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Abstract

Multicore Clusters, which have become the most prominent form of High Perfor-
mance Computing (HPC) systems, challenge the performance of MPI applications
with non uniform memory accesses and shared cache hierarchies. Recent advances
in MPI collective communications have alleviated the performance issue exposed
by deep memory hierarchies by carefully considering the mapping between the
collective topology and the hardware topologies, as well as the use of single-copy
kernel assisted mechanisms. However, on distributed environments, a single level
approach cannot encompass the extreme variations not only in bandwidth and la-
tency capabilities, but also in the capability to support duplex communications or
operate multiple concurrent copies. This calls for a collaborative approach between
multiple layers of collective algorithms, dedicated to extracting the maximum de-
gree of parallelism from the collective algorithm by consolidating the intra- and
inter- node communications.

In this work, we present HierKNEM, a kernel-assisted topology-aware collec-
tive framework, and the mechanisms deployed by this framework to orchestrate
the collaboration between multiple layers of collective algorithms. The result-
ing scheme maximize the overlap of intra- and inter- node communications. We
demonstrated experimentally, by considering three of the most used collective op-
erations (Broadcast, Allgather and Reduction), that 1) this approach is immune to
modifications of the underlying process-core binding; 2) it outperforms state-of-
art MPI libraries (Open MPI, MPICH2 and MVAPICH2) demonstrating up to a
30x speedup for synthetic benchmarks, and up to a 3x acceleration for a parallel
graph application (ASP); 3) it furthermore demonstrates a linear speedup with the
increase of the number of cores per compute node, a paramount requirement for
scalability on future many-core hardware.
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1. Introduction

While the insatiable demand for increasing computing power from the do-
main sciences motivates the deployment of powerful High Performance Computing
(HPC) systems, thermal and power consumption concerns have curbed the growth
of both compute node count and processor frequency. As an alternate source of pro-
cessing power, multicore clusters have become the most prominent form of HPC
systems, and exhibit a rapid increase in the number of cores per compute node.
The top ranking machine in the August 2012 Top500 list, the LLNL Sequoia com-
puter, uses more than one and a half million cores1. Processors with 8 to 12 cores
are the norm today, and it is not uncommon to have such processors deployed in
multiple socket boards featuring 8 to 96 cores, with network-style interconnection
between caches or to the memory banks (e.g. Intel QPI or AMD Hyper-transport).
Unfortunately, this new hardware trend challenges the assumptions made by most
current HPC programming models, directly threatening the performance efficiency
of the machines. Namely, within compute nodes, non uniform memory accesses
(NUMA), memory and shared cache hierarchies, weaken the assumptions of regu-
lar load balance and uniform link bandwidth and latency.

In the era of the single-core cluster, the Message Passing Interface (MPI) stan-
dard has enjoyed a wide adoption in the HPC community, thanks to two key fea-
tures: implementations could provide the highest level of performance while main-
taining the application’s portability. With respect to portability, not only an MPI
code compile on different machines, but it also exhibits an excellent efficiency, be-
cause network topologies and collective patterns of communications are accounted
for by the MPI library rather than the application itself. With the introduction of
multicore compute nodes, both of these features have been threatened in MPI, most
implementations treating multicore compute nodes as mere SMP units and ignoring
their internal hierarchies. To alleviate these issues, some attempts have been made
to use hybrid programming models, retaining MPI between computer nodes and
a thread-centric approach (pthreads, OpenMP, TBB, ...) between cores. The suit-
ability of this approach is questionable, with research showing a similar number of
applications that benefited from the approach compared with failures to reach any
performance improvement. Moreover, from the productivity point of view several
drawbacks are evident: it imposes a significant complexity on programmers, ren-
ders explicit the management of hierarchies which defeats performance portability,

1http://top500.org/lists/2012/06
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and imposes major rewrite of legacy applications. We believe that the MPI standard
is a competitive proposition for harnessing the power of multicore clusters, should
the implementations of the standard use the proper techniques to account for core
and memory link properties, especially in the area of collective communications.

Indeed, recent advances in MPI collective communications have already demon-
strated that the performance issues incurred by multicore memory hierarchies can
be solved on shared memory multicore computer nodes. The careful mapping be-
tween the collective topology and the core distance [1], and the use of single-copy
kernel assisted mechanisms deep inside the collective algorithms [2] have been
proven to greatly increase the shared memory communication efficiency. How-
ever, on distributed memory machines, like clusters of multicores, a single ap-
proach cannot encompass the extreme variations not only in the bandwidth and
latency capabilities, but also in features such as the aptitude to operate multiple
concurrent copies. Efficient multicore shared memory approaches are so specific,
including kernel assisted copies, that they cannot apply to network communica-
tions; on the other hand, regular network approaches fail to extract performance
off shared memory links. This calls for a collaborative approach between multi-
ple layers of collective algorithms, dedicated to managing intra and inter computer
node communications.

In this paper, which is an extension of our distinguished work [3], we present
how HierKNEM, a kernel-assisted topology-aware collective framework, orches-
trates the collaboration between multiple layers of collective algorithms. Lead-
ers are selected among the core-centric collective algorithm, to participate in the
inter-node collective topology. Intra-node communications are managed by of-
floading memory copies to non-leader processes, taking advantage of the kernel-
assisted single-copy approach to balance the memory copy load among available
cores. The resulting scheme enables perfect overlap of intra-node communica-
tion with inter-node communications, thanks to innovative hierarchical algorithms.
We demonstrate experimentally, by considering three distinct collective patterns
(one-to-many, many-to-many and many-to-one), that 1) this approach is immune
to modifications of the underlying process-core binding; 2) it outperforms state-
of-art MPI libraries (Open MPI, MPICH2 and MVAPICH2) demonstrating up to a
30x speedup for messages between 8KB and 256KB in synthetic benchmarks, and
up to 3x speedup for a parallel graph application (ASP); 3) it demonstrates a linear
speedup with the increase of the number of cores per computer node, a paramount
requirement for scalability on future many-core hardware.

