that case the latter task has to wait until the former task
completes.

8 Book title goes here

The Write After Read (WaR) hazard is caused by a situation where a task
attempts to write (modify) data before a preceding task is finished reading
the data. In such case, the writer has to wait until the reader completes.
The dependency is not referred to as a true dependency, because it can be
eliminated by renaming (making a copy) of the data. Although the dependency
is unlikely to appear often in dense linear algebra, is has been encountered
and has to be handled by the scheduler to ensure correctness.

The Write After Write (WaW) hazard is caused by a situation where a
task attempts to write data before a preceding task is finished writing the
data. The final result is expected to be the output of the latter task, but if the
dependency is not preserved (and the former task completes after the latter
one), incorrect output will result. This is an important dependency in hard-
ware design of processor pipelines, where resource contention can be caused
by a limited number of registers. The situation is, however, quite unlikely for
a software scheduler, where the occurrence of the WaW hazard means that
some data is produced and overwritten before it is consumed. The same as
the WaR hazard, the WaW hazard can be removed by renaming.

1.4 Parallel Composition

One vital feature of QUARK, or any other superscalar scheduler, is the
parallel composition, i.e., the ability to construct larger task graphs from a
set of smaller task graphs. The benefit is exposing more parallelism in the
combined task graph then each of the components posseses alone. PLASMA’s
routine for computing an inverse of a symmetric positive definite matrix is a
great example [1].

The appropriate direct method to compute the solution of a symmetric
positive definite system of linear equations consists of computing the Cholesky
factorization of that matrix and then solving the underlying triangular sys-
tems. It is not recommended to use the inverse of a matrix in this case. How-
ever, some applications need to explicitly form the inverse of the matrix. A
canonical example is the computation of the variance-covariance matrix in
statistics. Higham [19, p.260,83] lists more such applications.

The matrix inversion presented here follows closely the one in LAPACK
and ScaLAPACK. The inversion is performed in-place, i.e., the data structure
initially containing matrix A is gradually overwritten with the result and even-
tually A~ replaces A. (No extra storage is used.) The algorithm involves three
steps: computing the Cholesky factorization (A = LLT), inverting the L factor
(computing L~!) and, finally, computing the inverse matrix A=! = Lt
In LAPACK the three steps are performed by the functions: POTRF, TRTRI
and LAUUM. In PLASMA the steps are performed by functions which process

Multithreading in the PLASMA Library 9

void plasma_pdpotrf_quark (...) {
for (k = 0; k < M; k++) {
QUARK_CORE_dpotrf (...);
for (m = k+1; m < M; mt+) {
QUARK_CORE._dtrsm (...);
¥

for (m = k+1; m < M; mt+) {
QUARK_CORE.dsyrk (...);
for (n = k+1; n < m; n++) {
QUARK_-CORE_dgemm (. ..) ;
}

}

void plasma_pdtrtri_quark (...) {
for (n = 0; n < N; n++) {
for (m = n+1; m < M; mt+) {
QUARK_CORE_dtrsm (. ..);
¥

for (m = n+1; m < M; mt+) {
for (k = 0; k < n; k++) {
QUARK_CORE_dgemm (. ..) ;
}

for (m = 0; m < n; mt+) {
QUARK_CORE_dtrsm (. . .

}
QUARK_CORE _dtrtri (.. .)

void plasma_pdlauum_quark (...) {
for (m= 0; m < M; mt++) {
for(n = 0; n < m; n++4) {
QUARK_CORE.dsyrk (...);
for (k = n+1; k < m; k++) {
QUARK_CORE_dgemm (. ..) ;
}

¥
for (n = 0; n < m; n++) {
QUARK_CORE_dtrmm (.. .);

}
QUARK_CORE_dlauum (. ..);

FIGURE 1.4: PLASMA functions, POTRF, TRTRI, LAUUM, computing
the inverse of a symmetric positive definite matrix using QUARK for super-
scalar parallelization.

the matrix by tiles define the work in terms of tile operations (tile kernels),
and use QUARK to queue, schedule and execute the kernels. Figure 1.4 shows
an excerpt of PLASMA implementation of the three functions. Each one in-
cludes four loops, the first one with three levels of nesting, the other two with
two levels of nesting. All work in expressed through elementary BLAS oper-
ations encapsulated in core_blas kernels: POTRF, TRSM, SYRK, GEMM,
TRTRI, TRMM, LAUUM.

