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Abstract

Multicore architectures with high core counts have come to dominate the world of high

performance computing, from shared memory machines to the largest distributed memory

clusters. The multicore route to increased performance has a simpler design and better

power e�ciency than the traditional approach of increasing processor frequencies. But,

standard programming techniques are not well adapted to this change in computer

architecture design.

In this work, we study the use of dynamic runtime environments executing data driven

applications as a solution to programming multicore architectures. The goals of our runtime

environments are productivity, scalability and performance. We demonstrate productivity

by defining a simple programming interface to express code. Our runtime environments are

experimentally shown to be scalable and give competitive performance on large multicore

and distributed memory machines.

This work is driven by linear algebra algorithms, where state-of-the-art libraries (e.g.,

LAPACK and ScaLAPACK) using a fork-join or block-synchronous execution style do not

use the available resources in the most e�cient manner. Research work in linear algebra

has reformulated these algorithms as tasks acting on tiles of data, with data dependency

relationships between the tasks. This results in a task-based DAG for the reformulated

algorithms, which can be executed via asynchronous data-driven execution paths analogous

to dataflow execution.

We study an API and runtime environment for shared memory architectures that

e�ciently executes serially presented tile based algorithms. This runtime is used to enable

linear algebra applications and is shown to deliver performance competitive with state-of-

the-art commercial and research libraries.

v



We develop a runtime environment for distributed memory multicore architectures

extended from our shared memory implementation. The runtime takes serially presented

algorithms designed for the shared memory environment, and schedules and executes them

on distributed memory architectures in a scalable and high performance manner. We design

a distributed data coherency protocol and a distributed task scheduling mechanism which

avoid global coordination. Experimental results with linear algebra applications show the

scalability and performance of our runtime environment.
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Chapter 1

Introduction and Motivation

1.1 Motivation

Starting in the last couple of decades, computational modeling and simulation have often

been referred to as the “third pillar of science”, standing next to theory and experimentation

as a way of exploring and understanding the world. However, computational science is a

relatively young methodology and it has a long way to go before it is mature. There have

been many remarkable successes enabled by computational science, such as sequencing the

human genome, but the future of this approach is still wide open.

Enabling that promise of computational science will require much focus on the vital core

of computational science, software and the mathematical models and algorithms encoded

by the software (Buttari et al., 2007). Complexities introduced by newer hardware design,

such as many-core processors, and very large distributed-memory clusters, make the task of

programming and using this hardware e�ciently a very large challenge for the computational

scientist. The increase in the number of available resources increases the relative cost of

any stall in the computational execution. For example, consider an algorithm that has a

sequential step; if a dual-core node is executing this algorithm one of the cores is idle for a

short time; however, if a 48-core machine is executing this algorithm, then the opportunity

cost of the stall is much higher since 47 cores remain idle for that time.

It is di�cult to require that a computational scientist should adapt their code to each

hardware platform, and to adapt the code as the platform changes with increased hardware

1



resources. As is often the case in computer science, the complexities of adapting to the

underlying hardware should be encapsulated in some level of abstraction.

In this work, a solution is proposed for the problems that computational scientists face

in the presence of these complex hardware resources. A software framework that simplifies

the process of developing applications that achieve high performance and scalability on

a variety of platforms. The software framework described in this thesis exposes an

application programming interface (API) that a computational scientist could use to develop

dynamic, adaptive applications which scale from shared memory multicore machines to large

distributed memory clusters.

1.2 Introduction

Recent years have seen changes in computer architecture that result in larger machines

with increasing number of cores per CPU. This trend can be expected to continue for the

near future, with ever larger numbers of cores available in large shared memory machines,

which are combined into even larger distributed memory clusters as in Fig. 1.1. From a

users point of view, the availability of all this parallel power is welcome, but the ability to

create applications that e�ciently and e↵ectively use this architecture is challenging. The

complexities of using such architectures start at the level of the highly multicore machines,

and any complexities are made much greater with the addition of the distributed memory

clusters.

Traditional scientific libraries and development methodologies are finding it di�cult

to e�ciently manage and use the high number of computational cores that have become

available in these complex architectures. Even though alternative programming approaches

exist for development on these many-core and distributed memory architectures, MPI (Snir

et al., 1998) remains a standard for achieving high performance in distributed memory

machines. However, MPI is not designed to fully utilize these many-core architectures

designs in a shared memory environment, so programming is complicated by the addition

of a thread management systems such as Pthreads or OpenMP. As a result, developing

e�cient and scalable software for a complex, many-core, distributed-memory architecture

remains a challenging and arduous task. In order to ease the task of programming such

2
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Figure 1.1: Distributed memory architecture containing many-core nodes

software, we investigate and develop a programming model with an easy-to-use API which

supports transparent message passing between distributed memory nodes, and an e�cient

shared memory runtime within a many-core node.

As a very concrete example of a scientific software library, this work will use the

development of the PLASMA linear algebra library (Agullo et al., 2010) as its driving

application. Linear algebra algorithms are vital to many areas of scientific computing, and

any improvement in the performance of these libraries can have a beneficial e↵ect on a

variety of fields. The development of the PLASMA library has been spurred by ubiquitous

adoption of many-core architectures, and the inability of earlier software libraries to fully

take advantage of these architectures.

This work is developed and presented in two parts. The first part develops QUARK

(QUeuing And Runtime for Kernels), a simple API and runtime environment for many-core

shared memory machines. QUARK enables PLASMA to implement complex algorithms

using small computational kernels, and QUARK executes these kernels in a asynchronous,

dynamic, superscalar fashion that transparently preserves all the data dependencies between

the kernels. QUARK additionally provides support for constructs that enable specializations

for linear algebra libraries.
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The second part of this work develops QUARKD (QUeuing and Runtime for Kernels

in Distributed Memory), an extension to QUARK for distributed memory clusters.

QUARKD transparently supports distributed memory nodes without requiring changes at

the algorithmic level. QUARKD manages task scheduling, data movement, scalability and

hardware adaptation for the computational scientist accessible via a productive, easy-to-use

programming interface.

1.3 Thesis Statement

The main objective of this dissertation is to investigate how to dynamically schedule a

sequentially expressed algorithm to achieve scalability and resource e�ciency in many-core

and distributed memory architectures.

This dissertation addresses the problems of productivity, scalability and e�ciency

in current complex architectures, and develops an asynchronous, dynamic, data-driven

approach that addresses these problems. This approach is exposed via a productive, easy-

to-use, serial task-insertion API and implemented in a runtime environment. The runtime

environment is initially studied in the context of multicore, shared-memory machines. The

dynamic data-driven approach is then extended and examined on distributed memory

multicore architectures.

1.4 Contributions

The goals and criteria for success in this project are measured in terms of productivity,

scalability and e�ciency. Keeping these criteria in mind, the contributions of this

dissertation can be summarized as follows:

• A task-insertion API for expressing and implementing kernel based computations that

is productive and expressive. This API has been used successfully to implement the

linear algebra library PLASMA. This simple function-call style API has inspired a

similar API in the StarPU project (Augonnet, 2011, pg. 74).

• An asynchronous, dynamic, data-driven runtime environment for multicore shared

memory machines that is scalable and e�cient. The QUARK runtime environment is

4



designed to be easily integrated into any code that is constructed as a serial sequence

of kernel operations. QUARK is deployed as a part of the successful PLASMA linear

algebra library and it has also has been distributed for stand alone use. Experimental

results show high performance and scalability on linear algebra algorithms.

• A distributed memory runtime environment that extends the asynchronous, data-

driven execution paradigm to a distributed-memory cluster and demonstrates scala-

bility and e�ciency at large scale. The QUARKD runtime is shown to be competitive

on linear algebra applications at scales of 1200 cores in a distributed memory machine.

QUARKD works from the same algorithmic structure as the shared-memory PLASMA

implementation, thus increasing the productivity of the user.

• A distributed algorithm based on a serial task-insertion API that schedules distributed

tasks and manages data coherency without requiring global coordination.

New and original contribution This dissertation shows that the highly productive

serial task-insertion programming style can give a scalable and high performance distributed

memory execution that is competitive on large scale machines.

1.5 Outline of the Dissertation

This dissertation is organized as follows.

• Chapter 2 introduces the historical background to data-driven computing and

discusses recent research and projects that are relevant. Since linear algebra

applications are used to motivate and evaluate this research, background for tile-based

algorithms is presented.

• Chapter 3 describes QUARK (QUeuing and Runtime for Kernels) the multicore

shared-memory runtime environment for scheduling and executing sequentially ex-

pressed code. Experimental results validate our data-driven, superscalar approach to

the execution of task kernels.

• Chapter 4 describes QUARKD (QUeuing and Runtime for Kernels in Distributed

Memory), our dynamic, distributed-memory runtime for executing serially expressed

5



code. We describe the algorithms and protocols for task scheduling and distributed

non-coordinated data consistency. Experimental results show scalability and perfor-

mance results.

• Chapter 5 concludes this dissertation, describing the broader impact of this work, and

providing directions for future work.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter reviews prior work done to address dataflow programming. Some of the

more recent projects are motivated by the di�culties raised by the emergence of many-core

shared-memory and distributed memory architectures. We present some historical context

leading to the current research directions and discuss a few relatively recent projects that

have implemented solutions to the expression and implementation of data flow programs.

We also present the background for linear algebra applications, which act as a driver for

the implementation of our solution. The background for classic block-structured algorithms

is presented. Newer tile-based linear algebra algorithms are shown to result in tasks with

data dependencies, and thus to Directed Acyclic Graphs (DAGs) of tasks.

2.2 Dataflow Execution

Research in graph models of execution or dataflow execution started at the end of the 1960s

(Rodrigues, 1969). Dataflow execution research was motivated by the desire to exploit the

massive parallelism of large scale distributed systems by enabling asynchronous execution

paths. Since classical von Neumann systems were thought to be unsuitable to dataflow

execution, the early 1970s saw implementations of various forms of dataflow architectures

that relied on specialized hardware to implement fine-grained instruction-level dataflow

operations (Dennis, 1980) (Gurd et al., 1985). During the 1970s and 1980s, there was

7



an often-expressed view that dataflow architectures would eventually replace von Neumann

architecture. However, a 1986 survey article (Veen, 1986) reviewed various implementations

of experimental dataflow machines and pointed out some of the di�culties in fine grain

dataflow architectures. The primary problem is with storage space, where the e↵ective

utilization is about 40 percent because of all the meta-data information maintained for

each data item. In terms of computation overhead, fine grained dataflow architectures

have a numerical e�ciency that is substantially lower (2 to 10 times less) than standard

architectures because of the complex flow control that needs to be managed.

During the 1990s, the research focus in dataflow moved from fine-grain architecture

design to implementing larger grained dataflow algorithms on traditional von Neumann style

architectures. During this period there was a lot of research on languages for describing

dataflows (see survey article by Johnston et al. (2004)). In specific there was a lot of work on

dataflow based visual programming languages such as SciRun (Parker and Johnson, 1995)

and LabView (Johnson and Jennings, 2001). However, the focus of this dataflow research

was primarily programming productivity rather than exploiting parallelism.

During the last decade, a combination of various factors has driven hardware designers to

building processors that have an increasing number of computational cores. From a practical

perspective, this change in hardware means that many applications and algorithms have

to be rewritten to take advantage of the fine-grained parallelism provided by these multi-

core processors. Thus, the ideas and concepts from dataflow are being revisited within the

context of the current architecture designs.

2.3 Current and Related Work

Many current projects approach task parallelism using coarse-grain operations expressed

via functional parallelism and executed in a shared memory architecture. Functional

parallelism, even though it is a relatively straightforward approach to generating parallel

execution paths, has the problem that it tends to result in a fork-join or bulk-synchronous

form of parallelism. The resulting loss in parallelism at the synchronization points has

become relatively more expensive, given the increasing number of cores in modern multi-

core and many-core architectures. However, several projects have tried to extend beyond the
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simple fork-join style model of parallelism by implementing dataflow based asynchronous

execution. The following discussions are roughly broken down into shared and distributed

memory projects and are presented chronologically,

2.3.1 Task Execution in Shared Memory

Charm++ (Kale and Krishnan, 1993) and Adaptive MPI (AMPI) (Huang et al., 2003) use

processor virtualization and asynchronous remote method invocation for parallelism in a

distributed memory architecture. Programs are decomposed into a number of message-

passing, cooperating units called chares. Charm++ and AMPI use an implicit dependency

graph with a “block and yield” model to handle dependency coordination. However, because

of this, Charm++ and AMPI have a problem managing large call graphs, so Charisma

(Huang and Kale, 2007) was developed to orchestrate the tasks in the call graph and to

specify the producer-consumer communication patterns between objects.

The highly influential Cilk project for shared-memory machines (Blumofe et al., 1995)

implements a compiler directed divide-and-conquer style functional parallelism that leads

to a fork-join style of execution. The scheduling mechanism in Cilk keeps idle processors

busy by using work stealing, where an idle processor steals work from another processor

in order to remain productive. The use of simple compiler extensions for programming

Cilk makes it very easy to incorporate parallelism into a pre-existing program, however the

parallelism is limited to the granularity that is exposed when the functions are defined. The

fork-join style parallelism that is primarily supported in Cilk does not allow us to utilize

the hardware to the desired degree.

OpenMP (Dagum and Menon, 1998) is a well known standard for developing shared-

memory application. It uses compiler directive to insert directives into code to specify

data layout, parallelization and synchronization. These directives are then used to generate

applications that use library and runtime support to execute in parallel. The most common

use for OpenMP is in parallelizing regular loops, though other modes of parallelism exist.

The standard use of OpenMP for parallelizing regular loops results in fork-join style

parallelism. The OpenMP 3.0 standard (Ayguade et al., 2009) has added some support

for task level parallelism and dynamic sections. However, it is di�cult to express complex
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relationships using OpenMP, and it remains the users responsibility to ensure that there

are no dependencies between parallel sections.

The SMARTS project (Vajracharya et al., 1999) is a runtime system for shared memory

architectures which partitions loop iterations into sub-iterations with data dependencies,

and performs a data-parallel graph-based execution respecting the data dependencies. This

enables a form of task parallelism in combination with data parallelism. However, the level

of the task parallelism contained in these loop iterations is too fine grained for our DAG

applications and would result in unnecessary overhead.

The SuperMatrix project (Chan et al., 2007; Chan, 2010) provides a runtime en-

vironment in support of the FLAME linear algebra project (Gunnels et al., 2001) on

shared-memory machines. This runtime environment takes its inspiration from techniques

for dynamic scheduling and out-of-order operations as seen in superscalar processors.

It implements in a dataflow style implementation where the dependency analysis and

execution is managed by a Tomasulo style scoreboard (Tomasulo, 1967). The described

implementation of SuperMatrix exposes the entire dependence graph before executing, and

this is likely to hinder scalability as the size of the problem increases.

The SMP Superscalar (SMPSs) project (Pérez et al., 2008) is a compiler based system

that uses PRAGMA directives to annotate tasks that can be run in parallel and to

declare read/write information about their data parameters. Then, the compiler infers

the dependencies between tasks from the data declarations and a runtime system executes

a task-DAG in a shared-memory environment. SMPSs assigns tasks to cores in order to

increase data locality, uses work stealing as a scheduling mechanism, and puts an emphasis

on avoiding data hazards by using data copying if possible. SMPSs is part of family of

projects, grouped together under the name StarSs. The various projects target di↵erent

architectures, e.g., GPUSs targets GPUs, CellSs targets the Cell processor. In a shared

memory environment, SMPSs has similar goals and structure to our QUARK project. In a

distributed memory environment, Marjanović et al. (2010) implement a mode of MPI over

SMPSs, where the communication is explicitly encapsulated in user specified tasks. The

explicate MPI calls make it harder to express complex distributed communication patterns.

Additionally, the standard usage of SMPSs is via a compiler front end, which makes it

somewhat cumbersome when used within the context of a linear algebra library and in
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combination with other multithreaded libraries. Nevertheless, SMPSs shares many goals

and performance characteristics with the work described here.

The StarPU project (Augonnet et al., 2009) is a runtime environment for task scheduling

on shared memory architectures with an emphasis on supporting heterogeneous (e.g.,

GPU) execution and an expressive data management protocol. Data localization in the

heterogeneous environment is managed internally using cache coherence style protocols.

StarPU uses data dependencies to create a task DAG. It profiles task execution and uses

historical runtime data to schedule tasks on the appropriate core of the heterogeneous

machine. StarPU has been extended to provide MPI support, but the focus is on small

scale clusters with GPUs and not large distributed installations. StarPU shares many the

goals of our work, but focuses on supporting GPUs and other heterogeneous hardware.

2.3.2 Distributed Memory Implementations

The ScaLAPACK project (Blackford et al., 1996) provides the reference implementation

of a distributed memory linear algebra library. It is designed to be highly scalable and

load balanced in a homogeneous environment. However, ScaLAPACK implements a bulk

synchronous form of parallelism which su↵ers from the same fork-join problems seen in

LAPACK, where highly parallel BLAS3 operations are interspersed with operations with

much lower parallelism. We believe that using a dataflow model is going to expose a higher

degree of overall parallelism and enable greater parallelism during execution.

Husbands and Yelick (2007) have demonstrated a distributed memory implementation of

graph-based execution for dense LU factorization code, using co-operative thread scheduling

techniques along with UPC’s partitioned global address space for remote information

management. The performance demonstrated this approach is impressive, but a more

generalized technique would be required to handle a complete linear algebra library.

The TBLAS project by Song, YarKhan, and Dongarra (2009) describes an earlier

e↵ort directed toward creating a task based runtime environment. This work grew out

of an attempt to create a task-based implementation of BLAS to use as the underlying

computation layer within the ScaLAPACK library. The result of this work was an scalable,

well performing implementation of several algorithms, rather than a general purpose library
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based on a simple, productive API. The performance achieved by TBLAS was a motivating

factor for developing a general purpose task execution library.

The DAGuE project described by Bosilca et al. (2010b) is creating generic framework

for architecture aware scheduling and management of micro-tasks on distributed many-

core heterogeneous architectures. Applications are represented by a specialized structure

similar to a parameterized task graph, which contains all the relationships between tasks in

a compact, problem-size independent fashion. This structure can be queried to determine

data-dependencies, so the task-DAG is implicitly available at all times. This representation

leads to a runtime which has no overhead in determining the data dependencies. DAGuE

assigns computation threads to the cores, overlaps communications and computations and

uses a dynamic, fully-distributed scheduler based on cache awareness, data-locality and task

priority. However, creating the parameterized representation of the tasks is a painstaking

process requiring expert knowledge. DAGuE, in its current form, cannot be easily used by

the average algorithm designer to create and experiment with numerical algorithms.