The rest of this paper is organized as follows: Section 2 introduces related work
on current efforts to optimize MPI collective communication on multi-core clus-
ters and the application of kernel-assisted approach into MPI libraries. Then, Sec-
tion 3 describes the framework for kernel-assisted hierarchical collective commu-
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nications on clusters of multicore and details three collective algorithms: one-to-
all (Broadcast), all-to-one (Reduce), all-to-all (Allgather), and their corresponding
implementations in a new Open MPI collective component: HierKNEM. These al-
gorithms are experimentally compared with state-of-the-art MPI implementations
to assess the benefits of the hierarchical approach in Section 4. Finally, Section 5
concludes the paper with a discussion of the results.

2. Related Work

The legacy approach to implement collective communication is to adopt one
of many different communication topologies (linear, chain, split binary tree, bi-
nomial tree, etc.) [4]. These basic approaches can be refined by enabling parallel
treatment through message pipelining, a technique in which large messages are
split into smaller chunks to maximize steady-state bandwidth. Furthermore, a run-
time decision module can be used to select the best algorithm and tuning parame-
ters, according to message size, communicator size, and other input variables [5].
The Tuned collective module, in Open MPI, is iconic of such an approach; while
MPICH2 and other MPI libraries feature a similar approach restricted at the com-
pilation time. Unfortunately, while mapping communications to specific network
topologies yield drastic performance improvement on single-core architectures, the
increase in the number of cores renders this problem more complex, requiring ad-
ditional parameters that could reflect the runtime processes’ topology in view of
physical distances. To further exacerbate this issue, intelligent process placements,
used as a bridge between applications and MPI libraries, e.g. MPIPP [6], have
the tendency to exacerbate the amount of point-to-point communications between
specific processes as they consider the collective communication as a simple set of
point-to-point communications. This triggers two issues: on one hand it imposes
the preselected topology for all subsequent runs and computes the neighborhood
relation-ship based on a communication pattern likely to change with the execution
environment. This irregular mapping leads to a further mismatch between collec-
tive topologies and underneath hardware [1].

The conventional effort toward adapting collective communications to hierar-
chical hardware topologies is leader-based hierarchical algorithms [7, 8, 9, 10, 12,
13]. Earlier attempts toward hierarchical approaches on collective communication
on clusters of SMPs [7] or Grids [14] focused on reducing the amount of data or
the number of messages crossing the low bandwidth or high latency links, respec-
tively. Combining with the SMP-aware method, leader-based hierarchical algo-
rithms were widely applied to all collective communications patterns, e.g., MPI
on Quadrics networks [8], Open MPI’s Hierarch collectives, or MVAPICH2 on In-
finiband networks [10, 12, 13]. In these SMP-aware methods, multicore compute
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nodes are often treated as shared memory nodes without internal hierarchy. As a
consequence, the layered collective components that handle inter and intra-node
communications do not cooperate tightly, leading to suboptimal pipelining and
sometimes contradictory tuning choices. This results in another difference with
our proposed work: the intra-node communication is mainly implemented by a
copy-in/copy-out approach using a shared memory segment.

The copy-in/copy-out approach requires two memory copies for each message,
greatly wasting memory bandwidth and CPU cycles. When applying this approach
into leader-based hierarchical algorithms, leader processes are heavily involved
in intra-node data movement [2], resulting in serializing the inter- and intra-node
communications. Most of the intra-node communication overhead accumulates
and results in a significant overhead that cannot benefit from overlap by inter-node
communications. Obviously, such overhead is bound to increase with the number
of cores; the copy-in/copy-out at the leader process has to be sequentially executed
once for each of the processes participating in the collective communication.

To reduce the overhead from double memory copies in the copy-in/copy-out
approach, one-sided single-copy methods have been proposed. SMARTMAP [15,
16] is an effort to make use of a simple page table management in catamount sys-
tems to implement single-copy intra-node communication. Another direction is
the kernel-assisted approach such as LiMIC [17] in MVAPICH2 or KNEM [18]
in MPICH2 and Open MPI. This kernel-assisted approach has been widely used to
speed up large messages’ point-to-point communication on shared memory ma-
chines [18]. Furthermore, an intra-node collective communication component,
KNEM collective [2], is implemented into Open MPI, based directly on the KNEM
copy and not implemented over KNEM-enabled point-to-point communication.
The KNEM collective harnesses KNEM’s single-copy and direction control tech-
niques to offload memory copies to non-root processes, providing a significant
performance boost [2]. Also, efforts have been made to take into account NUMA
hierarchies in the process placement and to optimize intra-node collective algo-
rithms to include architectural features [1]. However, these projects focus solely
on improving communications within a single shared memory multicore compute
node. The aspects regarding cooperation of these complex algorithms with the
inter-node layer of the collective communication have not been addressed so far.
There is an obvious need to develop algorithms that encompass both layers and
account for all particularities and varieties of hardware.
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3. Collective Algorithm Composition

3.1. Framework

As hinted previously, most existing approaches to develop hierarchical col-
lective communications are based on a multi-level approach where the top level
represents the largest area network, and each subsequent level is for a smaller area
network. While they provide interesting performance compared with single-level
approaches, they do not benefit from the entire overlapping potential of collective
algorithms, as the transition processes (i.e. processes that are leafs in one level
and become root on the next), are step by step blocked in a collective for a par-
ticular level. What has been missing in these attempts at providing hierarchical
collective operations on clusters of multicore system was the ability to express a
multi-level algorithm with a very tight level of interoperability between the levels.
In the present effort, we want to enable an unprecedented level of integration be-
tween different algorithms, by dissolving the boundaries between the levels, and
allowing the transition processes to overlap collective between the inter and intra
levels.

From a technical point of view, in most of the hierarchical approaches in-
cluding ours, collective communication is divided between inter- and intra-node
communication. Each process has an intra-node communicator encompassing all
processes hosted on the same physical compute node. Among these local pro-
cesses, a leader process is selected to represent the compute node in the inter-node
layer. All non-leader processes only communicate with the local leader process
and then messages are forwarded by the leader process to remote leader processes
on remote compute nodes. The advantage is that the messages carried through ex-
pensive inter-node links are explicit, giving leverage for the algorithm composition
to minimize cross-traffic volume. From a technical standpoint, what differentiates
our approach compared to previous attempts is the level of integration between the
layers of the hierarchy, allowing multiple algorithms to coordinate their pipelining
strategies at a very low level.