The scheduler addresses three important problems in parallel software de-
velopment: complexity, productivity and performance. A superscalar scheduler

10 Book title goes here

eliminates the complexity of writing parallel software, by automatically paral-
lelizing algorithms defined sequentially and guaranteeing parallel correctness
of sequentially expressed algorithms. For some workloads in dense linear al-
gebra manual parallelization is relatively straightforward. A good example
here is the Cholesky factorization (when considered alone) and its statically
scheduled implementation in PLASMA [20]. For other operations it becomes
nontrivial. Designing a static schedule for the combined three operations of
the matrix inversion would be much harder. Finally, for some operations it
becomes prohibitively complex. A good example here are PLASMA routines
for band reductions through bulge chasing [21].

Another benefit of the scheduler is productivity. Thanks to the fact that
sequential correctness guarantees parallel correctness, the scheduler facilitates
very rapid development of numerical software, where manual design of paral-
lel codes is labor intensive and error prone, causing long development times.
Yet another benefit is the ability to do rapid prototyping of new algorithms
and analysis of their parallel performance without the tedious work of par-
allelization. Finally, the scheduler also provides for increased performance,
by identifying parallel scheduling opportunities where a human programmer
would miss them. Also, it is resilient to fluctuations in task execution time,
OS jitter and adverse effects of resource sharing. (Such adverse effects will
cause a graceful degradation rather than a catastrophic performance loss).

Figures 1.5 and 1.6 further strengthen those points. Figures 1.5 shows the
three DAGs of the three components of the matrix inversion and the aggregate
DAG of the entire inversion. The DAG aggregation is a natural behavior of
QUARK and happens automatically upon invocation of the three routines on
Figure 1.4. The DAG created by stacking the DAGs of the three components
on top of each other is taller and thinner, which means its sequential part (the
critical path) is longer and its parallelism is more confined. The aggregate DAG
is shorter and wider, meaning shorter critical path and more parallelism.

Figure 1.6 shows execution traces of the matrix inversion with and without
barriers between phases. The parallelism of each separate phase is limited by
its data dependencies, causing gaps in execution. However, when the barriers
are removed the three phases fill out each others gaps, what results in a shorter
overall execution time. Figure 1.7 shows the difference in performance when
using a large system with 48 cores.

1.5 Task Aggregation

Task aggregation is a feature of QUARK allowing for creation of large tasks
representing agglomerates of smaller tasks. These tasks not only have a large
number of “inherited” dependencies, but also the number of dependencies is
not known at compile time, and determined at runtime instead. This feature

Multithreading in the PLASMA Library 11

FIGURE 1.5: Three separate DAGs for the components of matrix inversion
and their combined DAG.

I I
O e Tm O O 00 . [N SN QT TITTIOTITIT 11y 0O
[TTTTIC] 1 010 CITTTTTTITTT T EnEiann [mEE]
O T r o @i R ([[[[] O]
o o o O [T D S N NI O I 7771 (00 i
[] O [0 OO0 [i S e o 00 OO o
e Y s [0 0 oogd]
g LT o) I Mo 0 1 0
O T OO0 1 0 Y [A [T 117 O

:
:
:
%
|
5
@

[[] PoTRF
f | B RTRI
f [] tavum

FIGURE 1.6: Trace of a small matrix inversion run on eight cores, with and
without barriers between phases.

12 Book title goes here

250

200 no barrier

- - barrier

150

Gflopls
AN

100

50

0
3 N O N 3 N 3 N 3 3 N O N O
N N N N N N N N N N N N N N

M . R U O U G R S

Matrix Size

FIGURE 1.7: Performance difference between matrix inversion codes with
and without barriers on a 48-core AMD-bases system.

has two main applications. One is to mitigate scheduling overheads of very fine
granularity tasks, by increasing the level of granularity. Another is to offload
work to data-parallel devices, such as GPUs. Here the latter case will serve as
an example.

The main problem of existing approaches to accelerating dense linear al-
gebra using GPUs is that GPUs are used like monolithic devices, i.e., like
another “core” in the system. The massive disproportion of computing power
between the GPU and the standard cores creates problems in work scheduling
and load balancing. As an alternative, the GPU can be treated as a set of
cores, each of which can efficiently handle work at the same granularity as a
standard CPU core. The difficulty here comes from the fact that GPU cores
cannot synchronize work in any other way than through a global barrier. In
other words, the tasks offloaded to the GPU have to be independent.