2.4 Overview of Linear Algebra⇤

Linear algebra algorithms form the core of a large number of scientific computing

applications. Improvements in the performance of these algorithms can enable substantial

advances in science, for example, by making more detailed simulations possible in less

time. As a concrete example, weather simulations need to be completed before the weather

actually arrives; tsunami simulations would need to be completed before the e↵ects arrive.

2.4.1 Block Algorithms

Linear algebra libraries have evolved over time to match available hardware . The LAPACK

(Anderson et al., 1999) library was originally developed in the 1980s for shared-memory

systems with a focus on cache memory management. However, the architectures at that

time did not provide a large degree of shared memory multicore parallelism, so it was

expected that the underlying BLAS (Basic Linear Algebra Subroutines) libraries would

⇤This section was previously presented in Haidar, A., Ltaief, H., YarKhan, A., and Dongarra, J. (2011).
Analysis of dynamically scheduled tile algorithms for dense linear algebra on multicore architectures.
Concurr. Comput. : Pract. Exper., 24(3):305–321.
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Figure 2.1: Fork-join execution (top) versus asynchronous execution (bottom) of the same
task based linear algebra algorithm. The trace shows the execution of di↵erent tasks on
di↵erent threads as tiles of di↵erent colors, with white space meaning that a thread is idle.

provide any needed parallelism. The result of this design decision was a fork-join style

of parallelism, where single core work may be followed by highly parallel Level-3 BLAS

routines, which is then followed by a synchronization point and another serial section of

the code. When there were just a few cores available, the loss of performance due to the

synchronization was minimal. However, as the number of available cores has increased, this

opportunity cost has become substantial. Fig. 2.1 shows both the trace of a fork-join style

execution and the data driven asynchronous execution of the same task based algorithm;

the di↵erence between the execution time for the two implementations can be substantial.

Here we review the software design behind the LAPACK library for shared-memory. In

particular, we focus on three widely used factorizations used in scientific computing, i.e.,

QR, LU and Cholesky. These factorizations will be used throughout this dissertation to

guide and evaluate our research.

LAPACK provides a broad set of linear algebra operations aimed at achieving high

performance on systems equipped with memory hierarchies. The algorithms implemented

in LAPACK leverage the idea of algorithmic blocking to localize the operations to smaller

chunks of data which can be held in the faster, smaller levels of the memory hierarchy. This

limits the amount of memory bus tra�c in favor of high data reuse from the faster, higher

level memories such as L1 and L2 cache memories.

The idea of blocking revolves around an important property of Level-3 BLAS operations

(matrix-matrix operations), the surface-to-volume property, which means that for Level-3
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Figure 2.2: Standard steps in a block algorithm, consisting of a panel factorization and a
trailing matrix update. These steps lead to a fork-join execution.

operations ✓(n3) floating point operations are performed on ✓(n2) data. Because of this

property, Level-3 BLAS operations can be implemented in such a way that data movement

is minimal and reuse of data in the cache is maximized. Level-3 BLAS operations can

be highly e�cient, obtaining a large fraction of the theoretical peak performance of the

hardware. Block algorithms consist of recasting linear algebra algorithms in a way that

only a negligible part of the computations are done as Level-2 BLAS operations (matrix-

vector operations), where data reuse is minimal, while most is done in Level-3 BLAS. Most

of these blocked algorithms can be described as the repetition of two fundamental steps

shown in Fig. 2.2:

• Panel factorization: Depending on the linear algebra operation that has to be

performed, a number of transformations are computed for a small portion of the

matrix (the so called panel). The e↵ect of these transformations, computed using

Level-2 BLAS operations, can be accumulated.

• Trailing submatrix update: In this step, all the transformations that have been

accumulated during the panel factorization step can be applied at once to the rest of

the matrix (i.e., the trailing submatrix) by means of Level-3 BLAS operations.

The parallelism in block structured algorithms is enabled at the level of each BLAS routine.

Although the panel factorization step represents a small fraction of the total number of

operations (✓(n2) from a total of ✓(n3)), it consists of Level-2 BLAS operations that are

memory bound and cannot be e�ciently parallelized in shared memory machines. The

Level-3 BLAS routines, such as matrix-matrix multiplication, which can be e↵ectively

parallelized are responsible for most of the parallelism in the block structured algorithms.

14



This results in the fork-join execution for block factorizations since such the execution of

such a factorization is a sequence of sequential operations (panel factorization) interleaved

with parallel ones (updating the trailing submatrix).

The ScaLAPACK library (Blackford et al., 1996) is a distributed memory implementa-

tion of linear algebra that is based on the same block-structured algorithms as LAPACK.

ScaLAPACK also obtains it’s parallelism at the BLAS level, that is, by means of a

distributed PBLAS library (Choi et al., 1996). ScaLAPACK has the same limitation

as LAPACK, where the Level-2 BLAS operations cannot be e�ciently parallelized on

distributed multicore architectures.

The fork-join execution of block structured algorithms have the following two problems:

• Scalability is limited because the relative cost of the sequential Level-2 BLAS

operations increases as the degree of available parallelism increases.

• Asynchronicity is not available because the block-structured algorithms block all other

computational activity while synchronizing around the sequential Level-2 BLAS tasks.

As such, architectures with high number of processors and cores can benefit substantially

if algorithms can be rewritten to allow asynchronous execution and greater scalability.

2.4.2 Tile Linear Algebra Algorithms

Here we outline a solution that removes the fork-join overhead seen in block algorithms.

Based on tile algorithms, this new model is currently used in shared memory libraries, such

as PLASMA from the University of Tennessee (Agullo et al., 2010) and FLAME from the

University of Texas at Austin (Gunnels et al., 2001).

The tile-based approach to linear algebra algorithms has been presented and discussed in

Buttari et al. (2007), Quintana-Ort́ı and Van De Geijn (2008), Buttari et al. (2008), Kurzak

et al. (2008), and Kurzak and Dongarra (2009b). The tile approach consists of breaking the

panel factorization and trailing submatrix update steps into smaller tasks that operate on

relatively small nb⇥nb tiles (or blocks) of consecutive data which are organized into block-

columns as shown in Fig. 2.3. The algorithms can then be restructured as tasks (which

are basic linear algebra operations) that act on tiles of the matrix. The data dependencies
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Figure 2.3: Di↵erence between the standard LAPACK layout (left) and the tile data
layout (right). The tile data layout uses a contiguous memory region to hold a tile of the
matrix.

between these tasks result in a Directed Acyclic Graph (DAG) where nodes of the graph

represent tasks and edges represent dependencies among the tasks.

The execution of the tiled algorithm is performed by asynchronously scheduling the tasks

in a way that dependencies are not violated. Optimally, we would like this asynchronous

scheduling to result in an out-of-order execution where slow, sequential tasks are hidden

behind parallel ones. This would be managed by having the sequential tasks start early,

as soon as their dependencies are satisfied, while some of the parallel tasks (submatrix

updates) from the previous iteration still remain to be performed and can be executed in

parallel.

Matrix factorization algorithms form a core operation for scientific computation, since

they are used as the first step for finding the solution vector x for a linear system Ax = b.

The tile versions of the Cholesky, QR and LU factorization algorithms are used to drive the

development of asynchronous runtime system developed in this work. For reference, these

algorithms are outlined here.

Tile Cholesky factorization

The Cholesky factorization is used during the solution of a linear system Ax = b, where

A is symmetric and positive definite. Such systems arise often in physics applications,

where A is positive definite due to the nature of the modeled physical phenomenon. The

Cholesky factorization of an n ⇥ n real symmetric positive definite matrix A has the

form A = LLT , where L is an n ⇥ n real lower triangular matrix with positive diagonal

elements. The tile Cholesky algorithm processes the matrix by tiles, where the matrix
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Algorithm 1 Tile Cholesky factorization algorithm
1: for k = 1, 2 to NT do
2: {Cholesky factorization of the tile Ak,k}
3: DPOTF2(Akk)
4: for i = k + 1 to NT do
5: {Solve AkkX = Aik}
6: DTRSM(Akk, Aik)
7: {Update Aii  Aii �AikA

T
ik}

8: DSYRK(Aii, Aik)
9: end for

10: for i = k + 2 to NT do
11: for j = k + 1 to i do
12: {Update Aij  Aij �AikAjk}
13: DGEMM(AijAik, Ajk)
14: end for
15: end for

16: end for

consists of NT ⇥NT tiles. In Algorithm 1, some standard BLAS routines are used during

the factorization: DSYRK (symmetric rank-k update), DPOTF2 (unblocked Cholesky fac-

torization), DGEMM (general matrix-matrix multiplication), DTRSM (triangular solver).

The dominant operation of the Cholesky factorization comes from the innermost loop of the

trailing matrix update and is the very e�cient Level-3 BLAS matrix-matrix multiplication

(DGEMM).

Tile QR factorization

The QR factorization implemented in LAPACK is a factorization of an m⇥n real matrix A

is the decomposition of A as A = QR, where Q is an m⇥m real orthogonal matrix and R

is an m⇥ n real upper triangular matrix. The QR factorization uses a series of elementary

Householder matrices of the general form H = I � ⌧vvT , where v is a column reflector and

⌧ is a scaling factor.

The tile QR algorithm produces essentially the same factorization as the LAPACK

algorithm, but it di↵ers in the Householder reflectors that are produced and the construction

of the Q matrix. The algorithm is outlined in Algorithm 2 (for details see Gunter and van

de Geijn (2005) or Buttari et al. (2009)).

In order to restructure the QR algorithm as a tile algorithm, the dominant operation

from the innermost loop is di↵erent from the standard LAPACK implementation. In
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Algorithm 2 Tile QR factorization algorithm
1: for k = 1, 2 to NT do
2: DGEQRT(A

k,k

, T
k,k

)
3: for n = k + 1 to NT do
4: DORMQR(A

kk

, T
kk

, A
kn

)
5: end for
6: for m = k + 1 to NT do
7: DTSQRT(A

kk

, A
mk

, T
mk

)
8: for n = k + 1 to NT do
9: DTSMQR(A

kn

, A
mn

A
mk

, T
mk

)
10: end for
11: end for
12: end for

LAPACK, the dominant operation is the highly optimized DGEMM and in the tile algorithm

it is a new kernel operation DTSMQR. The DTSMQR operation, even though it is a matrix-

matrix operation, has not been tuned and optimized to the extent of DGEMM, so it reaches

a much lower percentage of peak performance on a machine.

Tile LU factorization

In LAPACK, the LU factorization (or LU decomposition) with partial row pivoting of an

m⇥n real matrix A has the form A = PLU , where L is an m⇥n real unit lower triangular

matrix, U is an n⇥ n real upper triangular matrix and P is a permutation matrix. In the

block formulation of the algorithm, factorization of nb columns (the panel) is followed by

the update of the remaining part of the matrix (the trailing submatrix).

The tile LU factorization algorithm in Algorithm 3 follows the same pattern as the QR

algorithm, and is described in greater detail in Buttari et al. (2009). The tiled algorithm

does not use the partial pivoting strategy, but instead another strategy called incremental

pivoting or block-pairwise pivoting. In the tile LU algorithm, only two tiles of the panel

are factorized at a time, so the pivoting only takes place within two tiles at a time. This

can cause the tile algorithm to be less numerically stable than the partial pivoting LU

factorization in LAPACK.
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Algorithm 3 Tile LU factorization algorithm
1: for k = 1, 2 to NT do
2: DGETRF(A

kk

, IPIV
kk

)
3: for n = k + 1 to NT do
4: DGESSM(IPIV

kk

, A
kk

, A
kn

)
5: end for
6: for m = k + 1 to NT do
7: DTSTRF(A

kk

, A
mk

, L
mk

, IPIV
mk

)
8: for n = k + 1 to NT do
9: DSSSSM(A

kn

, A
mn

, L
mk

, A
mk

, IPIV
mk

)
10: end for
11: end for
12: end for

2.5 Summary

Dataflow execution has a long history, and it has reemerged in the form of data-driven

asynchronous execution for large grained tasks. The most relevant related projects for our

research are the StarPU, SMPSs, and DAGuE projects, but none of these has the same goals

of productivity, scalability and performance. StarPU does address productivity, but it has

a focus on heterogeneity and does not address scalability for large distributed machines.

SMPSs addresses productivity by defining language extensions, but its distributed memory

management is not as productive since it requires explicit control. DAGuE excels at

scalability and performance, but programming DAGuE applications is not productive since

it requires the user to write and analyze parameterized task graphs.

Linear algebra algorithms are used as a development driver for our project. We discuss

how libraries such as LAPACK and ScaLAPACK obtained their parallelism, and explain

why that does not fit with current machine architectures. We discuss how tile based rewrites

of linear algebra algorithms result in DAGs of tasks with data dependencies between the

tasks. We outline the tile Cholesky, QR and LU factorizations, since these tile based

algorithms will be used to guide our implementations of asynchronous data-driven task

execution environments.
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Chapter 3

Dynamic Task Execution In Shared

Memory ⇤

We have introduced the problems involved in developing e�cient applications for many-

core architectures and we have described some prior work on data-driven execution as a

solution to these problems. In this chapter we introduce QUARK (QUeuing And Runtime

for Kernels), our solution for executing tasks in a multicore shared-memory architecture.

We describe our API for task insertion in QUARK, which is designed to be productive

for a programmer. Since the development of QUARK is driven by linear algebra, we

describe some linear algebra optimizations included in QUARK and demonstrate some of

the advantages of a dynamic runtime, such as DAG composition. Experimental results

demonstrate the performance and scalability of QUARK on multicore shared-memory

architectures. The shared memory QUARK runtime environment is an independent and

vital component of the PLASMA linear algebra library.

⇤Material in this chapter has been published in the following: (1) Kurzak, J., Luszczek, P., YarKhan,
A., Faverge, M., Langou, J., Bouwmeester, H., and Dongarra, J., Multithreading in the PLASMA Library.
In Handbook of Multi and Many-Core Processing: Architecture, Algorithms, Programming, and Applications
(Kurzak et al., 2013); and (2) Haidar, A., Ltaief, H., YarKhan, A., and Dongarra, J., Analysis of dynamically
scheduled tile algorithms for dense linear algebra on multicore architectures. Concurr. Comput. : Pract.
Exper., (Haidar et al., 2011).
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3.1 Introduction

Modern shared memory machines have a large number of cores, ranging from just a few

cores to single memory image machines with thousands of cores. It has been argued in

Buttari et al. (2009) that to achieve high performance on such architectures, algorithms

will have to be expressed at a fine-granularity for improved local cache management, and

with high asynchronicity to take advantage of the available core and reduce synchronization

points.

Taking fine granularity and asynchronicity as our guides, our goal is to enable a

programmer to easily obtain high performance from shared memory machines by creating

and executing as many concurrent tasks as possible. The programmer should be protected

from having to deal with the details of knowing when a task may execute, where it should

execute, and what tasks may execute next.

Our solution is to develop an API and runtime environment that allow the programmer

to submit tasks to be executed in a serial fashion. The runtime examines the data

dependencies between the tasks and executes the tasks in such a way as to preserve the

sequential consistency of the original tasks. Additionally, the runtime system strives to take

advantage of cache locality and to keep all the cores as busy as possible.

The driving applications that guide the development of our solution and test its e�ciency

come from linear algebra. The freely available, de-facto standard, linear algebra library

LAPACK (Anderson et al., 1999) was written to obtain parallelism via synchronous calls to

parallel BLAS routines, interspersed by lower levels of parallelism. This results in a fork-

join style of parallelism, which we hope to improve using dataflow approaches, resulting in

a new, higher performing freely-available library. Another, a reason to use linear algebra as

a driving application is that many commercial linear algebra libraries exist that can be used

to judge the quality of our solution, to see if we achieve the competitive performance. More

details about tiled algorithms for linear algebra can be found in various studies, including

work by Buttari et al. (2007), Kurzak et al. (2008), Buttari et al. (2009), and Quintana-

Ort́ı and Van De Geijn (2008). These motivate the use of tiled algorithms and explain the

di↵erences between tiled versions of algorithms and the older block structured algorithms.
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The runtime environment that we develop in this work requires that applications are

composed of tasks that operate on contiguous data. Not all applications will map easily

to this structure, but there is a large class of applications, including those from the linear

algebra domain, that are well suited.

3.1.1 Moving to a Dynamic Runtime

The tile based approach to linear algebra application is being explored and implemented

within the PLASMA project (Agullo et al., 2010). This project has been re-visiting

approaches to linear algebra algorithms in the context of many-core shared-memory

machines, and restructuring linear algebra algorithms as a sequence of tasks that operate

on contiguous-memory tiles of data. This sequence of tasks can then be scheduled for an

out-of-order execution, which can hide the work done by the sequential bottleneck tasks.

The tasks along with the data dependencies between the tasks define an implicit DAG where

the tasks are the nodes and the data dependencies between the tasks form the edges. We

would like to execute the DAG of tasks on shared-memory, many-core architectures in a

flexible, e�cient and scalable manner.

In early versions of the PLASMA project, a statically defined progress table was

used to track task dependencies and to enable the succeeding tasks. The design of this

progress table for each algorithm is a formidable undertaking for an expert, and can hinder

the creation of complex algorithms. This motivated exploration of a dynamic approach

to determining dependencies and scheduling tasks which would not be dependent on a

complex progress table. An early proof-of-concept project by Kurzak and Dongarra (2009a)

demonstrated the value of dynamic scheduling for linear algebra algorithms in the shared

memory environment.

In this chapter of the dissertation, we will present the QUARK project (QUeuing And

Runtime for Kernels) that has built a new runtime environment for dynamic task scheduling

YarKhan et al. (2011b). QUARK uses enhanced parameter information provided in calls

to kernel tasks to determine the data dependencies between these tasks. We will detail

how these tasks are managed by the QUARK runtime to enforce data dependencies and

schedule execution. QUARK has been tuned to make many optimizations that would be
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very di�cult to implement using static progress-table scheduling. For example, QUARK

uses information about locality to try to reuse data that has been cached in local cache

memory. QUARK can take hinting to allow it to reorder certain operations to maximize

e�ciency.