One major challenge for multi-level algorithms is to coordinate around the us-
age of common resources. In this particular instance, one should pay attention to
the load imposed on the memory bus. This load is two-folds: on one side send-
ing/receiving data over the network translates into moving data across the PCI bus
from the memory bus. On the other side, moving data inside the compute node gen-
erates memory bus traffic, and therefore collides with the network transfer (the data
in Figure 4 highlight this fact). Therefore, special care has been taken to minimize
the number of memory transfers at the inter-node level. The approach chosen in this
framework is to base all intra-node memory transfers on the KNEM collective com-
ponents, described in [2]. KNEM’s offloading capability is naturally matched up
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with leader-based hierarchical collectives: workloads of memory copies can be off-
loaded onto non-leader processes. Non-leader processes can simultaneously read
or write leader processes’ memory through KNEM primitives; meanwhile, leader
processes can dedicate themselves to inter-node forwarding, without sequentializa-
tion experienced by less integrated hierarchical approaches. For communication
strictly within large NUMA compute nodes, different approaches yield varying
performance. Our new hierarchical algorithms leverage the knowledge accumu-
lated on a single compute node [2] to design sound algorithm compositions that
can cope with a large number of cores within compute nodes. The experimental
section demonstrates how well these approaches collaborate with another layer.

In this new context, we provide three improved versions of the most used col-
lective communications: a one-to-many (Broadcast), a many-to-many (Allgather)
and a many-to-one (Reduce).

3.2. Broadcast

Let’s assume the intra-node communicator for each compute node is lcomm,
the inter-node communicator for leader processes is llcomm, and process rank is P.
Suppose a two-level broadcast algorithm, using a spanning tree-based approach for
the inter-node level and a linear approach for the intra-node level. Our HierKNEM
broadcast algorithm is adaptive enough to handle special cases, e.g. when all pro-
cesses are allocated on a single compute node, our broadcast is transformed into a
linear algorithm identical to the KNEM one; when each compute node has a single
process in the communicator, our HierKNEM broadcast is automatically morphed
into a spanning tree broadcast identical to the inter-node level.

Algorithm 1 presents the pseudo-code of the HierKNEM Broadcast. In order
to save space, we trimmed the pseudo-code handling the special cases mentioned
above and presented the algorithm processing a general case: each compute node
has more than one process bound to different cores and all leader processes are
organized into a spanning tree with more than two levels: a root node, intermediate
nodes, and leaf nodes. At first, each leader process registers ‘rbuf’ into KNEM
device and gets a ‘cookie’ back at step 2. This cookie is a unique identifier to
point to an entry recording rbuf’s physical memory address, and any other process
in the compute node having this identifier can access (based on the granted right)
this registered buffer via the KNEM module. This cookie will then be broadcasted
to all non-leader processes on the same compute node (step 3 and 33). Afterward
the message is divided into equal-sized fragments and forwarded in a pipelining
fashion along the spanning tree composed of all leader processes (between step 4
and 29). In this particular context, father and children mentioned in Algorithm 1
refer to the process up and down the spanning tree from the current process P. For
intermediate and leaf nodes in the spanning tree, once the leader processes receive
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Input: MPI Bcast(void *rubf, int count, MPI Datatype dtype, int root, MPI Comm comm)
1 if P is leader process then
2 Register rbuf into KNEM device and get a cookie;
3 Broadcast this cookie to all non-leader processes on the same compute node;
4 if P is root process then
5 for i← 1 to seg num do
6 Isend segment i to its children in spanning tree;
7 Wait for all Isend;
8 end
9 else if P is a leader process in an intermediate compute node then

10 Post Irecv for 1st segment from its father;
11 for i← 1 to seg num-1 do
12 Post Irecv for next segment(segment i+1) from its father;
13 Wait for previous Irecv(segment i);
14 Isend received segment(segment i) to its children;
15 Barrier in the lcomm communicator;
16 Wait for all Isend;
17 end
18 if i ≡ seg num then
19 Wait for previous Irecv(last segment);
20 Isend last segment to its children;
21 Barrier in the lcomm communicator;
22 Wait for Isend;
23 end
24 else
25 for i← 1 to seg num do
26 Recv segment i from its father;
27 Barrier in the lcomm communicator;
28 end
29 end
30 Barrier in the lcomm communicator;
31 Deregister buffer from KNEM device;
32 else
33 Get KNEM cookie from the leader process;
34 if P is on the same compute node with root process then
35 Fetch the whole data from root process by KNEM;
36 else
37 for i← 1 to seg num do
38 Barrier in the lcomm communicator;
39 Fetch segment i from leader process by KNEM;
40 end
41 Barrier in the lcomm communicator;
42 end
43 end

Algorithm 1: The HierKNEM Broadcast Algorithm.
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a segment from its father node, they will notify all non-leader processes on the
same compute node to fetch the segment (step 15 and 21). Upon receiving this
notification at step 38, each non-leader process will fetch the segment by a KNEM
get operation at step 39. This get operation is one-sided and will be offloaded to
the non-leader processes. Therefore the overhead of intra-node data movement can
be overlapped at the leader process with the forwarding between leader processes
on the upper level (step 12, 14, or 20).

This is the fundamental reason why our HierKNEM collective can outperform
other collective components: intra-node communication is offloaded to non-leader
processes and leader processes can dedicate themselves into inter-node message
forwarding. In an ideal situation, the intra-node communication overhead can be
completely hidden from the overall execution time and the entire collective com-
munication execution time made close to the inter-node collective execution time
(the collective on the leader processes communicator). In the event of a perfect
overlap, a multi-core broadcast operation can be made number-of-compute-nodes
dependent instead of number-of-cores dependent.

3.3. Reduce

Input: MPI Reduce(void *sbuf, void *rbuf, int count,MPI Datatype dtype,
MPI Op op, int root, MPI Comm comm)

1 if P is the 1st leader process then
2 for i← 1 to seg num do
3 Wait notification from 2nd leader;
4 Reduction in the llcomm for segment i;
5 end
6 else if P is the 2nd leader process then
7 for i← 1 to seg num do
8 Fetch segment i from 1st leader;
9 Reduction between two leaders’ segment i;

10 Reduction in the new comm for segment i;
11 Push reduction result of segment i to 1st leader’s tmpbuf;
12 Notify 1st leader that pushing operation is done;
13 end
14 else if non-leader processes exist inside the compute node then
15 for i← 1 to seg num do
16 Reduction in the new comm for segment i;
17 end
18 end

Algorithm 2: The HierKNEM Reduce Algorithm.