The crucial concept here is the one of task aggregation. The GPU kernel
is an aggregate of many CPU kernels, i.e., one call to the GPU kernel replaces
many calls to CPU kernels. Because of the data-parallel nature of the GPU,
the CPU calls constituing the aggregate GPU call cannot have dependencies
among them. The GPU task call can be pictured in the DAG as a cluster
of CPU tasks with arrows coming into the cluster and out of the cluster,

Multithreading in the PLASMA Library 13

for (k = 0; k < SIZE; k++) {

QUARK_Insert_Task (CORE_sgeqrt, ...);

for (m = k+1; m < SIZE; mt+)
QUARK_Insert_Task (CORE_stsqrt, ...);

for (n = k+1; n < SIZE; n++)
QUARK_Insert_Task (CORE_sormqr, ...);

for (m = k+1; m < SIZE; m+t+)
for (n = k+1; n < SIZE; n++)

QUARK_Insert_Task (CORE_stsmqr, ...);

FIGURE 1.8: QUARK code for the QR factorization using CPU cores only.

but no arrows connecting the task inside the cluster. In order to support
this model, QUARK allows for queueing of tasks with a dynamic range of
dependencies. Initially, a task with no dependencies is created through a call
to QUARK Task_Init. Than any number of dependencies can be added to the
task using calls to QUARK_Task_Pack_Arg. Finally, the task can be queued with
a call to QUARK_Insert_Task_Packed.

The tile QR factorization will serve as an example here. Figure 1.8 shows
a QUARK implementation of the tile QR factorization using CPUs only. This
particular example consists of five loops with three levels of nesting. It is built
out of four core_blas kernels: GEQRT, TSQRT, ORMQR and TSMQR. More
details can be found in PLASMA literature. Figure 1.9 shows modifications
necessary to offload some of the tasks to the GPU. Here the last loop nest
is split into the CPUs part and the GPU part. The split is done along the n
dimension. While the CPUs get lookahead columns of the matrix to process,
the GPU gets SIZE —lookahead columns to process. The cuda_stsmqr kernel

for (k = 0; k < SIZE; k++) {
QUARK_Insert_-Task (CORE_sgeqrt, ...);

for (m = k+1; m < SIZE; mt+)
QUARK_Insert_Task (CORE_stsqrt, ...);
for (n = k+1; n < SIZE; n++)
QUARK_Insert_Task (CORE_sormqr, ...);
for (m = k+1; m < SIZE; mt+)
for (n = k+1; n < k+l+lookahead; n++)
QUARK_Insert_Task (CORE_stsmqr, ...);
task = QUARK_Task_Init(cuda_stsmqr, ...);
for (m = k+1; m < SIZE; m+t+)
for (n = k+l+lookahead; n < SIZE; n++) {
QUARK_Task_Pack_Arg(task , &C1, INOUT);
QUARK_Task_Pack_Arg(task , &C2, INOUT);
QUARK_Task_Pack_-Arg(task, &V2, INPUT);
QUARK_Task_Pack_Arg(task , &T, INPUT);

}
QUARK_Insert_Task_Packed (task);

FIGURE 1.9: QUARK code for the QR factorization using CPUs and a
GPU.

14 Book title goes here

0.6

CPUs + GPU

0.5

0.4

GPU

03 - = CPUs

Tflopls
\

0.2

0.1

N
N
Q

8

N

$ $ ® ®

N} N) A\

& S S S §
N &

O
O
N
N g

Matrix Size

FIGURE 1.10: Performance of the QR factorization using 24 AMD-based
cores and an NVIDIA Fermi GPU.

implements the GPU work, such that one tile of the matrix is (approximately)
processed by one multiprocessor of the GPU. At the same time all dependen-
cies corresponding to all the tile operations are created inside the double loop
nest.

Although GPU acceleration in PLASMA is currently in a prototype stage,
Figure 1.10 shows clearly that this approach allows to efficiently combine the
power of a GPU and a big number of conventional CPU cores. In this particu-
lar case, the 14 cores (SMs) of the Fermi GPU combined with 24 conventional
AMD cores were capable of delivering performance in excess of half a Ter-
aFlop/s.