There are many algorithms currently in PLASMA where designing a static progress

table is di�cult due to the complex data dependency relationships between the tasks,

for example, recursive LU factorization (Kurzak et al., 2013), Cholesky inversion (Agullo

et al., 2011), and LU inversion (Dongarra et al., 2011). For these algorithms, using the

simplified interfaces of QUARK and allowing QUARK to dynamically manage the data

dependencies and use asynchronous out-of-order scheduling to execute the application has

greatly improved productivity while simultaneously providing high performance.

Experiments in this chapter will show that QUARK is as e�cient as the static progress

table scheduling, and in many situations QUARK has performance advantages in addition

to the productivity advantage discussed earlier. More specifically, algorithms executing

under QUARK can be composed, e↵ectively compressing the DAGs and thus allowing an

even greater speedup when multiple algorithmic operations are performed on the same data

set; and in a shared-resource environment, the dynamic task scheduling in QUARK will

automatically do load balancing, so more processing will occur on lightly loaded resources

and less on highly loaded-machines.

3.2 Runtime Architecture

In this section we present an overview of the QUARK runtime environment for dynamic task

scheduling in shared memory, guiding the discussion from the perspective of an algorithm

writer who is using the runtime to create and to execute an algorithm.

An idealized overview of the architecture of the QUARK runtime environment is show

in Fig. 3.1. The user inserts tasks into the system using a serial task-insertion API. After

each task is inserted into the runtime, the arguments for the task are used to make a

dependency structure, where reads and writes on data are queued. These queues of data

requests are checked for data dependencies and the ordering of these dependencies forms an

implicit DAG for the tasks. The runtime system schedules the tasks that are not waiting for
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Figure 3.1: Idealized architecture diagram for the QUARK shared-memory runtime
environment. The user’s thread runs serial code and, when acting as the task master, it
inserts tasks into a (implicit) DAG based on their dependencies. Tasks can be in NotReady,
Queued or Done states. When dependencies are satisfied, tasks are queued and executed by
worker threads. When tasks are completed, further dependencies can be marked as satisfied
and further tasks can be scheduled for execution.

dependencies, and execution threads pickup and execute the tasks. After a task completes

execution, for each data parameter, the queue of reads and writes are updated to reflect the

completed task. Then the runtime schedules any released tasks that do not have to wait

for any more dependencies.

3.3 Data Dependencies

In order for the runtime to be able to determine dependencies between the tasks, it needs

to know how each task is using its arguments. Constant arguments are marked as VALUE,

which means that they are not dependencies, but values like constants or loop indices;

these values are just stored with the task. Actual dependencies can be INPUT, OUTPUT, or

INOUT, which have the expected meanings. Given the sequential order that the tasks are

inserted into the runtime system, and the way that the arguments are used, we can infer

the relationships between the tasks.

• A task can read a data item that was written by a previous task, a read-after-write

(RAW) dependency.
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• A task can write a data item that was written by previous task, a write-after-write

(WAW) dependency.

• A task can write a data item that was read by a previous task, a write-after-read

(WAR) dependency.

These are the dependencies that define the DAG, however this DAG is never explicitly

realized in the runtime environment. The DAG is implicit in the way that tasks are queued

and block on data items, waiting for the appropriate access to the data.

To summarize, the dependency analysis is done based on two factors:

1. The tasks are added in the desired sequential order.

2. The data items queue up read requests and write requests to the data.

In order to determine if a task can be executed, there are two basic rules that need to be

enforced on data access:

• Writes cannot proceed until all earlier access (read or write) to the data is completed.

• Reads cannot proceed until all earlier writes are completed Multiple reads can proceed

in parallel.

When the data access rules are enforced an execution ordering of the tasks is obtained.

A simple example is shown in Fig 3.2 and demonstrates how a sequence of tasks can be

translated into queues of data access requests, which can then be executed via a parallel

ordering on the tasks.

The resolution of the task dependencies has an analogue in the instruction level

superscalar parallelism within a single CPU, where multiple machine instructions can be

simultaneously dispatched to di↵erent function units provided there are no data hazards

between them.

3.3.1 Shared Memory Algorithm

The shared memory algorithm is outlined in Fig. 3.3 in a very simplified form. This ignores

the complications in scheduling tasks for data locality, tracking tasks for cancellation, etc.
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Task A reads v , wr i t e s x
Task B reads y , wr i t e s z
Task C reads x , wr i t e s y
Task D reads x , z , w r i t e s v
Task E reads y , wr i t e s z

A B C D E
v r w
x w r r
y r w r
z w r w

A can proceed at once
B can proceed at once
Note A and B can run in p a r a l l e l .
C can proceed a f t e r A wr i t e s x (RAW) and B reads y (WAR)
D can proceed a f t e r A wr i t e s x (RAW) , A reads v (WAR) , and B wr i t e s z (WAW)
Note C and D can run in p a r a l l e l .
E can proceed a f t e r C wr i t e s y (RAW) and D reads z (WAR)

So the task DAG order ing i s [A |B] � [C |D] � E

Figure 3.2: Simple data dependency example

This algorithm is shown in two stages, since there are two ways a task can reach the

point where it is scheduled for execution. Firstly, when a task T
a

is inserted, if none of its

data accesses (INPUT/INOUT/OUTPUT) have data hazard conflicts with earlier tasks, then it

can be scheduled for execution at insertion time. Secondly, when a task T
b

has completed

its execution, its data item accesses are removed. Each data item may have other accesses

that were queued and could not be scheduled until task T
b

completed. The other access

may now be granted, and any task T
c

that now has gained access to all its data parameters

can be scheduled for execution.

Shared Memory Task Insertion API The basic task insertion API is shown in Fig. 3.4.

The details of the API can be found in Appendix A, but the most important item for

determining the data dependencies and the implicit DAG are the argument flags. These

flags express the information about how the argument is to be used in the function (INPUT,

INOUT or OUTPUT).
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// When i n s e r t i n g t a s k s
f o r each task T

a

as i t i s i n s e r t e d
f o r each dependency A

i

in T

a

enqueue T

a

ac c e s s to A

i

us ing rw �mode

i f no e a r l i e r a c c e s s c o n f l i c t s , T

a

ge t s a c c e s s to A

i

i f T

a

can get a l l i t s A

i

dependenc ies
schedu le T

a

f o r execut ion

// When t a s k s comple te
f o r each task T

b

as i t i s completed
f o r each dependency A

i

in T

b

remove T

b

ac c e s s to A

i

r e l e a s e c o n f l i c t i n g data hazards that are queued on A

i

i f some other task T

c

has no more hazard�blocked dependenc ies
schedu le T

c

f o r execut ion

Figure 3.3: Outline of shared memory algorithm

QUARK Insert Task ( Quark ⇤quark , void (⇤ f unc t i on ) (Quark ⇤ ) ,
Quark Task Flags ⇤ t f l a g s ,
i n t s i z e o f a r g 1 i n b y t e s , void ⇤ arg 1 , i n t a r g 1 f l a g s ,
i n t s i z e o f a r g 2 i n b y t e s , void ⇤ arg 2 , i n t a r g 2 f l a g s ,
. . . ,
0 ) ;

Figure 3.4: QUARK shared memory task insertion API

3.3.2 Tile Cholesky Factorization

The outline of the shared memory algorithm, and the API for task insertion have been

presented. We will now put these into practice by following a tile Cholesky factorization as

implemented in PLASMA and executed by the QUARK runtime environment.

Fig. 3.5 shows the pseudocode for the tile Cholesky factorization as an algorithm designer

might view it. Tasks in this Cholesky factorization depend on previous tasks if they use

the same tiles of data. If these dependencies are used to relate the tasks, then a directed

acyclic graph (DAG) is implicitly formed by the tasks. A small DAG for the Cholesky

factorization of a 5 ⇥ 5 tile matrix is shown in Fig. 3.6. The DAG visualizations can

be produced automatically by the runtime environment and have proven to be useful for

algorithm development, debugging and verification.

The PLASMA library uses function wrappers in order to write code that maps very

closely to the pseudocode shown for the Cholesky factorization in Fig. 3.5. This loop-

based formulation of code is relatively straightforward for a programmer of linear algebra
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algorithms and allows flexibility in easily experimenting with further algorithms. In Fig. 3.7

we see the final code implemented in PLASMA which can be seen to closely resemble the

pseudocode from Fig. 3.5. Each of the calls to the core linear algebra routines is represented

by a call to a wrapper where the parameters are decorated with information about their

sizes and their usage (INPUT, OUTPUT, INOUT, VALUE). As an example, in Fig. 3.8 we can see

how the DPOTRF call is decorated for the use by the runtime environment.

The tasks are inserted into the runtime, which stores them to be executed when all the

dependencies are satisfied. The execution of ready tasks is handled by worker threads that

simply wait for tasks to become ready and execute. Workers get their tasks using a simple

scheduling heuristic discussed in the next section. The thread doing the task insertion is

referred to as the master thread. When there are su�cient tasks inserted into the runtime,

the master thread will also switch to a mode where it will execute tasks.

3.4 Task Scheduling

When all the dependencies of a task are satisfied, the task is scheduled for execution by

placing it in a worker-thread specific ready queue. By default, data locality is used to

determine which worker thread executes a task. A task is assigned to the worker thread

that has most recently written its output data, thus attempting to reuse data that may

still be resident in the cache for that thread. If there is more than one output parameter,

the first output parameter is used to determine locality. If the user has knowledge that

FOR k = 0 . . TILES�1
po t r f ( A

rw

kk

)
FOR m = k+1. . TILES�1

trsm ( A
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)
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Figure 3.5: Pseudocode for the tile Cholesky factorization, when acting on a matrix. The
lower figure visualizes a sequence of tasks unrolled by the loops.
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Figure 3.6: DAG for a small Cholesky factorization (right looking version) with five tiles
(tile size 200 and matrix size 1000). The column on the left shows the depth:width of the
DAG.

#de f i n e A(m, n) BLKADDR(A, double , m, n)
void plasma pdpotr f quark ( PLASMA enum uplo , PLASMA desc A, . . . )

f o r ( k = 0 ; k < M; k++)
QUARK CORE dpotrf( quark , A(k , k ) , . . . )
f o r (m = k+1; m < M; m++)

QUARK CORE dtrsm( quark , A(k , k ) , A(m, k ) , . . . ) ;
f o r (m = k+1; m < M; m++)

QUARK CORE dsyrk( quark , A(m, k ) , A(m, m) , . . . ) ;
f o r (n = k+1; n < m; n++)

QUARK CORE dgemm( quark , A(m, k ) , A(n , k ) , A(m, n ) , . . . ) ;

Figure 3.7: Tile Cholesky factorization as implemented in PLASMA, uses the QUARK
runtime to schedule and execute the core linear algebra operations.

29



void QUARK CORE dpotrf(Quark ⇤quark , Quark Task Flags ⇤ t a s k f l a g s ,
i n t uplo , i n t n , i n t nb , double ⇤A, i n t lda ,
PLASMA sequence ⇤ sequence , PLASMA request ⇤ request , i n t i i n f o )

QUARK Insert Task ( quark , CORE dpotrf quark , t a s k f l a g s ,
s i z e o f (PLASMA enum) , &uplo , VALUE,
s i z e o f ( i n t ) , &n , VALUE,
s i z e o f ( double )⇤nb⇤nb , A, INOUT,
s i z e o f ( i n t ) , &lda , VALUE,
s i z e o f (PLASMA sequence ⇤ ) , &sequence , VALUE,
s i z e o f (PLASMA request ⇤ ) , &request , VALUE,
s i z e o f ( i n t ) , &i i n f o , VALUE,
0 ) ;

void CORE dpotrf quark (Quark ⇤quark )
{

i n t uplo ; i n t n ; double ⇤A; i n t lda ; i n t i n f o ;
quark unpack args 7 ( quark , uplo , n , A, lda , sequence , . . . ) ;
i n f o=LAPACKE dpotrf work (LAPACK COLMAJOR, l apack cons t ( uplo ) , n , A, lda ) ;
i f ( i n f o != 0) p la sma sequence f l u sh ( quark , . . . ) ;

}

Figure 3.8: Example of inserting and executing the DPOTRF task as part of the Cholesky
factorization. The QUARK CORE doptrf routine inserts a task into the runtime, passing it
the sizes and pointers of arguments and their usage (INPUT, OUTPUT, INOUT, VALUE).
Later, when the dependencies are satisfied and the task is ready to execute, the runtime
schedules the CORE dpotrf quark task to be executed. During execution the arguments are
unpacked and the actual dpotrf computation is executed. For simplicity, the error handling
part of the code was removed.
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can assist in the scheduling of the task, then this default assignment can be overridden by

designating some other parameter to be the locality determining parameter.

If a worker has no remaining work assigned to it, a work stealing heuristic comes into

play and allows the worker to steal a task from the end of another workers ready queue.

The work is stolen from the end of the queue in order to minimize the e↵ect on the data

locality. However, any use of work stealing may break the data locality based assignment

since the stolen task may cause data to move unexpectedly.

The combination of these two heuristics, locality based assignment and work stealing,

results in a simple, e↵ective approach for scheduling in QUARK. The overall e↵ect is that

the scheduling mechanism adapts well to modern multicore architectures, which can include

mechanisms such as dynamic frequency scaling and may have multiple competing processes

on a socket. More complex scheduling methods (e.g., critical path based methods) would

find it di�cult to adapt to dynamically changing environments.

QUARK’s simple, practical approach to scheduling has enabled some interesting

heuristics, allowing the programmer to provide hints to the scheduler and allowing the

scheduler to reorder tasks as needed. Some of these techniques are discussed in section. 3.6.

3.4.1 A Window of Tasks

QUARK has always been developed with the intention of executing large complex codes,

especially since the driving applications come from linear algebra where ✓(n3) tasks are not

unexpected. For example, In Fig. 3.9 we see the DAG for a relatively small LU factorization

using 20 ⇥ 20 tiles; even this small problem generates 2870 tasks. For a slightly larger

problem size consisting of 1000⇥1000 tiles, we would have a DAG with ✓(10003) (a billion)

tasks. In such a case doing a critical path analysis would be a very costly operation.

Figure 3.10 depicts the growth of the number of tasks when varying the number of tiles.

If we were to unfold and retain the entire DAG of tasks for a large problem, we may be

able to perform some interesting analysis with respect to DAG scheduling and critical paths.

However, the size of the data structures would quickly grow overwhelming. Our solution to

this is to maintain a configurable window of tasks. The implicit DAG of active tasks is then

traversed through this sliding window, which should be large enough to ensure all cores are
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Figure 3.9: DAG for a relatively small LU factorization with 20x20 tiles (tile size 200
and matrix size 4000) generates 2870 tasks. The size of the DAG grows very fast with the
number of tiles.

kept busy. When this window size is reached, the master thread which is inserting tasks

does not accept any more tasks until some are completed. During this period, the master

thread will switch to a computation mode and work on ready tasks.

The use of a task window limits the resources required by the runtime environment, but

it also can limit the lookahead available to the scheduler. In theory, this may decrease the

amount of parallelism available, however in practice, there is su�cient parallelism available

with relatively small window sizes (Haidar et al., 2011).

3.4.2 E↵ect of Tile Size

The tile size, which corresponds to the amount of work done by a single task, is a very

important tuning parameter in QUARK. The amount of work in a task needs to be large

enough to hide the overhead of the runtime system. However, if it is too large, then,

depending on the algorithm being executed, the amount of available parallelism can be

decreased. If the data tile size is too small, then the runtime system can su↵er some internal

negative feedback e↵ects (e.g. mutex lock contention) which can cause the performance to

drop drastically.

Some of the drastic e↵ects of tuning or mistuning the tile size become evident in Fig. 3.11.

For QR factorization in PLASMA, there are two di↵erent tile block sizes that need to be
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Figure 3.10: The rapid growth of number of tasks for the linear algebra applications.
For many linear algebra algorithms the number of tasks grows as ✓(n3) with the number
of tiles. This mean for large problems keeping the entire DAG in memory quickly grows
intractable. The QUARK runtime uses a sliding window of active tasks to make the problem
manageable.

tuned, an inner block size (IB) and main tile size (NB). In a tuning step not shown here,

a large part of the (IB, NB) space was explored and IB=36 was found and is used in the

NB exploration in Fig. 3.11. For QR factorization, the IB and NB tile sizes have an e↵ect

on each other, which explains jagged shape of the QR curve. For both the Cholesky and

QR algorithms shown in the figure, the optimal tile size is found to be NB=180. However,

these parameters need to be adjusted from machine to machine since they depend on low

level machine characteristics. In future work, it would be interesting to explore autotuning

mechanisms that will find the appropriate tuning parameters for a machine.

3.5 Parallel Composition

A vital feature of QUARK is the ability to do parallel composition, that is, the ability to

compose a number of smaller task graphs into a larger merged task graph. This allows the

composed DAG to reveal more parallelism, thus enabling the greater overall performance.
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Figure 3.11: The e↵ect of tile size on Cholesky and QR factorization shows that there is
an optimal tile size and performance drops sharply when the tile size strays far from that
optimum. For QR factorization there is an inner blocking size (IB) that has already been
tuned to 36.

The Cholesky inversion routine in PLASMA shows the advantages of parallel composition,

and has been presented in detail by Agullo et al. (2011) and Kurzak et al. (2013). The

advantages of parallel composition have also been shown in Dongarra et al. (2011) for the

LU inversion of a matrix.

3.5.1 Composing the Cholesky Inversion

In the following presentation, the benefits of parallel composition for Cholesky inversion are

detailed. The mathematical details of the algorithms can be found in Agullo et al. (2011) and

Kurzak et al. (2013), but for the purposes of this discussion, the Cholesky inversion involves

three separate components: computing the Cholesky factorization (POTRF), inverting the

L factor (TRTRI), and computing the inverse matrix (LAUUM). Each of these components

corresponds to a sequence of kernel tasks, where each task is a call to a BLAS operation on

a tile of data. These kernel tasks are inserted into the runtime environment, and scheduled

and executed by QUARK. Figure 3.12 shows the DAGs of each of the three components
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Figure 3.12: DAGs for Cholesky inversion show the three di↵erent operations (POTRF,
TRTRI, LAUUM) involved in the inversion. The merged DAG on the right shows how
composing the DAGs can improve execution.

individually, and then the composed DAG of the entire Cholesky inversion routine. The

aggregation of the components into a composed DAG is the automatic default behavior of

QUARK when the components and their kernel tasks are inserted into the runtime. If the

three components are not composed, then the DAG created is taller and thinner, with less

parallelism and a longer critical path. The aggregate DAG provides the runtime with more

width, thus exposing more parallelism and resulting in a shorter critical path.