Similarly to the Broadcast algorithm, the HierKNEM Reduce uses an inter-
node communicator (llcomm) and intra-node communicator (lcomm). In addition
to these two communicators, the HierKNEM Reduce creates another local com-
municator, a subset of the lcomm, to organize all non-leader processes on the same
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compute node (new comm). This new comm is used to isolate leader processes
from the intra-node reduction. The HierKNEM Reduce is actually a double-leader
algorithm: the 1st leader process participate in the upper level (inter-node) reduc-
tion while the 2nd leader process will be the root for an intra-node reduction on
each of the new comm communicators and responsible for updating the 1st leader
with the local contribution to the upper level reduction. Algorithm 2 describes
the HierKNEM Reduce for a general case: each compute node has more than two
processes participating in a reduction operation: one leader for the inter-node re-
duction and another leader for the intra-node reduction. In order to save space, we
trimmed the algorithm of the handling of special cases, the internal management
and distribution of KNEM registrations.

The 2nd leader fetches segment i from the 1st leader’s sbuf by a KNEM get op-
eration (step 8), and applies the reduction operation between their sbuf’s segment i
(step 9). As a root process, the 2nd leader calls an intra-node reduction for segment
i in the new comm with the result from step 9. After finishing this reduction, the
2nd leader will push the reduction result of segment i to the 1st leader by a KNEM
writing. After getting the notification from the 2nd leader (step 3), the 1st leader
will trigger an inter-node reduction between leader processes with pushed results
for segment i. The intra-node reduction for segment i+1 can be overlapped with
inter-node reduction for segment i thanks to KNEM’s one-sided operation and the
pipelining reduction algorithm between hierarchical communicators.

3.4. Allgather

The HierKNEM provides two algorithms for Allgather: a leader-based algo-
rithm for clusters of small compute nodes (2-6 cores per compute node) and a ring
algorithm for large compute nodes. The leader-based algorithm has three steps:
1) gathering messages into leader processes; 2) exchanging data between leader
processes; and 3) broadcasting data from leader processes to non-leader processes.
Step 1 and 3 happen inside a compute node while step 2 exchanges data using
inter-node communications. At the inter-node level (step 2), the leader processes
are organized into a logical ring and each leader process communicates only with
the left and right neighbors in this ring. Once leader processes get a message from
step 1 or step 2, they will notify non-leader processes to fetch data by KNEM
copy. Because KNEM copy in step 1 or 3 is one-sided and always offloaded onto
non-leader processes, leader processes only synchronize with non-leader processes
before or after non-leader processes write or read data into or from leaders. This
synchronization overhead is minimal compared with the cost of intra-node data
movement. As a result, the leader processes can dedicate themselves to inter-node
data exchanging and steps 1-3 can be totally overlapped. The critical path of our
algorithm depends on the overhead of inter-node exchanging or intra-node gather
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(step 1) and broadcast (step 3). When intra-node communication cost exceeds
inter-node exchanging time (more cores per compute node or faster network), the
leaders’ memory bandwidth is overloaded by this ad-hoc memory access pattern.
Thus, the overall throughput is seriously restricted by such a simple combination
of Gather and Broadcast operations. So in clusters of large NUMA compute nodes,
the HierKNEM Allgather adopts a ring-based algorithm to distribute data both at
the inter-node and intra-node levels in order to avoid such hot-spots on leader pro-
cesses. The HierKNEM Allgather ring algorithm is similar to the MPICH Allgather
ring algorithm [19]: all processes are organized into a logical ring and each process
receives messages only from its left neighbor and sends messages only to its right
neighbor. This send and receive will be executed number of comm size-1 times
and a local memory copy will be executed at the beginning. A notable improve-
ment over the ordinary ring algorithm, the construction of the HierKNEM’s logical
ring is not based on the order of MPI ranks but adheres to the physical process
distance in terms of sockets and NUMA compute nodes. Thus, processes physi-
cally close are clustered together into a set. Only processes on edges between sets
communicate through slow links: inter-node links or inter-socket links.

4. Experimental Evaluation

We used two clusters of the Grid5000 experimental platform: Stremi and Para-
pluie. The Stremi cluster features 32 compute nodes, each with two AMD Opteron
6164 HE twelve-core CPUs (24 cores per compute node). Each socket has 10
MB L3 caches and two NUMA memory nodes, and 6 cores in each socket share
one NUMA memory node with 12 GB of memory (48 GB of memory per com-
pute node). These 32 compute nodes are interconnected by Gigabit Ethernet. The
Parapluie cluster is identical to Stremi, except that the 32 compute nodes are inter-
connected through a 20G Infiniband network.

Our HierKNEM collective is based on Open MPI version 1.5.3. We compared
HierKNEM collective with the Open MPI’s (1.5.3) Tuned, Hierarch collective,
MPICH2 version 1.4.1 on the Ethernet cluster (Stremi) and MVAPICH2 version
1.7 on the Infiniband cluster (Parapluie). All implementations that support ker-
nel assisted memory operations use KNEM version 0.9.6 [18] except MVAPICH2.
MVAPICH2 uses LIMIC2 0.5.5 [17] as the kernel assisted memory copy module.

For intra-node communications, HierKNEM, Tuned, and Hierarch collective
modules are configured to use the SM/KNEM BTL (byte transfer layer) as under-
neath point-to-point communication helper. SM/KNEM BTL uses KNEM copy
to speed up point-to-point communication; for performance reasons, the copy-
in/copy-out approach is still used for messages smaller than 4KB. The same con-
figuration is applied to MPICH2 or MVAPICH2: KNEM/LIMIC copy is enabled
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for large message transfer (LMT). For inter-node communications, the appropri-
ate low level point-to-point transport module is used, depending on the underlying
hardware (Open IB, TCP). For all MPI libraries, the process/core binding is the
default uniform “by-core” strategy, except when explicitly mentioned. In this de-
fault strategy, sequential MPI ranks are bound into adjacent processor cores until
all slots of a compute node have been used, then the same process is applied for
the next compute node in the list. To summarize, the underlying technology used
by our HierKNEM algorithm and all other collective components to perform point-
to-point operations is similar and uses KNEM copies, similarly process placement
is comparable; therefore any performance difference roots solely in the proposed
collective operation innovations.