1.6 Nested Parallelism

This Section describes two unique contributions, which are the use of
nested parallelism in QUARK and fine grained parallelization of the LU fac-
torization of a matrix panel using the recursive algorithm [18].

Multithreading in the PLASMA Library 15

XGETRF-REC Swap + xXTRSM Swap + XTRSM

N_H]

xGEMM XGEMM

xGEMM XGEMM

O T

FIGURE 1.11: Execution breakdown for recursive tile LU factorization: fac-
torization of the first panel using the parallel kernel is followed by the corre-
sponding updates to the trailing submatrix.

1.6.1 The Case of Partial Pivoting

Figure 1.11 shows the initial factorization steps of a matrix subdivided
into 9 tiles (a 3-by-3 grid of tiles). The first step is a recursive parallel fac-
torization of the first panel consisting of three leftmost tiles. Only when this
finishes, the other tasks may start executing, which creates an implicit syn-
chronization point. To avoid the negative impact on parallelism, we execute
this step on multiple cores (see Section 1.6.2 for further details) to minimize
the running time. However, we use nested parallelism model as most of the
tasks are handled by a single core and only the panel tasks are assigned to
more than one core. Unlike similar implementations [13], we do not use all
cores to handle the panel. There are two main reasons for this decision. First,
we use dynamic scheduling that enables us to hide the negative influence of
the panel factorization behind more efficient work performed by concurrent
tasks. And second, we have clearly observed the effect of diminishing returns
when using too many cores for the panel. Consequently, we do not use them
all and instead we keep the remaining cores busy with other critical tasks.

The next step is pivoting to the right of the panel that has just been
factorized. We combine in this step the triangular update (xTRSM in the
BLAS parlance) because there is no advantage of scheduling them separately
due to cache locality considerations. Just as the panel factorization locks the
panel and has a potential to temporarily stall the computation, the pivot
interchange has a similar effect. This is indicated by a rectangular outline
encompassing the tile updated by xTRSM of the tiles below it. Even though

16 Book title goes here

function xGETRFR(M, N, column) {

if N==1{ ’ single column, recursion stops
idx = split_IxAMAX(...) ’ compute local mazimum of modulus
gidx = combine_IXAMAX(idx) l combine local results l

split xSCAL(...) scale local data

} else {

xGETRFR(M, N/2, column) ’ recursive call to factor left half‘
xLASWP(...)
split xTRSM(...) triangular solve
split-xGEMM(...) ’ Schur’s complement
xGETRFR(M, N-N/2, column+N/2) recursive call to factor right half‘
e

FIGURE 1.12: Pseudo-code for the recursive panel factorization.

so many tiles are locked by the triangular update, there is still a potential
for parallelism because pivot swaps and the triangular update itself for a
single column is independent of other columns. We can then easily split the
operations along the tile boundaries and schedule them as independent tasks.
This observation is depicted in Figure 1.11 by showing two xTRSM updates
for two adjacent tiles in the topmost row of tiles instead of one update for
both tiles at once.

The last step shown in Figure 1.11 is an update based on the Schur com-
plement. It is the most computationally intensive operation in the LU factor-
ization and is commonly implemented with a call to a Level 3 BLAS kernel
called xGEMM. Instead of a single call that performs the whole update of
the trailing submatrix, we use multiple invocations of the routine because we
use a tile-based algorithm. In addition to exposing more parallelism and the
ability to alleviate the influence of algorithm’s synchronization points (such
as the panel factorization), by splitting the Schur update operation we are
able to obtain better performance than a single call to a parallelized vendor
library [4].

One thing not shown in Figure 1.11 is pivoting to-the-left because it does
not occur in the beginning of the factorization. It is necessary for the second
and subsequent panels. The swaps originating from different panels have to be
ordered correctly but are independent for each column, which is the basis for
running them in parallel. The only inhibitor of parallelism then is the fact that
the swapping operations are inherently memory-bound because they do not
involve any computation. On the other hand, the memory accesses are done
with a single level of indirection, which makes them very irregular in practice.
Producing such memory traffic from a single core might not take advantage of
the main memory’s ability to handle multiple outstanding data requests and

Multithreading in the PLASMA Library 17

the parallelism afforded by NUMA hardware. It is also noteworthy to mention
that the tasks performing the pivoting behind the panels are not located on the
critical path and therefore, are not essential for the remaining computational
steps in the sense that they could be potentially delayed toward the end of
the factorization.