Fig. 3.13 shows an execution trace where each of the phases of the Cholesky inversion

are separated by barriers, and a second trace where the three phases have been composed

into a single DAG. When the DAGs are composed, the trace results in a shorter overall

execution time. Finally, Fig. 3.14 extends the experiment from the small demonstration

problems shown so far, and presents the di↵erence between the performance when a larger

multicore system is used on larger problems. Using the composed DAG, with no barrier,

demonstrates substantial performance benefits.
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Figure 3.13: Trace for Cholesky inversion of a small matrix run on eight cores. The first
trace has a barrier inserted between each operation. The second trace permits QUARK
to compose the DAGs, the default behavior. The di↵erences between the traces show that
composing the DAGs can result in a decreased execution time.
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Figure 3.14: Performance for Cholesky inversion on a 48-core shared-memory AMD
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3.6 Extensions to the Runtime

QUARK o↵ers a number of features that allow finer control over the runtime system and

the task scheduling and execution. Most of these features are controlled either via the task

flags passed into each task, or via the argument flags provided to the various arguments.

Some of features are described and summarized here and they are presented in greater detail

in Appendix A.

3.6.1 Adjustments to Data Dependencies

By its nature, QUARK depends on information about the data parameters in each task in

order to infer data dependencies and task relationships. The user can pass additional flags

associated with data parameters in order to change the runtime behavior. A few of the flags

are discussed here, but a detailed discussion of these flags can be found in Appendix A.2.

It has been shown in the past that the reuse of memory caches can lead to a substantial

performance improvement in execution time. Since we are working with tiles of data that

should fit in the local caches on each core, we have provided the algorithm designer with the

ability to hint the cache locality behavior. A parameter in a call can be decorated with the

locality flag in order to tell the scheduler that the data parameter should be used from cache

if possible. When a task is inserted with the locality flag on its parameters, the scheduler

will attempt to assign that task to the same computational thread where the locality data

item was last modified.

If a parameter is decorated with the accumulator flag, then QUARK is informed that it

is being used to accumulate output. If a sequence of accesses to that data are all marked

with an accumulator flag, then QUARK is free to reorder those accesses. For example,

given two operations C = C +A1 ⇤B1 followed by C = C +A2 ⇤B2, the order in which the

updates to C occur does not matter and the accesses and their corresponding operations

may be reordered.

There is a gatherv flag that informs QUARK that the user guarantees that the writes

to that data block will not conflict. If a sequence of accesses to a data block are marked

with a gatherv flag, then they can all proceed simultaneously. This feature is used during
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the process of data layout conversion, where data in LAPACK layout is translated in place

to the block data layout.

In several linear algebra algorithms, the upper triangular, diagonal and lower triangular

regions may be accessed independently and using di↵erent read-write modes. In QUARK

a data tile can be marked as being composed of multiple data regions, and di↵erent data

accesses patterns can be applied to each of the regions. This can enable multiple tasks to

access the tile simultaneously and asynchronously.

3.6.2 Task Control

Tasks can be decorated with various flags that provide additional information to the runtime,

a detailed discussion of these flags can be found in Appendix A.2 but a few of the more

important task control options are reviewed here.

A user can provide a task priority value when they insert tasks in order to tell the

worker threads how to order the list of ready tasks. This can be used to hint about which

tasks are on the critical path. This has been used by several algorithms, for example, the

recursively tiled LU factorization algorithm, in order hint the order of task processing and

thus increase the priority of the panel factorization tasks.

Tasks can be locked to threads or thread masks, ensuring that a specific task will only run

on a certain set of threads. This is important if the programmer feels that they must override

the default cache locality based task scheduling because they have a greater knowledge of

data locality or they wish to enforce a specific data locality. Task locking has also been

used needs to use a task to control a GPU, and requires that a specific thread handle all

communication with the GPU.

QUARK permits a form of nested parallelism that is very useful in DAGs where there

are tasks on the critical path that are substantially slower than the other tasks in the DAG.

Since these tasks are on the critical path, they can from a bottleneck in the execution of

the DAG. QUARK allows the user to designate a task as a multi-threaded task, and can

assign a user specified number of threads to this task. That way, a faster multithreaded

implementation can be created for that task. The implementation of a LU factorization

that uses this feature is discussed in section 3.7.3.
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3.6.3 Parameter Aggregation

In certain circumstances, the number of parameters to be assigned to a task is either not

known beforehand, or is computed during runtime based on various criteria (e.g., the size of

the problem, the number of threads being used for computation). In such a circumstance,

QUARK allows the user to add parameters to a task dynamically. This feature has been

used by Kurzak et al. (2012) when using QUARK to manage multiple CPUs with a GPU

in order to build the GPU parameters.

3.7 Experimental Results

The capabilities of our runtime environment are demonstrated through experimental

evaluations. Linear algebra applications have been the main driver for the development

of QUARK, and these applications result in very large, complex DAGs of tasks that can

thoroughly stress the runtime and test its capabilities.

Execution experiments using the QUARK runtime are compared with the statically

scheduled version of the tile algorithm in PLASMA. The statically scheduled implemen-

tation has minimal overheads, so when the algorithm designer has scheduled it correctly

it can have near optimal asynchronous execution on the hardware. Finally, we compare

performance with the high quality commercial implementation of LAPACK provided in the

Intel MKL library v.2011.6.233.

Experimental Hardware For our experiments a large shared memory machine was used.

The machine romulus has a NUMA architecture with 48 cores distributed in 4 sockets with

12 cores per socket, where each core is a 2.5 GHz AMD Opteron 6180 SE.

3.7.1 Cholesky Factorization

The implementation of tile Cholesky factorization was shown in 3.3.2. This factorization has

a relatively simple dependency structure, shown in Fig. 3.6, with just one output parameter

from each task. Here we present experiments that show that the QUARK runtime can

achieve high performance when executing the Cholesky factorization.
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Figure 3.15: Performance for Cholesky factorization on a 48-core shared-memory AMD
system.

Fig. 3.15 shows that the dynamically scheduled version of the Cholesky factorization

achieves the same performance as the statically scheduled PLASMA implementation. We

consider the statically scheduled PLASMA versions of algorithms to be the state-of-the-

art publicly available implementations of tiled algorithms. If the dynamic PLASMA

implementation performs as well as the PLASMA implementation, then we obtain all the

benefits of QUARK (e.g., a productive task-insertion interface, DAG composition, dynamic

task scheduling) while masking the overheads behind the computation.

Linear algebra algorithms often have an inner kernel operation that dominates asymp-

totic performance as the size of the problem increases. So, in an asymptotic sense,

if the same kernel is being used by di↵erent implementations, then they would reach

similar peak performance. In our evaluation, we generally focus on the behavior of

the various implementations in the earlier part of the performance curves, before the

asymptotic behavior is reached. In that region, the tile based PLASMA algorithms

perform substantially better than the LAPACK based MKL implementations, reaching

the asymptotic peak at much smaller problem sizes.
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For the Cholesky factorization, the tile algorithms reach a slightly higher asymptotic

performance than the MKL implementation. This is a little unexpected, since the

asymptotic performance of Cholesky should be dominated by the kernel in its innermost

loop, the Level-3 BLAS DGEMM kernel. This DGEMM kernel can also be seen to be the most

prominent kernel by viewing the trace in Fig. 3.16. The higher asymptotic performance

of the tile kernels may be explained by the fact that the tile size is tuned better for this

machine.

One obvious criticism that can be raised when comparing the MKL implementation

against the tiled algorithms is that using a tile based layout gives the algorithm an advantage.

To make a fair comparison, the tiled implementation can include a layout translation step,

where the original data starts in the LAPACK layout, then is transformed into a tiled layout,

the computation is performed in the tiled layout, and then the result is transformed back

into LAPACK layout. This mode of operation allows the tiled algorithms to be used as drop-

in replacements for the standard linear algebra libraries which operate on LAPACK layout.

As we can see in the line labeled “QUARK dynamic (lapack layout)”, the performance with

layout translation is competitive with that of the commercial MKL library but it is a little

lower.

However, the appropriate usage mode for the PLASMA library would be for application

scientists to convert their data to the tile layout and achieve the higher performing curves

rather than converting back and forth from LAPACK layout. Alternatively, if a sequence

of operations was to be performed on the data, the layout conversion cost would be paid

once only and could be amortized over all the operations.

Fig. 3.16 shows an execution trace of the Cholesky factorization algorithm on a smaller

set of 12 cores. This form of trace visualization provides a sense of the occupancy of the

cores, and can be used to guide tuning and discover problems with the scheduling. There

are several small spaces where the cores can be seen to be idle (black). These stalls are often

associated with a DPOTRF (green) operation. The DPOTRF operations are along the critical

path of the DAG for Cholesky factorization as shown in Fig. 3.6. So, if the computation

threads run out of work at the time that a DPOTRF is to be processed, then the computation

can stall. The presence of idle time is exaggerated in this example trace because the small
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Figure 3.16: Trace for Cholesky factorization on a 12 cores of a shared-memory AMD
system. The matrix is 3500x3500 and the tile size is 180. Idle processor time is shown as
black. Color key: DPOTRF: green; DSYRK: white; DTRSM: red; DGEMM: yellow.
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Figure 3.17: Pseudocode for the tile QR factorization.

size of the problem means that there is insu�cient DGEMM work to keep all the computational

threads fully occupied and overlap the DPOTRF operations.

3.7.2 QR Factorization

The tile based QR algorithm is described in Section 2.4.2 of the background chapter,

and outlined with pseudocode in Fig. 3.17. The mapping from pseudocode to the

implementation in PLASMA follows the same pattern as the Cholesky factorization

described in Section 3.3.2. The loops in the pseudocode generate a sequence of task

insertions as shown on the left of Fig. 3.18. Each of these tasks has a set of data parameters

to which it needs access. These data access requests are queued up as shown on the right
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Figure 3.18: Data access requests queued by tile QR factorization. We show the data
access requests from the first five tasks of a 3⇥ 3 tile QR factorization.

of the figure. These data accesses requests are processed according to the rules described

in Section 3.2 to enable the tasks to be scheduled for execution.

In Fig. 3.19 both the QUARK and the PLASMA QR implementations demonstrate a

di↵erent asymptotic peak performance when compared to the MKL implementation. This

is because the MKL algorithm uses a DGEMM operation at its inner loop, so this highly

e�cient core operation comes to dominate any other costs as the size of the matrix increases.

However, the tiled implementation of QR has a di↵erent inner loop operation DTSMQR, which

has a much lower e�ciency. This operation causes the asymptotic peak performance to be

lower. It is expected that if the DTSMQR operation was to be tuned to the same degree as

DGEMM, then the final asymptotic performance of the tiled implementations would be much

higher. But, we note that The tile implementations are able to ramp up performance faster

than the MKL implementation, so if the user is interested in smaller problem sizes, then

the tiled algorithms would be preferred.

The QUARK and PLASMA algorithms implement the same tile QR algorithm, so their

performance can be compared directly. The performance of statically scheduled PLASMA

and dynamically scheduled QUARK can be seen to be approximately the same, with a very

small cost for dynamic scheduling over part of the range. This overhead cost is hidden

43



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5000  10000  15000  20000  25000  30000  35000

G
F

lo
p
s

Matrix size (N)

QR Factoriztion (DGEQRF) - Performance with problem size
 48 cores (4 x 12-core) 2.5GHz AMD Opteron 6180; [romulus]

Theoretical Peak Performance
DGEMM Peak (48 times single core)

PLASMA static (ib=32 nb=180)
QUARK dynamic (ib=32 nb=180)

QUARK dynamic - lapack layout (outplace)
MKL (lapack layout, dgemm core)

Figure 3.19: Performance for QR factorization on a 48-core shared-memory AMD system.
The PLASMA algorithm performance is limited by a inner kernel operation with low
e�ciency. The MKL QR algorithm has DGEMM as its main operation, so its asymptotic
performance is higher.

as the problem size increases towards the asymptotic peak. Once again, we can have the

benefits of a dynamic environment with almost no loss in performance.

Fig. 3.16 shows a trace of a smaller QR factorization over a subset of the machine, in

order to make the viewing tractable. From the trace it can be seen that the resources are

being used e↵ectively without any substantial idle spaces. The e↵ects of using locality as

the scheduling strategy can be seen by observing that the DTSQRT (red) operations tend

to occur on the same core; a sequence of these operations write the same diagonal tile so if

they run on the same core they can reuse the data.

3.7.3 LU Factorization

The tile LU factorization with incremental pivoting described in Section 2.4.2 is not the one

implemented in shared memory PLASMA. This algorithm has several numerical problems,

so the LU implementation in PLASMA is much closer to that in LAPACK.
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Figure 3.20: Trace for QR factorization on a 12 cores of a shared-memory AMD system.
The matrix is 2500x2500 and the tile size is 180. Idle processor time is shown as black.
Color key: DGEQRT: green; DTSQRT: red; DTSMQR: yellow; DORMQR: yellow.

This implementation of LU factorization demonstrates a di↵erent and unique feature of

the QUARK runtime environment. Partial pivoting LU requires an operation to occur on

the entire column of the matrix (panel) before the next step of the algorithm can proceed.

If this operation was to be executed by a single core, it would e↵ectively form a bottleneck

in the execution. To avoid this bottleneck, QUARK provides a unique nested parallelism

feature, the ability to assign a subset of the available computational threads to a single task.

In LU factorization, some of the threads are assigned to the single task panel factorization,

while the rest of the threads can be dynamically scheduled to perform more e�cient tasks.

This can hide the negative e↵ect of the less e�cient panel scheduling. This implementation

has been discussed in detail by Kurzak et al. (2013) and is outlined in Fig. 3.21. Using this

algorithm for PLASMA LU makes the innermost kernel function a DGEMM operation,

which gives the algorithm the same asymptotic performance as that of MKL.

Given the complexity of managing a multi-threaded task in conjunction with the

standard task scheduling, a statically scheduled PLASMA lookup-table version this LU

algorithm could not implemented. Once again, we can see the advantages of having a

dynamic runtime environment that automatically determines the data dependencies and

data flow for complex algorithmic implementations.

The performance of the QUARK implementation is compared to the MKL LU

implementation in Fig. 3.22. There is one point to note in this performance graph. As
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Figure 3.21: Recursive panel tile LU factorization. The factorization of the first panel
uses a multi-threaded kernel (GETRF-REC) acting on the whole panel. The updates to the
trailing submatrix expose a lot of parallelism and are executed as single threaded tile-based
tasks.
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Figure 3.22: Performance for LU factorization on a 48-core shared-memory AMD system.
There is no static PLASMA implementation, since the algorithm uses a QUARK feature to
create and manage multi-threaded tasks .
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Figure 3.23: Trace for LU factorization on a 12 cores of a shared-memory AMD system.
The matrix is 3200x3200 and the tile size is 180. Idle processor time is shown as black.
Color key: DGETRF: green; DTRSM: red; DGEMM: yellow

described in Section 3.4.2, tuning the tile size has a great e↵ect on the performance of

applications using this runtime environment. In this recursive tiled LU algorithm, the tile

size needs to be adjusted with the problem size, and varies from 180 to 384 as the problem

size increases. Due to the multi-threaded panel task this algorithm is more sensitive to the

tile size than the other algorithms discussed. Future research will explore autotuning to

find the best tuning parameters for a machine and problem size.

The dynamic QUARK implementation exceeds the performance of MKL throughout

the range, and it even appears to reach a slightly higher asymptotic performance. Our

explanation for the higher asymptotic performance is that our tiled algorithm adjusts the tile

size as the problem grows, allowing slightly better e�ciency for the core DGEMM operation.

When we look at smaller problems sizes the performance of the QUARK algorithms is much

better than MKL.

Once again, in order to claim a fair comparison against the MKL implementation,

there is a dynamically scheduled QUARK version for LAPACK layout. This algorithm is

somewhat unusual because it operates directly on LAPACK data distribution, rather than

performing data layout conversion. This dynamically scheduled LAPACK layout imple-

mentation can be seen to have the same performance characteristics as the implementation

that operates on the tiled layout.
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Figure 3.24: Weak scaling performance for Cholesky factorization using a problem size of
5000x5000/core on a 48-core shared-memory AMD system. The QUARK, PLASMA and
MKL implementations all show a similar scaling and it is hard to tell the curves apart.

Fig. 3.23 shows a trace of the QUARK LU factorization of a small matrix. In this trace

the multi-threaded DGETRF (green) task can clearly be seen, as several threads enter this

task and collaborate on the panel factorization, then exit together. It can also be seen that

QUARK is coordinating the data-flow execution and allowing other tasks to overlap the

panel factorization.

3.7.4 Weak Scaling for Cholesky

Weak scaling gives a measure of how well an algorithm scales with the number of cores if the

problem size per core is held constant. We study weak scaling in the context of Cholesky

factorization because, of all the algorithms discussed, it is the one that uses the same kernels

for the QUARK, PLASMA and MKL implementations. This makes it easier to compare

the weak scaling performance across the implementations.

In Fig. 3.24 the weak scaling performance of the three implementations can be seen to

be very similar, increasing fairly smoothly with the number of cores. These scaling curves

are very close because of the chosen problem size 5000 ⇥ 5000 per core, which results in
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a matrix size of approximately 35000 when using 48 cores. All the implementations are

executing in the asymptotic region at the tested size, so the asymptotic performance of

the DGEMM kernel dominates. As was shown in Fig. 3.15, the di↵erences between all

the implementations is minimal in the asymptotic performance region. The figure shows

that the dynamically scheduled QUARK runtime scales as well as the other implementations

with increasing core counts, meaning that we have obtained the benefits of QUARK without

losing performance.

3.8 Summary

The use of a data-driven dynamic runtime environment addresses several problems in

software development: productivity, scalability and performance.