The Intel MPI benchmark suite IMB-3.2 [20] is used to assess the difference
between the collective components on a variety of collective operations. The
ASP [21] problem is a typical example of a parallel graph shortest path search al-
gorithm. It is used to illustrate how performance differences in micro-benchmarks
translate into application improvement.

4.1. Leader Selection
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Figure 1: Non Uniform I/O Effect on point-to-point communication (Pingpong Test) Execution Time
on Parapluie Cluster; Runtime is normalized to the result for Pingpong test between two compute
nodes’ core 0. (the smaller, the better).

Similar with Non-Uniform memory access (NUMA), Non-Uniform Input/Out-
put access (NUIO) phenomenon was found in some platforms because some I/O
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devices are closer to some processors and memory banks than to the others [22].
The latency or bandwidth of inter-node communication between leader processes
may be affected by the selection of leader processes due to this Non-Uniform In-
put/Output access. We did four pingpong tests between the Parapluie’s two com-
pute nodes to inspect the NUIO impact on our experiment platforms. To simplify
the results in the graph, core 0, 6, 12, and 18 are selected in the experiments to
represent other cores on four NUMA memory nodes. And Pingpong tests are only
executed between two cores with the same id on two compute nodes. Figure 1
shows the execution time of pingpong tests between pairs of cores normalized to
the runtime between core 0s. In most cases, the selection of processes on core 0 or
core 6 as leaders will give out the best inter-node communication performance. But
the difference is very trivial, about 1% to 2% for message sizes selected as pipeline
sizes, so even a wrong leader selection here will not lead to a performance dis-
aster of HierKNEM collectives. In the following experiments, HierKNEM keeps
selecting processes with the minimum core id as leader processes in collective
communications. In the future release, we will add a module to help HierKNEM
select leaders according to the hardware locality [23].

Another issue related with the leader selection is how many leader processes
were selected in the collectives. HierKNEM can be configured to select one leader
process from each compute node, each board, each NUMA memory node, or each
socket. The run-time configuration is decided by the ratio between inter-node and
intra-node communication. For example in a scenario of large NUMA compute
nodes connected by fast interconnections, e.g. a 20G or 40G Infiniband network,
the runtime of intra-node collective communication (broadcast) possibly greatly
exceed the runtime of inter-node forwarding (sending/receiving). HierKNEM will
adjust the whole hierarchical topology by selecting leaders from each NUMA
memory node instead of from each compute node. The HierKNEM Broadcast
on the Parapluie Cluster follows this selection. This flexible selection will lead to
a better overlapping between intra- and inter-node communication, and meanwhile
intra-node memory accesses will be spread evenly over NUMA memory nodes.
Except this special case, other leader selections still follow one leader process per
compute node in HierKNEM collectives.

4.2. Pipeline Size

In the HierKNEM collective component, both the Broadcast and the Reduce
operations are pipelining algorithms, in which messages are split into several smaller
chunks. Tuning an optimal size of a chunk is a key criterion of every pipeline algo-
rithm. Figure 2 presents the effect of the pipeline size on the HierKNEM Broadcast
execution time. In this Broadcast test, 768 processes are spawned on the Parapluie
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cluster. To ease figure clarity, the execution time for all pipeline sizes is normal-
ized to the runtime obtained with a pipeline size of 64KB (tz/t64). One can see
that the pipeline size is indeed critical to the HierKNEM collective performance,
and a wrong selection of pipeline sizes leads to significant penalty. On one hand, a
too small pipeline size results in inefficient inter-node communication, as the small
message latency comes to dominate, preventing the full point-to-point bandwidth
from being leveraged; as an example, the Broadcast with a pipeline size of 4KB is
more than 3 times slower than with 64KB. On the other hand, a too large pipeline
size results in long pipeline fan-in and fan-out phases, where the pipeline algorithm
is not at steady-state efficiency. Experimentally, 8KB or 64KB is the ideal pipeline
size for the Broadcast operation on the Parapluie cluster for messages smaller or
larger than 64KB. We did similar experiments for HierKNEM’s Broadcast and Re-
duce on both the Parapluie and Stremi clusters. Table 1 shows the best pipeline
size for each operation on each type of cluster. Both HierKNEM’s Broadcast and
Reduce algorithms use the pipeline size in Table 1 in the following tests.

Table 1: Best pipeline size for Broadcast and Reduce for Differing Network Capacities
Operation Parapluie (IB20G) Stremi (Ethernet)

message size pipeline size message size pipeline size

Broadcast
[8KB,64KB) 8KB [8KB,512KB) 16KB
[64KB,∞) 64KB [512KB,∞) 32KB

Reduce
[2K, 16MB] 64KB [2K, 16MB) 64KB
(16MB,∞) 1MB [16MB,∞) 1MB

4.3. Impact of Kernel-assisted approaches

Intra-node point-to-point operations can be implemented using shared mem-
ory or kernel-assisted approaches. Kernel-assisted approaches have the benefit of
decreasing the number of memory copies, a factor critical in memory intensive
code sections such as the collective communications. Figure 3 shows a compar-
ison of the broadcast collective bandwidth on the Stremi cluster between collec-
tive modules over the kernel-assisted or shared memory point-to-point communi-
cation. Kernel-assisted approach shows a huge performance boost in Open MPI’s
collective modules: Tuned and Hierarch collectives, up to 3× for some message
sizes. On the opposite side, the performance difference regarding MPICH2 is less
flagrant. Other collective operations, such as Reduce and Allgather, exhibit sim-
ilar speedup when kernel-assisted approach are replacing shared memory point-
to-point communication. Moreover, this performance improvement on collective
communications is directly inherited by the applications using them, as highlighted
in Section 4.8. Thus, in the remaining of this paper we focus on kernel-assisted ap-
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proaches, discarding the sub-optimal approaches built on top of shared memory
point-to-point communications.