1.6.2 Implementation Details of Recursive Panel Factoriza-
tion

Figure 1.12 shows a pseudo-code of our recursive implementation of panel
factorization. Even though the panel factorization is a lower order term —
O(NQ) — from the computational complexity perspective [7], it still poses a
problem in the parallel setting from the theoretical [5] and practical stand-
points [13]. To be more precise, the combined panel factorizations’ complexity
for the entire matrix is O(N*NB), where N is panel height (and matrix di-
mension) and NB is panel width. For good performance of BLAS calls, panel
width is commonly increased. This creates tension if the panel is a sequential
operation because a larger panel width results in larger Amdahl’s fraction [17].
Our own experiments revealed this to be a major obstacle to proper scalability
of our implementation of tile LU factorization with partial pivoting — a result
consistent with related efforts [13].

Aside from gaining high level formulation that is free of low level tuning
parameters, recursive formulation affords us to dispense of a higher level tun-
ing parameter commonly called algorithmic blocking. There is already panel
width — a tunable value used for merging multiple panel columns together.
Non-recursive panel factorizations could potentially establish another level of
tuning called inner-blocking [3, 4]. This is avoided in our implementation.

1.6.3 Data Partitioning

The challenging part of the parallelization is the fact that the recursive
formulation suffers from inherent sequential control flow that is characteristic
of the column-oriented implementation employed by LAPACK and Scal.A-
PACK. As a first step then, we apply a 1D partitioning technique that has
proven successful before [13]. We employed this technique for the recursion-
stopping case: single column factorization. The recursive formulation of the
LU algorithm poses another problem, namely the use of Level 3 BLAS call
for triangular solve — xTRSM() and LAPACK’s auxiliary routine for swapping
named xLASWP(). Both of these calls do not readily lend themselves to the 1D
partitioning scheme due to two main reasons:(1) each call to these functions
occurs with a variable matrix size, and (2) 1D partitioning makes the calls
dependent upon each other thus creating synchronization overhead. The latter
problem is fairly easy to see as the pivoting requires data accesses across the
entire column and memory locations may be considered random. Each pivot
element swap would then require coordination between the threads that the

18 Book title goes here

column is partitioned amongst. The former issue is more subtle in that the
overlapping regions of the matrix create a memory hazard that may be at
times masked by the synchronization effects occurring in other portions of the
factorization. To deal with both issues at once, we chose to use 1D partitioning
across the rows and not across the columns as before. This removes the need
for extra synchronization and affords us parallel execution, albeit a limited
one due to the narrow size of the panel.

The Schur’s complement update is com-
monly implemented by a call to Level 3
BLAS kernel xGEMM)() and this is also a new
function that is not present within the panel
factorizations from LAPACK and Scal.A-
PACK. Parallelizing this call is much easier
than all the other new components of our
panel factorization. We chose to reuse the
across-columns 1D partitioning to simplify
the management of overlapping memory ref-
erences and to again reduce resulting syn-
chronization points.

Thread 0

Thread 1 |

To summarize the observations that we
made throughout the preceding text, we con-
sider data partitioning among the threads
to be of paramount importance. Unlike the
PCA method [13], we do not perform extra
data copy to eliminate memory effects that
are detrimental to performance such as TLB
misses, false sharing, etc. By choosing the re-
cursive formulation, we rely instead on Level
3 BLAS to perform these optimizations for
us. Not surprisingly, this was also the goal
of the original recursive algorithm and its
sequential implementation [18]. What is left to do for our code is the intro-
duction of parallelism that is commonly missing from Level 3 BLAS when
narrow rectangular matrices are involved.

Thread 2 :

FIGURE 1.13: Fixed parti-
tioning scheme used in the par-
allel recursive panel factoriza-
tion.

Instead of low level memory optimizations, we turned our focus to-
wards avoiding synchronization points and let the computation proceed asyn-
chronously and independently as long as possible until it is absolutely nec-
essary to perform communication between threads. One design decision that
stands out in this respect is the fixed partitioning scheme. Regardless of the
current column height (within the panel being factored), we always assign the
same amount of rows to each thread except for the first thread. Figure 1.13
shows that this causes a load imbalance as the thread number 0 has progres-
sively smaller amounts of work to perform as the panel factorization progress
from the first to the last column. This is counter-balanced by the fact that
the panels are relatively tall compared to the number of threads and the first

Multithreading in the PLASMA Library 19

thread usually has greater responsibility in handling pivot bookkeeping and
synchronization tasks.