A data-driven, superscalar runtime environment eliminates the complexity of writing

software for multicore processors by automatically extracting the parallelism in algorithms

defined in sequential code, and guaranteeing parallel correctness of sequentially expressed

algorithms. For some linear algebra algorithms, manually defining the parallelism is

relatively straightforward, for example, statically scheduled Cholesky factorization in

PLASMA. But for many other operations, manually defining parallelism is nontrivial.

Defining a static schedule that combined all the phases in a Cholesky inversion would

be a daunting challenge, so having a runtime that can dynamically compose all the phases

provides a powerful tool.

Using a simple API to insert tasks into the runtime enables the application developer to

be much more productive. Developing code for multicore architectures can be complex,

labor intensive, and error prone. This combination of a simple API and a runtime

environment encourages rapid prototyping, since the details of multicore implementation

and parallel algorithmic correctness are all hidden by the environment.

The QUARK runtime environment also provides a performance benefit by taking

advantage of any scheduling opportunities that may be missed by a application developer.

The runtime is resilient to variations in task execution time and problems that arise due to

resource sharing. The behavior of the dynamic scheduler is for performance to gracefully

degrade in the presence of jitter, rather than causing stalls in the parallel execution pipeline.

49



Experiments have demonstrated that the performance provided by the dynamic runtime

is very competitive to that of statically scheduled implementations and commercial

products. We gain all the benefits of a dynamic runtime without losing performance.
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Chapter 4

Dynamic Task Execution In

Distributed Memory

Asynchronous data driven task execution has been presented as a solution to productively

developing scalable high performance applications for multicore architectures. Here we

present QUARKD, a runtime environment for executing such task based applications

on distributed memory machines. The mechanism for that extension is discussed and

performance results will be presented. Trace data will show the mapping of tasks to

execution units and larger scale runs will demonstrate the scalability of our runtime

environment. QUARKD presents an easy-to-use, productive, serial, task-insertion API,

greatly simplifying the e↵ort of programming large scale machines.

4.1 Introduction

Many large scale scientific computing resources consist of a large number of distributed

memory nodes, where each node contains a number of computational cores that have a

shared memory. There are many programming models available to address such resources,

varying from MPI libraries and thread libraries to partitioned global address space (PGAS)

languages such as UPC (Unified Parallel C) or Chapel (from Cray). However, even given

many years of e↵ort, these machines remain hard to program productively while still

achieving scalable, high performance.
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In this work, we detail the development of our distributed memory runtime environment

QUARKD (QUeuing and Runtime for Kernels in Distributed Memory). QUARKD builds

on the QUARK shared-memory execution environment and extends it to distributed

memory. The goal for QUARKD is to enable a programmer to develop an algorithm using

the serial task insertion API of QUARK and have that algorithm run on distributed memory

architectures. QUARKD facilitates productivity by taking a shared memory algorithm and

enabling it to execute on a distributed memory architecture with minimal changes.

This distributed memory runtime is intended to be competitive with highly tuned

algorithmic implementations (e.g. ScaLAPACK, DAGuE) in terms of performance.

QUARKD is focused on productivity, scalability and performance. The QUARKD runtime

can bring a substantial amount of the scaling and performance seen with highly tuned

solutions with a much lower barrier to coding.

The driving applications for the development of the QUARKD runtime environment

will be drawn from linear algebra. Specifically, we enable distributed memory execution for

algorithms from the shared memory linear algebra library PLASMA (Agullo et al., 2010).

The changes required to the PLASMA library will be detailed and experiments will show

the performance achieved.

4.2 Distributed Algorithm

Design Principles In designing QUARKD a major desired feature was high productivity

and in writing applications. This productivity is enabled by having a simple serial API for

adding tasks into the system. This API is then used in conjunction with a smart runtime

environment that determines data dependencies, performs transparent communication, and

schedules tasks. The user can to provide additional information to tune the execution,

but even in the absence of that information the runtime should make reasonable choices

about where tasks execute and when data is moved. QUARKD should make all runtime

decisions using local knowledge, without requiring any global coordination. All runtime

actions should proceed asynchronously without blocking for completion.

The QUARKD runtime is designed as an extension to the shared memory runtime

that we have already developed. QUARKD builds on the shared memory runtime
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Figure 4.1: Block architecture of QUARKD, showing its place with respect to other
hardware and software components.

environment provided by QUARK, and enhances it with a dependency tracking system and

a communication protocol. The QUARKD project is designed and built to be independent of

the PLASMA linear algebra library, though PLASMA is the main driver for its development.

It is intended that QUARKD be usable in any application that inserts tasks that read and

write data held in contiguous chunks of memory. The software and hardware stack for

QUARKD can be represented as in Fig. 4.1.

4.2.1 Description of Distributed Algorithm

QUARKD proceeds from serial task insertion operations, where each task is inserted into

the runtime environment at each process. As each task is inserted, information from the

data parameters is used by each process to independently come to the same decision about

which process is going to execute that task. By default, this decision about the executing

process is based on which parameter is going to be written by the task, however, the decision

can be overridden by the programmer. The outline of this distributed memory algorithm is

shown in Fig 4.2.

Once the decision is made about which process is going to execute the task, each of its

data parameters is examined. If the executing process does not have a valid copy of the

data, then it inserts tasks to receive a valid copy. If another process is the current owner

of the data, and it notes that the executing task does not have a valid copy of the data, it

inserts tasks to send that data. If the executing process is going to write the data item,

then that process becomes the current owner of the data and all other copies are marked

as invalid. All processes track the current owner and validity of the copies of the data

parameter.
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Figure 4.2: Distributed memory algorithm

After any send or receive tasks are inserted, the original task is inserted into the shared

memory runtime of the executing process. This sequential ordering of the tasks ensures

that when the task finally executes, its data is already valid and available.

The tile QR factorization was shown in pseudocode in Fig. 3.17 and the pseudocode

was expanded to a list of tasks and data requests in Fig. 3.18. The tile QR factorization is

now viewed in the context of multiple processes. Fig. 4.3 shows the result of executing the

QR factorization on multiple processes using the distributed memory algorithm. Below, we

present a high level view of the actions taking place. Discussion of the details involved in

task scheduling, data coherency, and communication engine follow later.

Each process sees the sequence of tasks as they are inserted, and independently, reaches

the same scheduling decisions about where the task will run. The data used by the task is

checked to see if it needs to be transferred between processors. The dependency relationships

from previous usage of the data create the implicit DAG based on data hazards: read-after-

write (RAW), write-after-read (WAR), write-after-write (WAW). The data transfer tasks

add new data usage and dependencies. In Fig. 4.3, each processor has seen the DAG, and

tasks that will execute locally on each processor are highlighted. To increase clarity in

the DAGs, data movement tasks are shown just as dot connectors on the data dependency

edges.
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Figure 4.3: Execution of a small QR factorization (DGEQRF). Three processes (P0, P1,
P2) are running the factorization on 3x3 tile matrix. Each process independently determines
who is running the task, and local tasks are colored on each process. Data sends and receives
are asynchronously managed by the communication engine.
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QUARKD Insert Task (Quark ⇤quark , void ⇤ func , Quark Task Flags ⇤ t f l a g s ,
i n t a f l a g s , i n t s i z e a , void ⇤a , i n t a home process , a key ,
i n t b f l a g s , i n t s i z e b , void ⇤b , i n t b home process , b key ,
. . . , 0 ) ;

Figure 4.4: Distributed memory task insertion API

4.2.2 Distributed Task Insertion API

In the shared memory runtime, when a task was inserted each argument had to be provided

with a size, a pointer to the data, and a set of flags that specified how that data was to

be used; either as a static value, or an INPUT/INOUT/OUTPUT dependency. In the

distributed memory context, each argument exists on a specific process, and the memory

addresses in that process are not relevant to another process. So, the arguments need to

specify which process is the home of the data and they need to specify a process-specific

key for the data. This key is required since the data item does not reside at every process,

we do not have an easy handle to use at every process, thus some other key value needs to

be constructed to refer to the data. The key does not need to be consistent across all the

processes, it just needs to be consistent within a single process space.

The API that is defined for task insertion in the distributed memory environment is

shown in Fig. 4.4. Other than task insertion, the rest of the API is inherited from the

shared memory QUARK runtime and can be seen in Appendix A.

4.2.3 Window of Tasks

As was discussed in Section 3.4.1, the number of tasks in a linear algebra application can

grow very rapidly, creating ✓(n3) tasks with a problem size of n. This would lead to problems

holding the entire DAG in memory for large problems, so we use the same solution as in the

shared memory implementation. We maintain a sliding window on task insertion that keeps

a limited number of active tasks. Using serial task insertion, we can be assured that the

runtime environments cannot diverge and explore di↵erent parts of the DAG on di↵erent

distributed memory processes, so there will be no deadlocks.

Claim 1. Using a window of tasks does not cause a deadlock in the distributed memory

algorithm.
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Proof. For a deadlock to occur, a circular wait condition must exist, where there is a set of

waiting processes P = (P1, P2, ..., Pn

) such that P1 is waiting for a resource held by P2, and

so on till P
n

is waiting for a resource held by P1.

Suppose such a circular wait condition does exist when using a window of tasks.

Each process P
i

has a corresponding blocked task t
i

. The blocked task t
i

cannot be a

communication task, because communication tasks cannot be blocked; they require only

one resource (data item to send or receive) and are only put into the ready list if that

resource is available. So, the blocked task t
i

must be a task in the computation DAG, and

the only thing a task in a DAG can be blocked on is one of its parent tasks. However, there

cannot be a circle of tasks waiting on each other if the tasks are part of a parent-child chain

in a DAG (there are no cycles in a directed acyclic graph!).

The only way that we could have deadlock is if the tasks were from di↵erent regions

of the DAG. This may be possible if the DAG were being explored independently at each

process. However, since there is a sequential task insertion process, the tasks have the same

order of insertion.

Consider the task that it that is highest in the DAG and is also a part of this circular

wait (there may be more than one). Without loss of generality, assume it is t1 on P1. The

only thing it can be waiting for is a parent task parent(t1) 2 t2, ..., tn. But the parent

tasks cannot be blocked, since this task t1 is the highest waiting task and all the tasks were

inserted in the same order. Eventually, since the parent task is not blocked as part of this

circular wait, it will be inserted in the task window of a process and it must execute and

task t1 will not be blocked.

So, no matter what the window size is, provided it is greater than one, there can be no

cycle of waiting processes and no deadlock.

4.3 Distributed Data Coherency

In a distributed data environment, there needs to be a way for each process to determine

the data distribution, i.e., the location of any data item. The runtime also needs to track

data movement and the validity of any existing copies of the data. All this should occur
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asynchronously, without requiring any global communication or coordination. This section

discusses the implementation of data management in our runtime environment.

4.3.1 Data Distribution

In the case of PLASMA applications, the data distribution used is defined by a simple

function which is based on a 2D block cyclic distribution, as described by Blackford et al.

(1996) for the ScaLAPACK package. This distribution has been shown by Dongarra et al.

(1992) to have several advantages for block-synchronous linear algebra algorithms, including

a lower communication volume, small load imbalance and good scalability. The main

di↵erence from the block-cyclic specified in ScaLAPACK is that the data tiles used by

QUARKD are contiguous in memory.

As noted earlier, in a distributed memory environment we need to know which

distributed memory process holds a data item and we need a key to reference it. The

key is required so that we have a handle to refer to the data on processes that do not have

it locally,

The block-cyclic distribution gives an easy map from any data tile to the process that is

the owner of that tile. Fig. 4.5 shows how the process grid is mapped to the data tiles. The

key used by PLASMA to reference data tiles is constructed out of easily known elements;

the base address of a matrix and the row and column index to the tile. But, it is to be

noted that any key value that uniquely refers to a tile can be used.

On top of the block cyclic distribution we implement an additional optimization for

the runtime environment. There are many linear algebra algorithms that have linear

dependencies down a column or across a row of a matrix. To minimize communication

in this scenario, PLASMA uses a supertiles overlay on the distribution, which groups tiles

in either the column or row direction. The e↵ect of supertiles is to substantially reduce

the communication volume for several linear algebra algorithms. Fig. 4.5 shows a processor

grid and gives a visualization of how that processor grid is mapped onto data tiles to give a

block cyclic distribution of the data, and then finally, a visualization how supertiling causes

neighboring tiles of data to be kept on the same node.
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0 1 2
3 4 5

2x3 Grid
P=2 Q=3

0 1 2 0 1 2
3 4 5 3 4 5
0 1 2 0 1 2
3 4 5 3 4 5
0 1 2 0 1 2
3 4 5 3 4 5

2D Block-Cyclic 2x3

0 1 2 0 1 2
0 1 2 0 1 2
3 4 5 3 4 5
3 4 5 3 4 5
0 1 2 0 1 2
0 1 2 0 1 2

With supertiled SP=2

Figure 4.5: Data layout for a distributed matrix where the numbers refer to the process
numbers. Six processes (nodes) are arranged as a 2x3 process grid. The 2D block-cyclic
distribution overlays the 2x3 process grid on the 6x6 matrix tiles. The supertiled layout
(SP=2) repeats each row of the process grid in the P direction. A supertiling can also be
made in the Q direction.

Note that there is nothing in the QUARKD implementation that is aware of the data

distribution. At the time that a task is inserted into QUARKD, it provides the home process

and memory address of all the data parameters in the task. From that point, QUARKD

uses the more abstract key to manage the data, maintaining a distributed knowledge about

the ownership and state of the data. If during the execution of a task, the data is migrated

to another process and overwritten there, QUARKD will manage the state and validity of

all the copies of the data using an internal data coherency protocol.

4.3.2 Data Coherency Protocol

When a data parameter is first seen by a process during the serial insertion of tasks, a

structure is created to hold the state of that data item. The initial process owning the data

and the address on that process are known, since they are provided by the API during the

insertion of the task. All non-owner processes can be assumed not to have copies of the

data at this time.

If the data is transferred to another process, and the task at the receiver is going to write

the data, then the ownership of the data is transferred to the receiver process and any other

copies are marked as invalid. If the data is only required for read, then the ownership stays

with the sender, and the receiver is marked as having a valid copy. All processes track the

movement of data ownership of current data items at all times, based on the information

provided when each task is inserted.
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This data coherency protocol enables us to minimize the transfer of data. Since

information about valid copies of the data is available at all times, no unnecessary transfers

are required. In order to reduce the footprint of this data coherency protocol, the

information about data that was not recently used can be flushed at well structured, regular

intervals. The data coherency protocol runs at task insertion time, not at the task execution

time, so we can use the serial task insertion to guide the regular intervals of data flushing.

Using structured, regular intervals allows the distributed processes to do the flush and keep

the distributed state of the data consistent.

4.4 Distributed Task Scheduling

Scheduling in QUARKD uses a mix of static and dynamic scheduling to assign tasks to the

di↵erent processes and threads. Static selection is used to determine the process where a

task will execute. However, the order in which a task executes in a multi-threaded process

is dynamic, depending on many factors including cache layout, network communication

speeds, task size, priority, etc.

The static scheduling refers to the fact that a task is scheduled for execution at a specific

distributed memory process in a manner that is independent of the current state of the

execution. The scheduling criteria have to be such that all the processes can independently

come to the same scheduling decision. The task scheduling also considered static because

it is fixed at the time that the task is inserted. In general, this is accomplished by having

all the nodes agree that a task will be scheduled at the home location of one of its data

parameters. The algorithm designer can specify the data parameter to be used in making

this decision e↵ectively saying “task T is to be run on the node which is the home of

data parameter D”. Fixing the execution process at the time the task is inserted enables

QUARKD to avoid the complexities and coordination involved in distributed scheduling,

distributed work balancing and data management.

The dynamic scheduling in QUARKD occurs at the multi-threaded shared-memory level

and is the same as that implemented in shared memory QUARK runtime. Data locality is

used to assign a task to a specific thread within the multi-threaded process. All the threads

look for and execute tasks that are assigned to them. However, if there are no more tasks
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assigned to a thread, it will attempt to use work-stealing to obtain a task from another

thread. This dynamic scheduling keeps the execution load balanced between the threads

in a process. In Chapter 3 the shared memory runtime system was shown to be capable of

achieving high performance.

4.4.1 Communication Engine

In QUARKD the communications are inferred from the data usage by tasks in conjunction

with the current distribution of the data. For example, if a process is currently the owner

of a piece of data, and that data is to be written by a task scheduled to be executed by

another process, than the two processes independently and asynchronously insert tasks that

manage the sending and receiving of that data. The main distributed memory algorithm

shown in Fig. 4.2 contains the base case for the data communication.

The key features of the QUARKD communication engine are that it is dynamic, non-

blocking and asynchronous, meaning that the engine will manage the transfer data as

needed, the data transfers will not block any of the computational threads, and the data

transfers are done using asynchronous techniques. The goal is to allow communication to

overlap any computation that can be performed simultaneously. The communications are

all point-to-point, from the task that is the current owner of the data to any tasks that

need that data.

In a standard execution of QUARKD there is an independent thread that manages the

communication. This thread takes communication requests from queue of requests and

handles them. The communication thread will normally share a core with a computation

thread, but on some architectures, if the context switch interval is large the communication

thread can be assigned a core of its own. On machines which do not permit an independent

communication thread to run e�ciently, communications can also be multiplexed within a

computational thread.

From the point of view of the master thread doing serial task insertion, the data

movement is initiated if the data consistency protocol requires it. To send a data item,

a send_init task is inserted which accesses the data as INPUT and a send_done task is

inserted which also accesses the data as INPUT. The data can still be used by any other
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task which wishes to read the data, but it cannot be written till these tasks are completed.

To receive a data item a recv_init task is inserted which accesses the data as INOUT and

a recv_done task is inserted which also accesses the data as INOUT. Any following task

wishing to use this data will need to wait till the receive is completed before it can be

scheduled for execution.

All communications are initiated by the execution of a send_init task, which enqueues

a send request into the message queue. The independent communication thread dequeues

the send request from the message queue and sends a send_readymessage to the destination

process. The destination process then checks to see if it can handle another asynchronous

receive (if not, the send_ready is queued) and it starts a asynchronous receive operation

and sends a ready_ack message to the sender. The sender checks if it can handle another

asynchronous send, (if not, queue ready_ack) and start the asynchronous send. The

asynchronous operations are regularly checked for completion by the communication thread

and additional operations are started when possible.