4.4. Allgather Algorithm Selection

Although the two levels of algorithms are tightly integrated, there are still a va-
riety of combinations that are possible, whose performance greatly varies depend-
ing on hardware features and properties. In the case of the Allgather algorithm,
we identified two combinations of interest: both use the pipelined Tuned collective
module between compute nodes, but the internal operation differs depending on the
number of cores between compute nodes. Between cores, the algorithm can rely on
the leader originating all messages simultaneously (referred to as “leader-based” al-
gorithm), but for large core counts, this approach has the potential to result in heavy
traffic contention on the memory bus of the core hosting the leader. For a larger
number of cores per compute node, the ring algorithm has more potential to even
out the load on all cores. Figure 4 shows the aggregate bandwidth for the two algo-
rithms combinations, for a 512KB message’s Allgather operation on Parapluie’s 32
compute nodes, when increasing the number of processes per compute node from 2
to 24. The leader-based algorithm has a slight performance advantage in dual-core
or quad-core compute nodes, as the parallel KNEM accesses overlap one another.
For larger setups, the bandwidth contention on the leader core prevents aggregate
bandwidth to scale, while the ring algorithm, which proves more scalable thanks
to evenly distributing data access load across all memory links, dominates. Results
(not presented here) are similar for other message sizes, and when using different
inter-node networks on Stremi and Parapluie clusters. In the following tests, we
use the ring algorithm as we mainly target large multicore compute nodes.

4.5. Collective communication performance

In this Section we will analyze the performance of three of the most used col-
lective communication operations, namely Broadcast, Reduce and Allgather. They
cover all of the regular collective patterns available in MPI, one-to-many, many-
to-one and many-to-many, providing a quite extensive view of all the potential
performance improvement in collective communications.

4.5.1. Broadcast Performance
Figure 5 presents the aggregate Broadcast bandwidth for HierKNEM, Open MPI’s

Hierarch and Tuned modules, and MPICH2 or MVAPICH2 on, respectively, the
Ethernet Stremi cluster or the Infiniband Parapluie cluster. On Stremi (Figure 5(a)),
for message size between 8KB and 256KB, HierKNEM Broadcast provides a
significant speedup, sometimes up to 30x, when compared with MPICH2 and
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Open MPI. Compared with OpenṀPI’s Hierarch, our HierKNEM version provides
more than twice the aggregate bandwidth in this message size range.

For larger message sizes (superior to 512KB), the most important tuning factors
are process mapping and proper pipelining to evenly spread the workload across
cores and links. In the Tuned module, the “by core” binding luckily happens, in
this experiment, to match the hardware topology; and the pipeline size selected
by the tuned module to optimize the network communications is suitable for core
communications. The Hierarchical module of Open MPI is not as successful for
large messages, because the intra-node and inter-node layers do not cooperate to
evenly spread the load of the pipelining algorithm. The leader processes are un-
available for long periods of time when they take part in the shared memory local
operation, resulting in effectively sequentializing the local and remote collective
operations without opportunity for overlap. With such a large core count, the large
intra-node overhead offsets the benefits of the standard hierarchical algorithm. In
contrast, the HierKNEM algorithm obtains better performance in all cases, thanks
to explicitly taking into account process mapping and using directional KNEM
control to offload parts of the operations onto the leaf processes, hence enabling
intra and inter-communications to overlap.

Similarly, on the Infiniband cluster (Figure 5(b)), in most cases, the HierKNEM
Broadcast still outperforms other collective components. One major difference in
the results, when compared with the Ethernet case, is that the performance of the
classical hierarchical algorithm is much better for small message sizes. On the
Infiniband network, the tuning parameters selected by the two non-cooperating al-
gorithms forming the hierarchical collective are matching better. However, as one
can see, the tuning parameters for larger message size are not as lucky; the perfor-
mance for large messages drops, with the notable exception of 512KB messages,
for which the pipeline length matches the balance for 32 processes and 24 cores.
This discrepancy illustrates the difficulty of tuning the behavior of separate collec-
tive algorithms cooperating in a hierarchical manner. Even with expert knowledge,
it’s unrealistic to tune Open MPI’s Tuned collectives on such a complex system
with so many hierarchies and diverse networks, when a small variation in message
size results in unexpected and dramatic performance consequences. Although the
HierKNEM module is not immune to the challenges of unpredictable and unstable
performance on varying hardware, the fact that both algorithms select compatible
tuning parameters, that the outer collective operation can overlap imperfection on
the inner operation and that the collective topology is constructed to match core
hierarchies greatly alleviates this difficulty, as illustrated by more stable results
across the message size range.
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4.5.2. Reduction Performance
Figure 6 presents the aggregate Reduce bandwidth on the Ethernet cluster (Fig-

ure 6(a)). For message sizes between 2KB and 32 KB, the HierKNEM Reduce
competes closely with Open MPI’s Hierarch Reduce. After 64KB, the HierKNEM
Reduce dominates other collective components, thanks to a good overlapping be-
tween inter-node Reduce and intra-node Reduce. Similarly with the Broadcast, the
Hierarch Reduce worsens for large messages due to the increased intra-node Re-
duce overhead which can’t be dodged by overlap. Again, the performance of the
Tuned Reduce improves for messages larger that 4MB, but is still 19%-28% slower
than the HierKNEM Reduce.

On the Infiniband cluster (Figure 6(b)), the HierKNEM Reduce clearly domi-
nates for message size in the range of [2KB, 32KB] and (1MB, 16MB]. When mes-
sage size is between 64KB and 1MB, although HierKNEM Reduce still achieves
significant speedup when compared with Open MPI’s Hierarch and Tuned Re-
duce, it’s a little behind MVAPICH2 performance, about 20% in the worst case.
By profiling a 64KB message’s Reduction operation with 32 processes on Para-
pluie’s 32 compute nodes (no multicore or hierarchies), we discovered that the
Open MPI Tuned Reduction suffers from a serious performance limitation on the
Infiniband network; meanwhile MVAPICH2 enjoys very good performance (366μs
for Open MPI compared to 281μs for MVAPICH2). As our HierKNEM compos-
ite algorithm reuses the original Tuned module for inter-node communications,
it suffers from the same defect and cannot compete with MVAPICH2, until the
Open MPI community addresses this issue.