1.6.4 Scalability Results of the Parallel Recursive Panel Ker-
nel

Figure 1.14 shows a scalability study on a NUMA machine featuring a six-
core AMD processor of our parallel recursive panel LU factorization with four
different panel widths: 32, 64, 128, and 256 against equivalent routines from
LAPACK. We limit our parallelism level to 16 cores because our main fac-
torization needs the remaining cores for trailing matrix updates. When com-
pared with the panel factorization routine xGETF2() (mostly Level 2 BLAS),
we achieve super-linear speedup for a wide range of panel heights with the
maximum achieved efficiency exceeding 550%. In an arguably more relevant
comparison against the xGETRF() routine, which could be implemented with
mostly Level 3 BLAS, we achieve perfect scaling for 2 and 4 threads and easily
exceed 50% efficiency for 8 and 16 threads. This is consistent with the results
presented in the related work section [13].

60

50 l\ recursive 16 threads

| recursive 8 threads

Gflopls

recursive 4 threads

| recursive 2 threads

DGETRF

DGETF2

Panel height

FIGURE 1.14: Scalability study of the recursive parallel panel factorization
with various panel width 256.

20 Book title goes here

1.6.5 Further Implementation Details and Optimization
Techniques

We exclusively use lockless data structures [23] throughout our code. This
choice was dictated by fine granularity synchronization, which occurs dur-
ing the pivot selection for every column of the panel and at the branching
points of the recursion tree. Synchronization using mutex locks was deemed
inappropriate at such frequency as it has a potential of incurring system call
overhead.

Together with lockless synchronization, we use busy waiting on shared-
memory locations to exchange information between threads using a coherency
protocol of the memory subsystem. While fast in practice [13], this causes ex-
traneous traffic on the shared-memory interconnect, which we aim to avoid.
We do so by changing busy waiting for computations on independent data
items. Invariably, this leads to riching the parallel granularity levels that are
most likely hampered by spurious memory coherency traffic due to false shar-
ing. Regardless of the drawback, we feel this is a satisfactory solution as we
are motivated by avoiding busy waiting, which creates even greater demand
for inter-core bandwidth because it has no useful work to interleave with the
shared-memory polling. We refer this optimization technique to delayed wait-
ng.

Another technique we use to optimize the inter-core communication is what
we call synchronization coalescing. The essence of this method is to conceptu-
ally group unrelated pieces of code that require a synchronization into a single
aggregate that synchronizes once. The prime candidate for this optimization
is the search and the write of the pivot index. Both of these operations re-
quire a synchronization point. The former needs a parallel reduction operation
while the latter requires global barrier. Neither of these are ever considered
to be related to each other in the context of sequential parallelization. But
with our synchronization coalescing technique, they are deemed related in the
communication realm and, consequently, we implemented them in our code
as a single operation.

Finally, we introduced a synchronization avoidance paradigm whereby we
opt for multiple writes to shared memory locations instead of introducing
a memory fence (and potentially a global thread barrier) to ensure global
data consistency. Multiple writes are usually considered a hazard and are not
guaranteed to occur in a specific order in most of the consistency models for
shared memory systems. We completely side step this issue, however, as we
guarantee algorithmically that each thread writes exactly the same value to
memory. Clearly, this seems as an unnecessary overhead in general, but in
our tightly coupled parallel implementation this is a worthy alternative to
either explicit (via inter-core messaging) or implicit (via memory coherency
protocol) synchronization. In short, this technique is another addition to our
contention-free design.

Portability, and more precisely, performance portability, was also an im-

Multithreading in the PLASMA Library 21

portant goal in our overall design. In our lock-free synchronization, we heavily
rely on shared-memory consistency — a problematic feature from the portabil-
ity standpoint. To address this issue reliably, we make two basic assumptions
about the shared-memory hardware and the software tools. Both of which, to
our best knowledge, are satisfied on majority of modern computing platforms.
From the hardware perspective, we assume that memory coherency occurs at
the cache line granularity. This allows us to rely on global visibility of loads
and stores to nearby memory locations. What we need from the compiler tool-
chain is an appropriate handling of C’s volatile keyword. This, combined with
the use of primitive data types that are guaranteed to be contained within
a single cache line, is sufficient in preventing unintended shared-memory side
effects.