At the receiver, when a receive completes, the communication thread manages the

receive_init and receive_done tasks to indicate that the data is received. These tasks

reference the data in an INOUT (read-write) fashion, so they block the execution of any

following tasks. The completion of the receive_done task triggers the check and possible

scheduling of any task waiting to access that data.

At the sender, once the send operation completes, the communication thread manages

the send_done task indicating that the data is sent. The send_init and send_done tasks

reference the data in a INPUT (read) fashion, so they block any write of the data until

the send is completed. The completion of the send_done triggers the check and possible

scheduling of any task waiting to write that data.

The completion of any of the message steps triggers a check of the queues of deferred

communications and any waiting communications are processed. In QUARKD, the number

of simultaneous, asynchronous sends and receives is limited to a small number that gives

good performance based on experimental probing. For our test platforms, communications

are limited to 5 simultaneous asynchronous sends and 5 simultaneous asynchronous receives.
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Claim 2. The distributed algorithm in Fig. 4.2 in conjunction with the communication

protocol above ensure that any task will eventually get its data parameters and be scheduled

for execution.

Proof. Consider any arbitrary task T which has k data parameters A1, ..., A
k

. The k

parameters are currently owned by several processes P1, ..., P
k

, where P
i

owns A
i

, and

the P
i

may repeat. While examining the task sequence, since there is a serial task insertion

without deadlocks, each process sees task T at some point and each process comes to the

same decision about P
exe

, the process that will execute task T . To prove that P
exe

eventually

schedules T , we need to show that (1) all the data parameters A
i

eventually arrive at P
exe

and (2) regardless of the communication order, task T will be eventually be scheduled.

For each data parameter A
i

, the following cases need to be considered:

Case 1: If P
exe

has an invalid copy of A
i

, then P
i

queues send tasks and P
exe

queues receive

tasks on data A
i

. This ensures that T will have a valid A
i

when it is queued.

Case 2: If A
i

is valid on P
exe

, do nothing. This means that T will have a valid A
i

when

queued.

By examination of the distributed memory algorithm in Fig. 4.2 the task T with

dependencies on its data parameters A1, ..., A
k

is queued on P
exe

after all the required

data receive tasks for the A1, ..., A
k

have been queued. Since the same serial unrolling is

occurring at the all the processes, all the required data send tasks for the A1, ..., A
k

will

also be queued. Eventually all the send tasks at the other process will execute and the data

will be send to P
exe

. By construction of the shared memory queuing mechanism and the

dependencies involved, any required data receive tasks will have to be completed before T

is scheduled for execution.

Now we need to confirm that regardless of the order of communication, task T will

eventually be scheduled. Each process P
i

will independently process all the tasks, so each

process may reach T at di↵erent times. When they do reach T , the P
i

will start any required

data transfer, queuing any required send of A
i

to process P
exe

.

To confirm that the order of communication is correctly handled, assume that each data

parameter A1, , .., A
k

is received at P
exe

at times t1, ..., t
k

respectively, and that task T is

inserted at time t0 on process P
exe

.
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Case 1: t0 < t1, ..., t
k

. Task t0 has inserted receive operations on P
exe

before any of the

data arrives, so when the remote data arrives and all local dependencies are ready T will

be scheduled for execution.

Case 2: t1, ..., t
k

< t0. When the data arrives, the receives that are not yet posted, so the

data will be cached on P
exe

. When T is inserted, the local data cache is checked, and since

all the data is here, T will be scheduled for execution.

Case 2: t1, ..., tg < t0 < t
h

..., t
k

. Some of the remote data parameters arrive and are cached

before T is seen on P
exe

. When T is seen on P
exe

the cached data is matched. Then the

rest of the data arrives at P
exe

and is attached to T . When the last parameter arrives, it is

attached to T , and since T needs no more parameters it is scheduled for execution.

In all cases, T eventually receives its data and is scheduled for execution.

4.5 Limitations of QUARKD

In this section, a few of the limitations of QUARKD are described. Some of these limitations

are specific to the design choices that were made during the implementation of QUARKD.

Other limitations are simply due the process of serial task insertion, and cannot be fixed

without removing the productivity benefits that are provided by serial task insertion.

Tiled Layout Constraint QUARKD requires that all the computations be based on

operations on tiles of data. If at any point the programmer accesses any of the dependency

data outside the declared tile parameters, then QUARKD will not be register it. There

are a few algorithms in the shared memory linear algebra library where algorithm designers

move outside the purely tiled approach. For example, in shared memory PLASMA, there

is an LU factorization that uses nested parallelism to perform partial pivoting on a panel

of the matrix. This use of nested parallelism requires that the entire panel be resident

on a single process, which causes problems when implementing in a distributed memory

environment.

Serial Unrolling Bottleneck The productivity gain in QUARKD is due to serial

presentation of code, with the runtime system analyzing the dependencies and maintaining
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serial consistency. This creates a limitation in QUARKD as the size of the distributed

memory machine grows. Since fewer of the unrolled tasks are being executed at the

local node, there is increasing overhead with respect to the computation work. We can

compensate for some of this overhead by having larger tiles of data and thus fewer tasks

and more work for each unrolled local task. On the other hand, larger tiles would mean

less available parallelism. The serial unrolling is expected to be a problem for performance

as the machine size keeps growing.

Consistent DAG Requirement For its dependency tracking, QUARKD requires that

all the distributed memory nodes see exactly the same set of tasks. This removes flexibility

in programming applications where minimally connected components are computed at

di↵erent memory nodes, and the components exchange data at very localized data

boundaries (e.g. ocean and climate models). Such applications could be constructed using

QUARKD for the components, and having the data exchange and coordination take place

with a higher level glue application. But that would require a synchronization phase, and

would loose the benefits of asynchronous execution.

E↵ect on Optimizations Many of the optimizations from the shared memory runtime

environment work until a data transfer occurs. The data transfers in QUARKD take place

at the whole tile level and cause INPUT and INOUT data dependencies to be inserted for those

tiles. The insertion of these data dependencies can interrupt the e↵ect of the shared memory

optimizations. Since data transfer occurs on whole tiles, any dependency that is using tile

regions will be interrupted. For example, a sequence of reads on the lower triangular region

of tile will be interrupted by communicating the whole tile. Task priorities will function in

the distributed memory system as expected. The use of locality flags to hint the scheduling

will have an appropriate e↵ect, i.e,, tasks will be executed on the node that is the home for

the data tagged with the locality flag. In summary, the distributed memory runtime does

not break the shared memory implementation, but the data transfers introduce additional

dependencies which can reduce the performance.
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4.6 Experimental Results

Large scale experiments are performed using the tile Cholesky, QR and LU factorizations

which were outlined in Section 2.4.2. Each of these three algorithms exposes di↵erent

features of the runtime. The Cholesky implementation is relatively simple and has few

dependencies or constraints so the runtime can demonstrate the highest performance.

The QR implementation is more complex, with more constraints in the DAG. The tiled

LU operation replaces the standard partial pivoting in the panel factorization with an

incremental pivoting strategy (Sorensen, 1985). This pivoting strategy is numerically stable,

but has substantially larger bounds than that of standard partial pivoting algorithms.

We perform weak scalability experiments, which means that as the size of the machine

increases, the size of the problem is also increased. In these experiments, the quantity of

work performed by a single core is kept constant, and the matrix size is adjusted to reflect

this. A measure of whether the implementation will scale to large numbers of cores is to look

at the e�ciency of the weak scalability. Our e�ciency measure is the performance achieved

divided by the number of cores. For a perfectly scalable implementation, the performance

per core as the number of cores increases will be a constant.

For our experiments with QUARKD, we used two distributed memory clusters.

Small Cluster The dancer cluster is a 16 node machine, where each node has 2 Intel

Xeon E5520 2.27 GHz quad-core processors. The nodes are connected via Infiniband 20G

and there is at least 8GB of memory per node. We used OpenMPI 1.5.5 compiled with gcc,

and Intel MKL 11.1 math libraries.

Large Cluster The Kraken supercomputer at the Oak Ridge National Laboratory.

Kraken is a Cray XT5 machine with 9,408 compute nodes. Each node has two Istanbul 2.6

GHz six-core AMD Opteron processors, 16 GB of memory, and the nodes are connected

through the SeaStar2+ interconnect. We used the PGI compilers with Cray MPI and the

Cray LibSci math libraries. For our experiments, we used a small subset of the resources

on Kraken.

On each platform we also performed experiments using a high quality commercial

numerical library that was appropriate for the platform. The exact implementation of the
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algorithms in these libraries is not known, but they are highly tuned for the platform.

On the small cluster, QUARKD is compared with the Intel MKL 11.1 ScaLAPACK

implementation. On the large cluster, QUARK is compared with the Cray LibSci

ScaLAPACK implementation. The ScaLAPACK implementations are executed using a

process-per-core model with single threaded BLAS in each process.

Experimental results are also compared with DAGuE/DPLASMA on each platform.

The DAGuE project (Bosilca et al., 2011) was described in Chapter 2, and it is implementing

a distributed memory DAG execution environment that uses compact parameterized DAG

descriptions. These compact DAG descriptions are di�cult to generate, but the runtime

does not have to unroll serial code or determine the dependencies between the tasks.

The information about dependencies and dataflow is contained directly in the compact

descriptions. The DAGuE runtime has been used to implement a subset of linear algebra

applications in the DPLASMA package. In Bosilca et al. (2012) it has been shown that

DPLASMA is a scalable high performance library for linear algebra algorithms, highly

competitive with other specialized approaches and algorithm specific implementations.

Given that DPLASMA provides a state-of-the-art distributed implementation of linear

algebra algorithms, it is used to measure the success of the QUARKD implementations.

Since DAGuE avoids a substantial part of the overheads in QUARKD while still following

the structure of asynchronous DAG execution, it is expected to give a higher performance

than QUARKD. The advantage that QUARKD holds over DAGuE is in the productivity of

writing serial code over the di�culty of generating compact DAG representations. It should

be noted that the DAGuE developers are working on a compiler approach to simplify the

generation of compact parameterized DAG descriptions.

4.6.1 QR factorization

Fig. 4.6 shows a slightly refined version of the QR algorithm as implemented by the

PLASMA library. This code closely matches the pseudocode, and is essentially the same

as the shared memory code implemented in PLASMA. The only di↵erence is shown in the

macro at the top, where a tile reference is expanded to contain the address of the tile, the

process that contains the tile, and a key for referring to that tile. The fact that we were able
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to keep the code changes so minimal implies that QUARKD is achieving the productivity

that was sought as of the major goals of the project.

The DGEQRT task is inserted into the runtime in a small wrapper routine shown in

Fig. 4.7. This wrapper provides the additional information required by the runtime system.

Specifically, the information provided includes the usage (INPUT, OUTPUT, INOUT,

VALUE) of the parameters, the sizes of the parameters, and additional hinting information

provided by the programmer. Note that for each dependency parameter, a home node and

a local key are provided. This required information was discussed in section 4.2.2. The

task information is then stored in the QUARKD runtime, where the execution of the task

is held until all the data dependencies are satisfied. At that point, the task is ready to be

scheduled for execution.

Fig. 4.8 shows the function that is called by QUARKD when the task is eventually

executed. In this function, the parameters are extracted from the QUARKD runtime, the

arguments and dependencies are unpacked, and the serial core routine is called.

The distributed memory DAG for a QR factorization on a small matrix is shown in

Fig. 4.9. Tasks that execute on the same process are marked with the same color, and

communication is shown via red arrows. The generation of these DAGs can be done

automatically by the QUARKD runtime, and these can be a useful tool in understanding

and debugging the code.

A trace of the execution of the QR factorization using 4 distributed memory nodes with

4 computational threads each is shown in Fig. 4.10. This trace shows the tasks keeping the

cores busy with computation, with occasional gaps in the trace where the DAG does not

have enough parallelism to keeps the cores busy. The gaps in this trace are mostly because

a small problem of 16⇥ 16 tiles is being traced, but such gaps could occur anytime that the

DAG does not provide su�cient parallelism and lookahead to hide the bottleneck tasks. The

trace for a larger problem is not shown because it would become too congested. A separate

communication thread is shown associated with each process. This thread is sharing one

of cores with a computational thread. The trace is produced by the same tracing routines

and mechanisms implemented in shared memory PLASMA, underlining the productivity

gained by extending a shared memory environment to distributed memory.
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#de f i n e A(m, n) BLKADDRD(A, double ,m, n ) , MPIHome(m, n ) , (Key){A.mat ,m, n}
#de f i n e T(m, n) BLKADDRD(T, double ,m, n ) , MPIHome(m, n ) , (Key){T.mat ,m, n}

void plasma pdgeqr f quark ( PLASMA desc A, PLASMA desc T, . . . )
{

f o r ( k = 0 ; k < M; k++) {
QUARKD CORE dgeqrt( quark , . . . , A.m, A. n , A(k , k ) , T(k , k ) ) ;
f o r (n = k+1; n < N; n++)

QUARKD CORE dormqr( quark , . . , A(k , k ) , T(k , k ) , A(k , n ) ) ;
f o r (m = k+1; m < M; m++) {

QUARKD CORE dtsqrt( quark , . . . , A(k , k ) , A(m, k ) , T(m, k ) ) ;
f o r (n = k+1; n < N; n++)

QUARKD CORE dtsmqr( quark , . . . , A(k , n ) , A(m, n ) , A(m, k ) , T(m, k ) ) ;
}

}
}

Figure 4.6: The distributed memory tile QR factorization as implemented in PLASMA
and executed using QUARKD. This code very closely matches the pseudo-code. Information
about the read/write usage of parameters is provided in a wrapper.

void QUARKD CORE dgeqrt(Quark ⇤quark , . . . , i n t m, i n t n ,
double ⇤A, i n t A home , key ⇤A key ,
double ⇤T, i n t T home , key ⇤T key )

{
QUARKD Insert Task ( quark , CORE dgeqrt quark , . . . ,

VALUE, s i z e o f ( i n t ) , &m,
VALUE, s i z e o f ( i n t ) , &n ,
INOUT | LOCALITY, s i z e o f (A) , A, A home , A key ,
OUTPUT, s i z e o f (T) , T, T home , T key , . . . , 0 ) ;

}

Figure 4.7: The DGEQRT task wrapper used in the QR factorization algorithm. This
wrapper provides information about the read/write usage of the parameters and inserts the
task into the QUARKD runtime.

void CORE dgeqrt quark (Quark ⇤quark )
{

i n t m, n , ib , lda , l d t ;
double ⇤A, ⇤T, ⇤TAU, ⇤WORK;
quark unpack args 9 ( quark , m, n , ib , A, lda , T, ldt , TAU, WORK) ;
CORE dgeqrt (m, n , ib , A, lda , T, ldt , TAU, WORK) ;

}

Figure 4.8: The DGEQRT task implementation is called by the QUARKD runtime
when all the dependency requirements have been met. Parameters are unpacked from
the QUARKD environment, and the (final) core routine provided by a library is called.
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Figure 4.9: DAG generated by QUARKD for a tile QR factorization of a matrix consisting
of 4x4 tiles on 3 distributed memory nodes. The colors correspond to di↵erent nodes, and
the red arrows correspond to communications.
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Figure 4.10: Trace of a QR factorization of a matrix consisting of 16x16 tiles on 4 (2x2)
distributed memory nodes using 4 computational threads per node. An independent MPI
communication thread is also maintained. Color coding: MPI (pink); GEQRT (green);
TSMQR (yellow); TSQRT (cyan); UNMQR (red).

Experimental Results for QR Factorization

In order to evaluate the e↵ectiveness of the distributed runtime environment, the per-

formance of the QR factorization is compared with the DAGuE runtime and commercial

libraries. Experimental results on the small cluster are given in Fig. 4.11 and show that

QUARK is faster than MKL on this platform, and while performance is lower than DAGuE,

it is still very competitive. The figure also shows the maximum theoretical upper bound

performance achievable on this machine based on the clock frequency.

Fig. 4.12 shows the weak scaling experiment on the large cluster using 1200 cores. In

this experiment, we see that QUARKD trails the Cray LibSCI implementation. DAGuE’s

performance on QR factorization exceeds the LibSCI performance, which validates the

use of asynchronous data drive DAG execution. DAGuE and QUARKD implement very

similar algorithms, but QUARKD has additional overheads that DAGuE does not have.

The theoretical peak performance and the scaled single-core DGEMM performance are shown

to give a measure of how much of the peak is being achieved.
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Figure 4.11: Weak scaling performance of QR factorization on a small cluster. Factorizing
a matrix (5000x5000/per core) on up to 16 distributed memory nodes with 8 cores per node.
Comparing QUARKD, DAGuE and ScaLAPACK (MKL).
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Figure 4.12: Weak scaling performance for QR factorization (DGEQRF) of a matrix
(5000x5000/per core) on 1200 cores (100 distributed memory nodes with 12 cores per node).
Comparing QUARKD, DAGuE and ScaLAPACK (libSCI).
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Figure 4.13: E�ciency of weak scaling for QR factorization (DGEQRF) of a matrix
(5000x5000/per core) on 1200 cores (100 distributed memory nodes with 12 cores per node).
Results are using QUARKD, DAGuE and ScaLAPACK (libSCI).

An important aspect of weak scaling is the e�ciency achieved as the number of cores

increases. For an implementation to keep scaling to larger number of cores, the e�ciency

should be as close as possible to a flat line. In Fig. 4.13 the e�ciency of various QR

implementations is shown. The DAGuE and LibSCI implementations achieve very flat lines,

however the QUARKD implementation shows a slight decrease in the scaling e�ciency as

the number of cores increases. This can be attributed to the serial unrolling process, since

each of the nodes unrolls the entire DAG even if the node ignore most of the tasks that it

sees. As the problem size grows this large scale serial task unrolling acts as a bottleneck to

performance. Here we see some of the cost that QUARKD pays for having a simpler, more

productive, serial task insertion API. This problem can be alleviated by increasing the size

of work performed relative to the amount of serial unrolling.

It is important to remember that the tile QR implementations implemented by DAGuE

and QUARKD have DTSMQR as the dominant operation in the innermost loop, whereas

the commercial implementations have the much higher optimized DGEMM as the dominant

operation. In spite of that handicap, the QUARKD and DAGuE implementations performed
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very well. It is likely that if the DTSMQR kernel is optimized to the same point as the DGEMM

kernel, then the tile algorithms will show increased performance.