4.5.3. Allgather Performance
Figure 7 presents the aggregate Allgather bandwidth. The HierKNEM All-

gather is enabled only when the message size is larger than 8KB. The biggest
message size is 1MB, because of the large amount of memory required for this
all-to-all operation between 768 processes exhausting available system memory
for larger sizes. On both clusters, the HierKNEM Allgather adopts a ring algo-
rithm, as described in section 3.4. The Open MPI Hierarch module is not presented
for this collective operation, as it has not been implemented.

On the Infiniband cluster (Figure 7(b)), both MVAPICH2 and Tuned Allgather
operations slightly outperform HierKNEM’s Allgather. In this message range,
Open MPI’s Tuned Allgather adopts a similar but more aggressive algorithm: neigh-
bor exchange. Different than the ordinary ring algorithm which exchanges rcount
data in each round, 2× rcount data are exchanged in each round in the neighbor ex-
change algorithm (except the first round). Neighbor exchange algorithm arranges
processes continuous in MPI ranks together in a ring and the “by core” binding
strategy used in this test coincidentally maps the logical ring of the Tuned All-
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gather correctly to the underlying hardware topology. As a consequence, Tuned
and HierKNEM are actually running on the same underlying hardware topology,
but Tuned does not have to pay for the extra cost of detecting the physical dis-
tance between processes, and fast networks like 20 G Infiniband show better per-
formance in a more aggressive policy due to more bandwidth capacity available.
On the Ethernet cluster (Figure 7(a)), the HierKNEM Allgather outperforms all
other collective components for all message sizes. While adopting a similar ring
topology for large messages, the Tuned Allgather on this Ethernet cluster suffers
up to 50% in performance loss because the aggressive policy in the neighbor ex-
change algorithm overloads slow networks decreasing the overall network through-
puts. Clearly, adopting an aggressive strategy, like neighbor exchange algorithm,
should depends on the capacity of the networks.

4.6. Impact of Process Placement

It is well known that process placement can have a major impact on collective
operations performance. Approaches such as MPIPP [6] have been designed to
detect communication patterns during a “tuning run”, whose result is used to hint
process placement to decrease long distance communication volume during sub-
sequent production runs. However, this approach is not practical in many cases,
as it requires being able to run smaller problems that exhibits similar communi-
cation patterns; and the collective algorithm underlying communication topology
might depend on the message and communicator size. Another difficulty is that
oftentimes, one might want to optimize for the pattern of point-to-point operations
explicitly realized at the application level (such as the typical hypercube topology
found in many CG implementations), which means that the process placement may
or may not fit the expectations of the collective modules. As a consequence, the
default deployment approach is usually less elaborate and simply allocates ranks
sequentially on the available resources.

Figure 8 shows the impact of two typical process placements on the perfor-
mance of the Broadcast and Allgather operations. The goal of this experiment set
is to investigate the sensitivity of the hierarchical approaches to variations in the
process placement. As such, more than raw performance, it is the difference be-
tween the same algorithm on different mappings that is of interest here. Hierarch
has been trimmed from the figure, because it does not feature an Allgather opera-
tion, and uses a similar topology as HierKNEM for the Broadcast (hence similar
performance trends). Considering the Broadcast (Figure 8(a)), one can witness that
hierarchical approaches (HierKNEM and MVAPICH2 both feature a hierarchical
algorithm) reach more stable performance. The Tuned algorithm exhibit very un-
stable performance trends, for some message sizes the bynode binding reaches
better performance, while it is the contrary for larger messages.
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Figure 8(b) further displays the importance of considering hierarchical fea-
tures to enable portability of performance across varied process mappings. In this
algorithm, the HierKNEM algorithm demonstrates very stable performance when
changing from bycore to bynode process mappings. The performance variation
between two bindings is less than 10%, which is very small when compared to the
tremendous performance penalty suffered by non hierarchical algorithms, com-
monly more than 6× and sometimes up to 14× increased communication time.
In the “by node” binding, the Tuned Allgather uses a ring algorithm for large
messages; every edge of the logical ring (768 edges in this case) passes through
inter-node links (Infiniband), causing a serious traffic congestion on the Infini-
band network. This clearly illustrates the penalty suffered by topology-unaware
algorithms when considering irregular process-core bindings. Although our Hi-
erKNEM collective pays an overhead due to constructing the internal topology, it
provides stable performance independently of process placement. Such a flexible
process placement is a desirable feature to enable deeper optimization of the hard-
coded point-to-point communication patterns and ensure maximum performance
with default settings on complex architectures.

4.7. Core per Node Scalability

In the next experiment, we investigate the trend of aggregate bandwidth when
varying the number of cores per compute node. The total number of compute
nodes is left unchanged (32 compute nodes), but the number of processes per com-
pute node is increasing for each experiment, reaching up to the maximum of 24
processes per compute node. The message size is kept constant at 2MB. Processes
on each compute node are bound to cores sequentially.

On both clusters (Figures 9(a) and 9(b)), the aggregate bandwidth of HierKNEM
Broadcast achieves a linear speedup when more cores per compute node are in-
volved, because our HierKNEM Broadcast dodge the intra-node communication
overhead by overlapping it with the inter-node message forwarding. Increasing
processes (cores) per compute node does not increase the overall Broadcast com-
pletion time on these two platforms. This linear speedup can be maintained un-
til the time necessary to perform the entire intra-node communication (a KNEM
Broadcast) exceeds the inter-node forwarding time of the network.

4.8. Application Performance

We have asserted the maximum possible performance improvement by solely
executing synthetic benchmarks over the modified operations. It is now needed to
evaluate how much of this improvement results in improved performance for appli-
cations. To evaluate the impact of the HierKNEM collective algorithms on real ap-
plication performance, we consider a typical parallel graph application: ASP [21].
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This application unfolds the parallel Floyd-Warshall algorithm to solve the all pairs
shortest path problem. At the beginning of each iteration the master process broad-
casts a row of the square matrix representing edges weight to all peers in the com-
municator, in order to distribute the workload. The outer loop of the algorithm
iterates on rows, until the entire matrix is treated. Overall, for a matrix of size
N , the algorithm performs N broadcasts, with a message size of column num ×
type size. As a consequence, MPI Bcast contributes to the majority of the runtime
of the ASP’s MPI usage.