22

Book title goes here

Bibliography

[1]

E. Agullo, H. Bouwmeester, J. Dongarra, J. Kurzak, J. Langou, and
L. Rosenberg. Towards an efficient tile matrix inversion of symmetric
positive definite matrices on multicore architectures. In Proceedings of
the 9th International Meeting on High Performance Computing for Com-
putational Science, VECPAR’10, Berkeley, CA, June 22-25 2011.

E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on emerg-
ing architectures: The PLASMA and MAGMA projects. J. Phys.: Conf.
Ser., 180(1), 2009.

E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects. Journal
of Physics: Conference Series, 180, 2009.

Emmanuel Agullo, Bilel Hadri, Hatem Ltaief, and Jack Dongarrra. Com-
parative study of one-sided factorizations with multiple software packages
on multi-core hardware. In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1-12,
New York, NY, USA, 2009. ACM.

G. M. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities. In AFIPS Conference Proceedings,
volume 30, pages 483-485, Atlantic City, N.J., APR 18-20 1967. AFIPS
Press, Reston, VA.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, 1992.

E. Anderson and J. Dongarra. Implementation guide for LAPACK. Tech-
nical Report UT-CS-90-101, University of Tennessee, Computer Science
Department, April 1990. LAPACK Working Note 18.

C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. StarPU: A
unified platform for task scheduling on heterogeneous multicore architec-
tures. Concurrency Computat. Pract. Ezper., 2010. (to appear).

23

24

[9]

[10]

[12]

[13]

Book title goes here

Barcelona Supercomputing Center. SMP Superscalar (SMPSs) User’s
Manual, Version 2.0, 2008.

Basic Linear Algebra Technical Forum. Basic Linear Algebra Technical
Forum Standard, August 2001.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
Philadelphia, PA, 1997.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime system.
In Principles and Practice of Parallel Programming, Proceedings of the
fifth ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, PPOPP’95, pages 207-216, Santa Barbara, CA, July 19-21
1995. ACM.

Anthony M. Castaldo and R. Clint Whaley. Scaling LAPACK panel
operations using parallel cache assignment. Proceedings of the 15th ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pages 223-232, 2010.

C interface to the BLAS. http://www.netlib.org/blas/blast-forum/
cblas.tgz.

CLAPACK (f2c’ed version of LAPACK). http://www.netlib.org/
clapack/.

f2c. http://www.netlib.org/f2c/.

John L. Gustafson. Reevaluating Amdahl’s Law. Communications of
ACM, 31(5):532-533, 1988.

Fred G. Gustavson. Recursion leads to automatic variable blocking for
dense linear-algebra algorithms. IBM Journal of Research and Develop-
ment, 41(6):737-755, November 1997.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
second edition, 2002.

J. Kurzak, H. Ltaief, J. J. Dongarra, and R. M. Badia. Scheduling dense
linear algebra operations on multicore processors. Concurrency Compu-
tat.: Pract. Exper., 21(1):15-44, 2009.

Piotr Luszczek, Hatem Ltaief, and Jack Dongarra. Two-stage tridiagonal
reduction for dense symmetric matrices using tile algorithms on multicore
architectures. In Proceedings of IPDPS 2011, Anchorage, Alaska, May
16-20 2011.

22]

23]

[24]

[25]

Multithreading in the PLASMA Library 25

OpenMP Architecture Review Board. OpenMP Application Program In-
terface, Version 3.0, 2008.

Hakan Sundell. Efficient and Practical Non-Blocking Data Structures.
Department of computer science, Chalmers University of Technology,
Goteborg, Sweden, November 5 2004. PhD dissertation.

Intel Threading Building Blocks. http://www.
threadingbuildingblocks.org/.

Asim YarKhan, Jakub Kurzak, and Jack Dongarra. QUARK users’ guide:
Queuing and runtime for kernels. technical report UT-ICL-11-02, Univer-
sity of Tennessee Innovative Computing Laboratory, Knoxville, Tennessee
37996, April 2011.