4.6.2 Cholesky Factorization

The Cholesky factorization forms a relatively simple DAG structure with a single output

dependency from each task as shown in Fig. 4.14. This means that data ownership does

not need to be transferred to other processes, since data writes can always be done at the

home process of the data.

A small scale trace of a Cholesky factorization is shown in Fig. 4.15. Gaps in the trace

can be seen that are centered around POTRF (green) operation. The POTRF operations

are on the critical path for the Cholesky factorization, and for the small factorization shown

here, there is not enough work to keep the cores busy in order to overlap the POTRF

operations.

Experimental Results for the Cholesky Factorization

In Fig. 4.16 experimental results on the small cluster compare Cholesky factorization

performance using QUARKD, Intel MKL, and DAGuE. The QUARKD implementation

scales better than the MKL implementation but not as well as the DAGuE.

The weak scaling performance on the large 1200 core cluster is shown in Fig. 4.17.

On this large cluster the QUARKD implementation has better performance than the

Cray LibSCI library. The DAGuE implementation reaches a higher performance than the

other implementation, but as we discussed earlier, DAGuE is competitive with the best

algorithm specific implementations. The main problem with DAGuE is productivity since

writing compact DAG representations remains a di�cult process. QUARKD focuses on the

productivity gained by writing serial style, loop based code. In spite of this ease of coding,

QUARK is able to produce better performance than the commercial implementations.

Fig. 4.18 shows the e�ciency of Cholesky implementations; the performance normalized

by the number of cores. In order to achieve long term scalability this e�ciency curve should

be as flat as possible. The DAGuE implementation shows an excellent e�ciency, suggesting

that it will scale very well. Both the ScaLAPACK and the QUARKD implementations show
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Figure 4.14: DAG generated by QUARKD for a Cholesky factorization operation of a
matrix consisting of 4x4 tiles on 3 distributed memory nodes. The colors correspond to
di↵erent nodes, and the red arrows correspond to communications.
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Figure 4.15: Trace of a Cholesky factorization of a matrix consisting of 30x30 tiles on 4
(2x2) distributed memory nodes using 4 computational threads per node. An independent
MPI communication thread is also maintained. Color coding: MPI (pink); POTRF (green);
GEMM (yellow); SYRK (cyan); TRSM (red).
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Figure 4.16: Weak scaling performance of Cholesky factorization (DPOTRF) of a matrix
(5000x5000/per core) on 16 distributed memory nodes with 8 cores per node. Comparing
QUARKD, DAGuE and ScaLAPACK (MKL).
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Figure 4.17: Weak scaling performance for Cholesky factorization (DPOTRF) of a matrix
(7000x7000/per core) on 1200 cores (100 distributed memory nodes with 12 cores per node).
Comparing QUARKD, DAGuE and ScaLAPACK (libSCI).

decreasing e�ciency as the number of cores increases. But, in the experimental range, the

QUARKD implementation scales approximately as well as the LibSCI implementation.

4.6.3 LU Factorization

The LU factorization is a special case because the commercial implementations use the

standard partial pivoting scheme, whereas the tile LU factorization in QUARKD and

DAGuE uses a pairwise incremental pivoting strategy as discussed in Section 2.4.2. Even

though this is a stable strategy, there can be substantial increase in the error bounds

(Sorensen, 1985). However, the partial pivoting scheme does not map simply to a tiled

implementation since determining the pivot element and applying it is a single action that

occurs over a panel of the matrix, and a panel of a matrix need not be resident on one node.

For these experiments, the two di↵erent LU algorithm are compared, but it is important to

keep in mind that the two algorithms are not equivalent.

In Fig. 4.19, LU factorization is performed on 1200 cores of the large cluster. The

QUARKD and LibSCI implementations perform very similarly, with a slight decrease in
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Figure 4.18: E�ciency of weak scaling for Cholesky factorization (DPOTRF) of a matrix
(7000x7000/per core) on 1200 cores (100 distributed memory nodes with 12 cores per node).
Results are using DAGuE and ScaLAPACK (libSCI).

performance for QUARKD as the size grows. The DAGuE implementation has the highest

performance, substantially exceeding the other two implementations. Once again, this

can be attributed to the fact that DAGuE implements an asynchronous, data-driven,

task execution engine that avoids the overheads unrolling the DAG and determining

dependencies, at the cost of increased complexity and reduced productivity in creating

compact parameterized DAGs.

Examining the e�ciency of the weak scaling in Fig. 4.20, it is evident that the DAGuE

implementation is scaling very well as the number of cores grows. LibSCI and QUARKD

lose e�ciency as the size of number of cores grows. However, QUARKD is still competitive

with LibSCI for LU factorization.

4.7 Summary

We have designed a runtime system to schedule and execute task based applications on

distributed memory systems. The runtime accepts tasks via a serialized task insertion

process, and determines the task and data dependencies dynamically based on the data
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Figure 4.19: Weak scaling performance for LU factorization of a matrix (5000x5000/per
core) on up to 1200 cores of the large cluster. DAGuE and QUARKD use a tile LU algorithm
with incremental pivoting that is numerically inferior.
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Figure 4.20: E�ciency of weak scaling for LU factorization (DGETRF) of a matrix
(5000x5000/per core) on up to 1200 cores. DAGuE and QUARKD use a tile LU algorithm
with incremental pivoting that is numerically inferior.

79



usage patterns. The task scheduling and data movement are managed without any global

coordination. A distributed data coherency protocol ensures that the copies of the data are

managed in order to decrease data movement. A dynamic, non-blocking communication

engine handles asynchronous data movement. In order to manage large problems, a fixed

size moving window of active tasks is used from the serialized task insertion.

QUARKD is designed for productivity, scalability and performance. To demonstrate

productivity, the PLASMA linear algebra library and algorithms are executed using

QUARKD. This required minimal additional information added to the original shared

memory API used by PLASMA. Since task-based shared memory algorithms can be

transferred easily to a distributed memory environment, QUARKD is proving itself as a

productive tool.

The scalability and performance of QUARKD is compared to that of commercial linear

algebra libraries and to the DAGuE runtime environment. DAGuE implements a dynamic,

data driven, task based runtime which achieves performance and scalability the could not be

matched by either the commercial libraries or by QUARKD. However, DAGuE algorithms

require a compact parameterized DAG representation and are are complex to write, whereas

QUARKD has a productive easy-to-use interface. Experiments performed on a 128 cores

of a small cluster and a 1200 cores of a large cluster show QUARKD can be scalable and

have performance competitive with the commercial solutions.
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Chapter 5

Conclusions and Future Work

The increasing presence of multicore and many-core computer architectures in all computer

designs, from shared memory machines to large distributed memory clusters, is presenting

new challenges to software designers. Software that used to automatically benefit from

increases in clock speeds in the older designs, now has to be completely rewritten to take

advantage of multicore processors. On top of that, since the CPU clock speeds may actually

decrease when multiple cores are introduced, software performance may even decrease if it

is not rewritten. Even if the software is expressed with parallel components, the cost of

any serialization or synchronization in the software becomes proportionally greater as the

number of available cores grows.

These costs will a↵ect any software, but computational science problems tend to need all

the computational power available from the hardware. Computational science is working

with some of the most di�cult and important problems in the world, including climate

prediction, ocean modeling, nuclear simulation, genome analysis, etc. The numerical

techniques for addressing these problems require large amounts of computational resources,

and make use of high performance libraries that can extract performance from these

resources.

In this dissertation we develop productive APIs and runtime environments that can be

used to create and execute highly parallel asynchronous software on multicore architectures.

This software can be used to enable libraries to extract more performance from the

underlying hardware.
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Linear algebra libraries are a vital component in the solution of many computational

science problems. The LAPACK and ScaLAPACK libraries are standard, well-known,

highly regarded libraries that define and implement the standard interfaces for doing

dense linear algebra on shared memory and distributed memory machines. However, these

libraries were written before multicore architectures became prevalent in high performance

computing. So, the standard, open-source, reference implementations for these libraries

su↵er because they intersperse kernels with high degrees parallelism with kernels with low

degrees of parallelism. In the shared memory LAPACK library, this form of execution

can be referred to as fork-join execution. In the distributed memory ScaLAPACK library,

the algorithms are written in block synchronous parallel style (BSP), which synchronizes

at communication steps. Both of these situations can be thought of as having undesired

synchronizations.

The commercial implementations of LAPACK and ScaLAPACK may include mecha-

nisms that alleviate some of the synchronization e↵ects. However, we would like to address

the synchronization problems in an algorithmic way within the freely available linear algebra

libraries. These new linear algebra algorithms and libraries may then be further optimized

by commercial institutions in order to increase performance.

To this end, the PLASMA project is designing linear algebra algorithms to be executed

as a asynchronous data-driven execution of kernel tasks. These algorithms can be viewed

as a DAG of kernel tasks connected by data dependencies. The process of writing software

that can do asynchronous data-driven execution of complex DAGs is complex and labor

intensive, so a simple programming methodology would greatly improve productivity.

In this dissertation, we develop a productive interface for writing task-based programs.

We develop shared memory and distributed memory runtime environments that can

execute these task-based programs in asynchronous, highly parallel fashion. We show the

performance and scalability of these runtime data dependencies.

5.1 Conclusions

The solutions developed in this dissertation are evaluated in the context of productivity,

scalability and performance.
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In Chapter 3 of this dissertation we developed QUARK, a runtime environment that

accepts serial task insertion, determines dependencies, and will schedule the execution of

kernel tasks when their dependencies are satisfied. QUARK is designed for execution in

shared memory architectures and is specialized for linear algebra applications. QUARK

enables the PLASMA linear algebra library to program algorithms with a simple task-

insertion API and still achieve high performance and scalability on multicore machines.

Programming productivity is a challenge when targeting complex multicore and dis-

tributed memory architectures. There are many details like scheduling, data locality, hazard

avoidance, and asynchronous execution that all add up to make it di�cult to define simple

programming interfaces for designing software. We have described scenarios where e�ciently

programming a complex algorithm such as Cholesky inversion is prohibitively di�cult when

using static scheduling techniques. We have implemented an interface that makes task-based

programming relatively easy. Using this interface, we can write code that maps very closely

to pseudocode produced by algorithm designers.

Experimental results show that dynamic scheduling using QUARK achieves the same

performance as the optimized statically scheduled PLASMA code. When DAGs are

run in sequence, then QUARK can compose them to generate shorter wider DAGs and

get greater performance than running the DAGs sequentially. QUARK is shown to

match the asymptotic performance of the highly tuned commercial MKL linear algebra

implementations, provided the algorithms are using the same computational kernels.

Additionally, the tile-based asynchronous algorithms are able to reach their asymptotic

performance much faster than libraries based on the fork-join computational model.

In weak scaling experiments, the dynamic runtime environment of QUARK is shown

to be as scalable as the static scheduling technique or the commercial MKL library. This

demonstrates that the overhead of the dynamic scheduling is su�ciently low that it can be

hidden by the computational.

In Chapter 4 the ideas and design of our asynchronous execution environment are

extended to distributed memory architectures. The QUARKD runtime environment retains

the productive API for serial task insertion, and transparently manages the details of

distributed task scheduling, data coherency, and communication. QUARKD demonstrated

its productivity by enabling the algorithms from the PLASMA library, which was designed
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for shared memory execution, to easily and transparently execute on distributed memory

machines. The sample code shown demonstrates using the simple interface for inserting

tasks into the runtime.

In our distributed memory experiments, the DAGuE runtime is used as a performance

measure for QUARKD. DAGuE is an asynchronous tile based execution environment that

avoids the overheads in the serial task insertion by using compact parameterized DAG

representations of algorithms. This means that DAGuE does not have to do many of the

activities associated with serial task insertion, such as examining every task at every node,

determining dependencies, and managing tasks that are currently inactive. On the other

hand, programming algorithms in DAGuE has a much higher complexity because it requires

writing compact parameterized DAG descriptions.

Since DAGuE avoids the overheads implied by the tile-insertion interface in QUARKD,

it trades productivity for performance. Both the QUARKD and DAGuE runtime

environments perform asynchronous, data driven, tile-based execution, but DAGuE has

substantially lower overheads, so it achieves better performance and scalability.

But, experimental results show that algorithms implemented using QUARKD can

achieve performance comparable to the commercial Cray LibSCI and Intel MKL libraries,

and are scalable to up to 1200 distributed memory cores.

It is expected that the QUARKD runtime will be used to extend additional tile-based

shared memory algorithms to distributed memory in a natural and transparent manner.

The only requirement is that the original algorithm interacts with its data purely through

the tile based interface. If that requirement is met, other algorithms should immediately

be able to take advantage of high performance and scalable distributed memory execution.

We have found that serial task insertion in combination with asynchronous, data-driven

execution can be unexpectedly e↵ective in distributed memory machines.

5.2 Future Work

This dissertation has focused on construction of productive, e�cient runtime environments

for the data-driven execution of task based algorithms. Starting from these runtime

environments, many areas of further research work are available.
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The scheduling methodology used for assigning tasks to processing elements is very

simple, there is a lot of work that could be done to improve this scheduling. A starting

point could consider the tradeo↵s in locality assignment versus work stealing and alter the

work stealing strategies based on locality details. More complex scheduling research could

use information from the window of upcoming tasks to prioritize the tasks with the most

children, thus attempting to mimic a critical path analysis within a task window.

Further scheduling improvements can be made by maintaining performance histories for

each kernel on each computational resource. These would provide performance prediction

capabilities to the runtime, so scheduling strategies such as list scheduling can be used to

minimize the overall schedule length and execution time.

Research into autotuning would greatly benefit this project. There are many occasions

where the tile size needs to be adjusted to achieve the best performance depending on

the algorithm, machine architecture, problem size, number of cores, etc. An autotuning

project could determine a functional or experimental mapping from all these variables to

recommend an appropriate tile size.

The dynamic runtime can be used to investigate the energy footprint of various

algorithms and this can be used to select between algorithms if power consumption is

a concern. For a given algorithm, the runtime could dynamically adjust the power

consumption of the cores via dynamic voltage scaling if it detects that the width of the

DAG is small and it cannot use all the available cores. Dongarra et al. (2012) have begun

investigating the energy footprints of tile linear algebra algorithms using PLASMA and

QUARK.

The runtime could be extended to support transparent heterogeneous computing in order

to take advantage of the compute power provided by GPUs. Kurzak et al. (2012) have used

QUARK to manage multiple CPUs with a GPU, but the GPU data movement and execution

were not transparently managed. In order to support GPUS and other heterogeneous

resources the runtime could be extended to abstract tasks and data movement.
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Appendix A

QUARK API and Users Guide ⇤

QUARK (QUeueing And Runtime for Kernels) is a runtime environment for the dynamic

scheduling and execution of applications that consist of precedence-constrained kernels on

multicore, multi-socket shared memory systems. The goal of the project is to provide an

easy-to-use interface to application programming, with an e�cient implementation which

will scale to large shared memory architectures. The main design principle behind QUARK

is implementation of the dataflow model, where scheduling is based on data dependencies

between tasks in a task graph. The data dependencies are inferred through a runtime

analysis of data hazards implicit in the data usage by the kernels.

The focus of QUARK development is to support dynamic linear algebra algorithms for

the PLASMA linear algebra project Agullo et al. (2010). However, QUARK is capable of

supporting other application domains where the application can be decomposed into tasks

with data dependencies.

Please note, the terms function, kernel and task may be used interchangeably to refer to

a function that is to be executed by the QUARK runtime system. Additionally, depending

on the context, the terms argument, parameter or data item may all be used to refer to the

parameters of a function.

⇤The material in this appendix has been published in YarKhan, A., Kurzak, J., and Dongarra, J., QUARK
Users’ Guide: QUeueing And Runtime for Kernels. Technical report, Innovative Computing Laboratory,
University of Tennessee (YarKhan et al., 2011b).
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A.1 Basic Usage of the QUARK API

QUARK is often used as a library for a serial application, where QUARK does all the

thread and resource management. There is an alternate mode where QUARK does not do

internal thread management so it can be used as part of a multi-threaded library; this is

described later.

Hello World

Fig. A.1 shows a variation of “Hello World” which demonstrates many of the basic features

of QUARK. This is a fully functional C program that demonstrates how a simple program

in QUARK may be implemented.

First, a new QUARK instance is created in the main program with two threads, the

master and one spawned worker thread. Then, at each iteration of the loop in the main

program, a new is inserted into the QUARK runtime system. The task will call the function

hello_world_task when it is executed by the runtime. The idx argument is passed as

VALUE parameter, since is unchanged by the function. The str argument is marked INOUT

since the string will be altered by the hello_world_task. In this simple program, the use

of a INOUT dependency keeps the serialized semantics of the original loop.

In hello_world_task, the data is unpacked from QUARK and assigned to the idx

and str variables using the unpack macro. The string is then printed, and after that it

is altered by changing the idx character to an underscore. This allows us to see how the

string is changed by each task, and to note that the original serial order of the code is being

preserved by multiple tasks running on multiple threads. The output of this program is

shown in Fig. A.2

More details of the various QUARK calls involved in this code are given here.

Initializing QUARK The QUARK_New call initializes the library, and spawns and

manages num_threads threads (including the master) to handle the computation. If

num_threads < 1, QUARK will first check the QUARK_NUM_THREADS environment variable,

then use as many threads as there are cores.
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#inc lude ”quark . h”

/⇤ This t a s k unpacks and p r i n t s a s t r i n g . At each c a l l , t h e i d x
cha ra c t e r i s r e p l a c e d wi th an underscore , changing the s t r i n g . ⇤/

void h e l l o wo r l d t a s k ( Quark ⇤quark ) {
i n t idx ; char ⇤ s t r ;
quark unpack args 2 ( quark , idx , s t r ) ;
p r i n t f ( ”%s \n” , s t r ) ;
s t r [ idx ] = ’ ’ ;

}

/⇤ A s imp l e v a r i a t i o n o f ” He l l o World” ⇤/
main ( ) {

i n t idx ;
char s t r [ ] = ”He l lo World” ;
Quark ⇤quark = QUARKNew( 2 ) ;
f o r ( idx=0; idx<s t r l e n ( s t r ) ; idx++ )

QUARK Insert Task ( quark , h e l l o wo r l d t a s k , NULL,
s i z e o f ( i n t ) , &idx , VALUE,
s t r l e n ( s t r )⇤ s i z e o f ( char ) , s t r , INOUT,
0 ) ;

QUARK Delete ( quark ) ;
}

Figure A.1: Basic QUARK program, showing the setup of QUARK, task insertion with
simple dependency information, and shutdown of QUARK.