Table 2: Kernel-Assisted Approach Comparison: ASP Application Execution Runtime Execution
Breakdown on Stremi (Ethernet, 768 processes, 24 cores/ compute node). Using KNEM and SM.

Problem
Size

HierKNEM Tuned Hierarch MPICH2
Bcast Total Bcast Total Bcast Total Bcast Total

16K 20.3s 97.4s 229s 308s 31.7s 109s 128s 204s
32K 79s 711s 929s 1560s 173s 806s 417s 1020s

Tuned-SM Hierarch-SM MPICH2-SM
Bcast Total Bcast Total Bcast Total

16K 229s 309s 66s 145s 124s 201s
32K 929s 1574s 245s 899s 429s 1040s

Table 2 compares the overall execution time and communication time (mostly
MPI Bcast) of the ASP application on the Stremi cluster when using different col-
lective modules. By subtracting the communication time from the overall execu-
tion time, one can assert that ASP’s computational part remains generally constant
for a given problem size, independently of the communication setup. The major
performance difference between these four setups comes from the communication
overhead (MPI Bcast). The cost of communications occupies 21% of the overall
application runtime for the HierKNEM collective, while it rises to 74% when us-
ing Open MPI’s default collective. Even considering the hierarchical broadcast, the
HierKNEM’s ability to overlap between inter and intra communications shows a
significant improvement in this application.

The second part of the Table 2 shows the same application (ASP) on the same
platform using shared memory point-to-point communication instead of kernel-
assisted approaches. Similarly with the prior results in Section 4.3 most collec-
tive modules over shared memory point-to-point communication lose performance
compared with kernel-assisted point-to-point communication due to double mem-
ory copies and more memory usage, sometimes up to 30%. The impact on collec-
tive performance is directly translated to waste time for the applications.
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4.9. Experiments Accuracy

In this experimental evaluation, we preferred using widely accepted bench-
marks, such as the Intel Message Passing (IMB) benchmark, for they are specif-
ically designed to eliminate noise and artifacts: for small and intermediate mes-
sages, experiments are executed thousand of times with different roots in order to
eliminate any hot caching and pipelining effect, while the experiments are executed
hundreds of times for large messages. To further emphasize reproducibility, for
each experiment, we reserved the whole clusters to avoid sharing network switches
with other users. In addition to these precautions, every experiment was realized
multiple times, and we took in account not only the minimum, maximum and aver-
age values, but the standard deviation as well. For the message size of 512KBytes,
the IMB tests resulted in a bandwidth between 25.6 and 26.2 GBytes, with an aver-
age at 25.9GBytes, and a standard deviation of 0.17. Similarly, particular care has
been taken to the standard deviation of the ASP application performance. Among
18 times of repeated experiments, the maximum ASP execution time was 146s, the
minimum time 144s, the average execution time is 145.1, and the standard devia-
tion is 0.6. These small standard deviation values are indicative that the design of
the IMB benchmark, ASP application, and the precautions we have taken guarantee
the accuracy and stability of our experimental results.

5. Conclusion

In this paper, we described a kernel-assisted topology-aware collective frame-
work: HierKNEM, which enables efficient combinations of multiple layers of col-
lective algorithms, to tackle collective communication on clusters of many-core
compute nodes. The algorithms are built reusing modular combinations of existing
collective algorithms (such as the Tuned and the KNEM components in Open MPI).
The main contributions of this paper are: (1) propose an adaptive hierarchical col-
lective framework to enable tight collaboration between the collective algorithms
pertaining to different layers of the hierarchy, (2) combine offloading and pipelin-
ing techniques into the hierarchical framework to release leader processes from
intra-node data movement, hence maximizing the overlap between inter- and intra-
node communications, and (3) build internal collective topologies to form a map-
ping between the runtime process-core binding and the hardware features, which
means stable collective performance independently of process placement.

We demonstrated the benefits of this approach by devising three hierarchical in-
tegrated collective algorithms, one of the most useful for each major type of collec-
tive communication (one-to-many: Broadcast, many-to-one: Reduce, and many-
to-many: Allgather). Experimental results demonstrate that our approach outper-
forms not only non hierarchy aware state-of-art MPI implementations (MPICH2
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and Tuned Open MPI), although these setups benefit from kernel assisted memory
copies as well (KNEM), but also significantly outperforms approaches that account
for the hierarchy (MVAPICH2 Broadcast, Hierarch component in Open MPI). A
simple leader based algorithm that does not enable pipeline coordination, and intra-
node copies offloading, under-performs compared to our HierKNEM approach that
introduces these features. The performance improvement is visible not only in syn-
thetic benchmarks, but also results in up to a ten-fold performance improvement
when compared to the default non hierarchy aware strategy, and still features two-
fold improvements when compared to other hierarchical strategies.
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Figure 2: Effect of Pipeline Size on HierKNEM Broadcast Execution Time (Parapluie cluster: 768
Processes, 32 compute nodes, Infiniband 20G); Runtime is normalized to the result for 64KB pipeline
size (the smaller, the better). 25



Figure 3: Comparison between Kernel-assisted and Shared Memory Approach: Broadcast Band-
width on Stremi (Ethernet, 768 processes, 24 cores/ compute node)
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Figure 4: Bandwidth Comparison between Leader-based and Ring Allgather Algorithms, when in-
creasing the number of processes per compute node (from 2 to 24), on Parapluie’s 32 compute nodes.
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(a) Stremi (Ethernet)

(b) Parapluie (IB20G)

Figure 5: Aggregate Broadcast bandwidth of collective modules on multicore clusters (768 processes,
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(a) Stremi (Ethernet)

(b) Parapluie (IB20G)

Figure 6: Aggregate Reduce bandwidth of collective modules on multicore clusters (768 processes,
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(a) Stremi (Ethernet)

(b) Parapluie (IB20G)

Figure 7: Aggregate Allgather bandwidth of collective modules on multicore clusters (768 processes,
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(a) Broadcast

(b) Allgather

Figure 8: Impact of process mapping: aggregate Broadcast and Allgather bandwidth of the collective
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(a) Stremi (Ethernet)

(b) Parapluie (IB20G)

Figure 9: Core per compute node scalability: aggregate bandwidth of Broadcast for 2MB messages
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