Hel lo World
e l l o World
l l o World
l o World
o World

World
Wor ld
o r l d
r l d
l d
d

Figure A.2: Output from the Basic QUARK program in Fig. A.1.
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Quark ⇤QUARK New( i n t num threads ) ;

Adding tasks After initializing, tasks can be added to the QUARK runtime system by

the master thread. The QUARK_Insert_Task call has many options, however only the basic

usage is shown here.

QUARK Insert Task ( Quark ⇤quark , void (⇤ f unc t i on ) (Quark ⇤ ) ,

Quark Task Flags ⇤ t f l a g s ,

i n t s i z e o f a r g 1 i n b y t e s , void ⇤ arg 1 , i n t a r g 1 f l a g s ,

i n t s i z e o f a r g 2 i n b y t e s , void ⇤ arg 2 , i n t a r g 2 f l a g s ,

. . . ,

0 ) ;

The first two parameters are the QUARK data structure and a pointer to the function that

is to be executed. The task flags tflags can be used to provide tasks specific information,

such as the priority of the task or a sequence tag used to group related tasks. For basic

usage, the tasks flags can be set to NULL. More advanced usage of the task flags will be

described later.

The argument parameters to given to the function are passed as varargs. Each

argument is presented as a triplet: the size of the argument in bytes, a pointer to the

argument, and a flag indicating the way that the argument is to be used. This sequence of

triplets is terminated by sending a 0 as the argument size. The argument flag can be one

of VALUE, INPUT, OUTPUT, INOUT, NODEP and SCRATCH. These denote di↵erent ways that the

argument is going to be used by function. Here, we describe meaning of VALUE and INOUT.

The other argument flags will be described later in this guide.

VALUE The parameter data is copied to the QUARK task and is not used for dependency

resolution. Since the parameter is copied over, it can be altered by the master thread

without a↵ecting the task.

INOUT The parameter is used as input as well as output in the function. Preceding reads

and writes must be satisfied before this function can be executed.

QUARK schedules the function for execution when all the dependencies for the data

arguments (arg_1, arg_2, ...) are satisfied.
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Finalizing QUARK When the user is done with inserting all their tasks, they will need

call QUARK_Delete to wait for the QUARK runtime to finish executing any remaining tasks

and release the QUARK data structures. All the spawned worker threads will also be

finalized by this call.

void QUARK Delete (Quark ⇤ quark ) ;

A.2 Advanced Usage

QUARK o↵ers a number of features that allow finer control over the runtime system and

the task scheduling and execution. Most these features are controlled either via the task

flags passed into each task, or via the argument flags provided to the various arguments.

A few global features are enabled using environment variables. The features are described

and summarized here.

Task Scheduling In order to make sense of some of the features, the default task

scheduling method in QUARK needs to be outlined. At a very high level, QUARK uses

data locality information to assign tasks whose dependencies are satisfied to threads where

there may be data reuse. The threads execute assigned tasks using a FIFO priority queue.

A thread that does not have any assigned tasks may steal tasks from the back of the queue

of another thread using LIFO work-stealing policy.

Data Locality QUARK will attempt to use data locality information in making decisions

about where to schedule tasks. In the current version of QUARK, the arguments will be

examined to determine the output data. The task will be assigned by default to the same

thread that has previously written that output data. This heuristic should enable cache

reuse under many practical circumstances.
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Argument Flags

When a task is inserted into the QUARK runtime system, its parameters are specified as

triplets. The parameter size in bytes, a pointer to the parameter (even scalers need to be

passed by reference), and some flags that are used to specify how the parameter is going

to be used by the task and how dependencies on that parameter are to be resolved. The

parameter must always specify its usage as one of the following: VALUE, INPUT, OUTPUT,

INOUT, NODEP and SCRATCH.

QUARK Insert Task ( Quark ⇤quark , void (⇤ f unc t i on ) (Quark ⇤ ) ,

i n t s i z e o f a r g 1 i n b y t e s , void ⇤ arg 1 , i n t a r g 1 f l a g s ,

i n t s i z e o f a r g 2 i n b y t e s , void ⇤ arg 2 , i n t a r g 2 f l a g s ,

. . . ,

0 ) ;

VALUE The parameter data is copied to the QUARK task and is not used for dependency

resolution.

INPUT The parameter is used as input only in the function; preceding write operations

on this data must be satisfied before this function can be executed.

INOUT The parameter is used as input as well as output in the function. Preceding reads

and writes must be satisfied before this function can be executed.

OUTPUT This parameter is used as output. Preceding reads and writes must be satisfied

before this function can be executed.

NODEP The parameter is declared by the programmer to not cause any dependency. This

allows a programmer flexibility in forcing scheduling; however it should be used with

caution. Sometimes this is used if the programmer knows that su�cient dependencies

are maintained by other parameters.

SCRATCH The parameter is declared as temporary scratch space, and if the parameter

pointer is NULL, QUARK will allocate the data when needed and pass it to function.

In addition, for parameters that may involve dependencies (i.e., INPUT, INOUT, OUTPUT)

some optional information can be passed in via the parameter flags.
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ACCUMULATOR A parameter that is flagged as ACCUMULATOR and accessed successively

by a set of tasks is accumulating data within that parameter. This lets QUARK know

that the access to this parameter by those tasks can be safely reordered.

GATHERV This flag declares to QUARK that the data is being gathered into the data

parameter in a non-conflicting manner. A successive series of GATHERV accesses to

this data parameter can safely be performed simultaneously.

LOCALITY This flag lets QUARK know that data locality and cache reuse should follow

this data item. If possible, multiple tasks using this data item should be run on the

same thread.

QUARK_REGION_X A parameter can be viewed as consisting as the union of eight sub-

regions (QUARK_REGION_0 thru QUARK_REGION_7). Using these region flags allows the

dependency processing to work on subsets of the entire data region. If regions are

used, they should combine to cover eight sub-regions.

The following gives some idea of how the various parameter flags may be combined to

provide information to QUARK.

QUARK Task Insert ( quark , funct ion , &t f l a g s ,

s i z e o f d a t a , p t r to da ta , a r g f l a g s ,

s i z e o f ( i n t ) , &N, VALUE,

N⇤N⇤ s i z e o f ( double ) , A, INOUT | ACCUMULATOR,

N⇤N⇤ s i z e o f ( double ) , B, INOUT | LOCALITY,

N⇤N⇤ s i z e o f ( double ) , C, INPUT | QUARK REGION 1 | QUARK REGION 2,

N⇤N⇤ s i z e o f ( double ) , D, INOUT ,

N⇤N⇤ s i z e o f ( double ) , E, INOUT | QUARK REGION 5 | QUARK REGION 6,

N⇤N⇤ s i z e o f ( double ) , F , INOUT | GATHERV,

N⇤N⇤ s i z e o f ( double ) , G, INPUT,

. . . , 0 )
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Task Flags

QUARK passes task specific information to the runtime system using task flags. These

flags can specify things such as a color and label for visualizing the task DAG, priorities

used for scheduling the task, and a way to collect tasks into sequences for error handling.

Task flags are created and initialized as shown here; any flag that is not specified will have

a default value. More information about the usage of the various flags follows.

Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;

QUARK Task Flag Set ( &t f l a g s , TASK COLOR, ” red ” ) ;

QUARK Task Flag Set ( &t f l a g s , TASK LABEL, ”myDGEMM” ) ;

QUARK Task Flag Set ( &t f l a g s , TASK PRIORITY, 100 ) ;

QUARK Task Flag Set ( &t f l a g s , TASK LOCK TO THREAD, thread number ) ;

QUARK Task Flag Set ( &t f l a g s , TASK SEQUENCE, sequence pt r ) ;

QUARK Task Flag Set ( &t f l a g s , TASKTHREADCOUNT, num ) ;

QUARK Task Flag Set ( &t f l a g s , TASK SET TO MANUAL SCHEDULING, 0 o r 1 ) ;

QUARK Task Insert ( quark , funct ion , &t f l a g s , . . . , 0 )

// Task f l a g s f o r t he cu r r en t t a s k can be ob t a ined us ing

i n t p t r va l = QUARK Task Flag Get ( quark , \ t e x t i t {TASK FLAGNAME} ) ;

Visualizing Runtime DAGs

QUARK can generate GraphViz Ellson et al. (2002) files at runtime that represent

the DAG of executed tasks. To enable this feature, set the environment variable

QUARK_DOT_DAG_ENABLE=1. By default, the graph will have no labels on nodes and all

nodes have the same color. It is possible to change the display of the DAG nodes by setting

task flags when the QUARK_Insert_Task function is called. The color strings that can be

used are described in the GraphViz documentation.

Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;

QUARK Task Flag Set ( &t f l a g s , TASK COLOR, ” red ” ) ;

QUARK Task Flag Set ( &t f l a g s , TASK LABEL, ”myDGEMM” ) ;

QUARK Task Insert ( quark , funct ion , &t f l a g s , . . . , 0 )
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After the program executes. the DAG will be written to file in the execution directory

with the name “dot_dag_file.dot”. Please see the GraphViz documentation on how to

manipulate this file. For example, to setup DAG generation, execute, and translate the

generated DAG to a PDF format use the following commands.

export QUARKDOTDAGENABLE=1

./ execute my quark binary

dot �Tpdf �o mydag . pdf d o t d a g f i l e . dot

Standard dependencies between tasks are shown as black arrows, red arrows represent Write-

After-Read (WAR) dependencies that could be eliminated by making data copies, green

arrows mark parallel task execution allowed by special GATHERV data dependencies specified

by the developer.

Assigning Priorities to Tasks

If the developer has knowledge of the algorithm that specifies some tasks should have

higher priority than other tasks, that information can be provided to the QUARK runtime

environment. After the dependencies for various tasks are satisfied, the tasks are assigned

to worker priority-queues. At that point, higher priority tasks get executed earlier, which

may lead to a execution path that more closely matches the critical path of the DAG. The

priority value can be any integer, with the default being priority 0.

Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;

QUARK Task Flag Set ( &t f l a g s , TASK PRIORITY, 100 ) ;

QUARK Task Insert ( quark , funct ion , &t f l a g s , . . . , 0 )

Task Sequences and Error Handling

Linear algebra programs can be composed of multiple algorithmic sequences which can

fail or succeed independently. In order to handle this requirement, the QUARK dynamic

runtime system provides a way to manipulate sequences of tasks. If an error situation

is detected during the execution of one algorithm, then the associated sequence can be

canceled, without a↵ecting other parts of the program. If a task is added to a sequence

that has been canceled, it is silently skipped.
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Quark Sequence ⇤ seq = QUARK Sequence Create ( quark ) ;

Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;

QUARK Task Flag Set ( &t f l a g s , TASK SEQUENCE, seq ) ;

QUARK Task Insert ( quark , funct ion , &t f l a g s , . . . , 0 )

// I f an e r ro r occurs , a t a s k can c a l l

Quark Sequence ⇤ seq = QUARK Task Flag Get ( quark , TASK SEQUENCE )

QUARK Sequence Cancel ( quark , seq ) ;

Multi-threaded Tasks

Under certain circumstances it can be beneficial to assign multiple thread to a single task.

One example of this is in the panel factorization step of LU factorization. Since this task

deals with the entire panel, it can become a bottleneck for the execution unless multiple

threads are assigned to it. QUARK will call the task multiple times using multiple threads,

however, the management of these multiple threads is left up to the developer. There is

support to find out the rank of a thread within the set of multiple threads, so that a developer

can take the appropriate action based on the rank. Note, multi-threaded tasks are locked

to their pre-assigned threads and cannot be stolen and executed by other threads.

Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;

QUARK Task Flag Set ( &t f l a g s , TASKTHREADCOUNT, 4 ) ;

QUARK Task Insert ( quark , funct ion , &t f l a g s , . . . , 0 )

// Within the task , a d e v e l o p e r can c a l l

i n t rank = QUARK Get RankInTask( quark ) ;

Locking Tasks to Threads

For the developer who knows best, it is possible to lock tasks to threads, This may be done

if there is strong cache benefit of forcing a certain set of tasks to run on some specific thread

(or core). When a task is locked to a thread, it cannot be stolen or reassigned to another

thread.

Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;

QUARK Task Flag Set ( &t f l a g s , TASK LOCK TO THREAD, 3 ) ;

QUARK Task Insert ( quark , funct ion , &t f l a g s , . . . , 0 )
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Manual Thread Scheduling

There are occasions when the developer may want to switch the scheduling mode of a thread

from automatic to manual. For example, this thread is going to control a GPU and you wish

to assign GPU specific tasks to the thread with full control. That thread will no longer take

part in automatic task assignment or work stealing. The action of switching a thread to

manual scheduling is done by assigning a specific task to the desired thread, and setting the

boolean THREAD_SET_TO_MANUAL_SCHEDULING to 1. When that task executes, the thread’s

scheduling mode will be set to manual.

Quark Task Flags t f l a g s = Qua rk Ta sk F l a g s I n i t i a l i z e r ;

// I want th read 2 to c on t r o l GPUs and no th ing e l s e

QUARK Task Flag Set ( &t f l a g s , TASK LOCK TO THREAD, 2 ) ;

QUARK Task Flag Set ( &t f l a g s , THREAD SET TOMANUAL SCHEDULING, 1 ) ;

QUARK Task Insert ( quark , s ome spe c i a l f unc t i on , &t f l a g s , . . . , 0 )

A.3 Environment Variables

There are some environment variable that a↵ect the behavior of QUARK.

Task Window Sizes and DAGs For many linear algebra algorithms, the number of

tasks is on the order of N3. This means that even for relatively small applications, the DAG

can be enormous. Because of this, QUARK uses a window of active tasks to keep the number

of tasks manageable in terms of memory usage and scheduling overhead. The task window

size is kept at reasonable defaults, but may be altered via several environment variable.

The task window size per thread can be set by QUARK_UNROLL_TASKS_PER_THREAD=500, or

the total task window size over all threads can be set by QUARK_UNROLL_TASKS=5000. An

interesting usage of this variable for debugging purposes is to use QUARK_UNROLL_TASKS=1

to cause a serial execution of the program, with one task being inserted into QUARK,

executing, and then the next task being inserted.

Generating DAGs for Visualization QUARK can generate GraphViz Ellson et al.

(2002) files at runtime that represent the DAG of executed tasks. Setting environment
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variable QUARK_DOT_DAG_ENABLE=1 will cause a file dot_dag_file.dot to be created in the

execution directory. It is possible to change the visualized display of the DAG nodes by

setting task flags when the QUARK_Insert_Task function is called.

A.4 Other Topics

Pipelining DAGs

A dynamic scheduler such as QUARK is expected to be slower than a static scheduler if they

are both executing the same single algorithm because dynamic scheduling has overheads

that are not present in the static scheduler. However, a dynamic scheduler has advantages

in certain circumstances. Firstly, if there are several algorithms that need to be executed

in succession, the static scheduler will run them one after another, synchronizing between

the algorithms. However, a dynamic scheduler can interleave the tasks from the various

algorithms, scheduling them when their dependencies are satisfied. This can lead to a faster

execution for certain programs and data sizes Agullo et al. (2011). Secondly, a dynamic

scheduler can perform runtime optimizations, such as reordering dependencies (e.g. see

ACCUMULATOR argument flag), e↵ectively altering the DAG and speeding up execution.

Incorporating QUARK in Another Library

QUARK was designed to cooperate with other multi-threaded libraries, so it can use

computation threads spawned externally to QUARK. This allows the PLASMA library to

easily switch between its internal static scheduling and the dynamic runtime environment

o↵ered by QUARK. If a developer wants to manage threads outside QUARK, the master

thread needs to call QUARK_Setup to setup Quark data structures . Then each worker thread

which the developer has created externally needs to call QUARK_Worker_Loop, after which

the worker will wait for tasks. The master thread then adds tasks in the normal way, When

the master thread is done adding tasks, it calls QUARK_Waitall. The worker threads will

finish the current tasks, and return control to the developers program. When the master is

all done, it can call QUARK_Free to free all structures allocated by QUARK_Setup.

// Master th r ead s e t s up data s t r u c t u r e s

Quark ⇤QUARK Setup( i n t num threads ) ;
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// Worker t h r ead s hand c on t r o l to QUARK tempora r i l y

void QUARK Worker Loop( Quark ⇤quark , i n t thread rank ) ;

// Master t e l l s spawned t h r ead s to f i n i s h work and re tu rn c on t r o l

void QUARK Waitall ( Quark ⇤ quark ) ;

// Master f r e e s data s t r u c t u r e s

void QUARK Free( Quark ⇤ quark ) ;

List API for Task Arguments

QUARK provides a secondary list-style API for adding arguments to a function. This proves

useful in the situation that there are a very large number of dependencies for a function.

For example, a function to be executed on a GPU may take a large number of data items,

and it would be simpler to provide that data by looping over indicesKurzak et al. (2010). A

second situation where a list-style API is useful is when the actual number of dependencies

of a function are not known until runtime, so it is not possible to use the standard varargs

based QUARK_Insert_Task method of adding arguments.

// Create a t a s k data s t r u c t u r e to ho l d arguments

Quark Task ⇤ task = QUARK Task Init ( quark , funct ion , t a s k f l a g s )

// Add ( or pack ) the arguments i n t o a t a s k data s t r u c t u r e

QUARK Task Pack Arg ( quark , task , a r g s i z e , a rg ptr , a r g f l a g s )

// I n s e r t t he packed t a s k data s t r u c t u r e i n t o the s c h e du l e r f o r e x e cu t i on

QUARK Insert Task Packed ( quark , task )

License Information

QUARK is a software package provided by University of Tennessee. QUARK’s license

is a BSD-style permissive free software license (properly called modified BSD). It allows

proprietary commercial use, and for the software released under the license to be

incorporated into proprietary commercial products. Works based on the material may

be released under a proprietary license as long as QUARK’s license requirements are

maintained, as stated in the LICENSE file, located in the main directory of the QUARK

distribution. In contrast to copyleft licenses, like the GNU General Public License,
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QUARK’s license allows for copies and derivatives of the source code to be made available

on terms more restrictive than those of the original license.
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