
Optimizing Memory-Bound Numerical Kernels
on GPU Hardware Accelerators

Ahmad Abdelfattah1, Jack Dongarra2, David Keyes1 and Hatem Ltaief3

1 KAUST Division of Mathematical and Computer Sciences and Engineering,
Thuwal, Saudi Arabia

2 Innovative Computing Laboratory, University of Tennessee, Knoxville TN USA
3 KAUST Supercomputing Laboratory, Thuwal, Saudi Arabia

Abstract. Hardware accelerators are becoming ubiquitous high perfor-
mance scientific computing. They are capable of delivering an unprece-
dented level of concurrent execution contexts. High-level programming
languages (e.g., CUDA), profiling tools (e.g., PAPI-CUDA, CUDA Pro-
filer) are paramount to improve productivity, while effectively exploit-
ing the underlying hardware. We present an optimized numerical kernel
for computing the symmetric matrix-vector product on nVidia Fermi
GPUs. Due to its inherent memory-bound nature, this kernel is very
critical in the tridiagonalization of a symmetric dense matrix, which is
a preprocessing step to calculate the eigenpairs. Using a novel design to
address the irregular memory accesses by hiding latency and increasing
bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold
speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold
improvement over the Matrix Algebra on GPU and Multicore Archi-
tectures (MAGMA) library in single and double precision arithmetics,
respectively.

1 Introduction

GPUs have been, for a long time, dedicated for graphics processing. However,
their increasing level of parallelism and computing capability have drawn atten-
tion in the HPC community, as low cost, low power, and high Gflop/s processing
units. The latest architecture released by nVidia, codenamed Fermi, has a the-
oretical peak of 1 Tflop/s for single precision (SP), and about 500 Gflop/s for
double precision (DP). Fermi has been highlighted as the first complete GPU
computing architecture [5], with a complete memory hierarchy, ECC support,
IEEE 754-2008 compliant floating point performance, and many novel features.
Due to the drastic change from the previous GPU architecture, further tuning of
existing numerical kernels is required to efficiently exploit new features in Fermi,
in order to boost the performance.

One of the critical numerical kernels in dense linear algebra is the symmet-
ric matrix-vector multiplication (SYMV). The kernel is, by nature, memory-
bandwidth (BW) bound. It is a core step in computing the eigenpairs of a dense
symmetric matrix. Having irregular memory access pattern due to the symmetric



property of the matrix, the kernel design on GPUs is challenging. We present a
novel design of the SYMV kernel. We try to exploit the new features introduced
in Fermi. Most of the techniques used in this design target hiding memory la-
tency and increasing memory bandwidth. When it comes to GPU programming
for high performance, there are a lot of knobs to tune a kernel design. However,
investigating all these knobs is daunting and time consuming. Therefore, we rely
on performance counters to profile existing SYMV kernels in order to detect and
identify weak points, where possible improvements can be made. PAPI CUDA
Component [3] and the nVidia Compute Profiler [2] were the main performance
counter tools used during the design process. The new kernel design is tested
against two open-source SYMV kernels: the nVidia’s CUBLAS 4.0 implementa-
tion and the Matrix Algebra on GPU and Multicore Architectures (MAGMA)
1.0.0-rc5 [1] implementation. MAGMA SYMV kernel [9] was tuned for Fermi.
Our preliminary design is 3.5x better than CUBLAS 4.0 and 7-8% better than
MAGMA in SP, while the speedup is about 2.5x over CUBLAS 4.0 and 1.3x
over MAGMA in DP.

The rest of the paper is organized as follows. Section 2 discusses some previous
work. Section 3 describes our proposed design in the SYMV kernel. Sections 4
and 5 present experimental and profiler results, respectively. Section 6 shows
the impact of the new design on the overall symmetric eigenvalue problem. We
summarize and propose some future work in Section 7.

2 Related Work

(a) MAGMA strategy (b) Proposed strategy

Fig. 1. Proposed computation strategy against MAGMA strategy. The vertical move-
ment of thread blocks in (b) is more suitable for column major formats.

Accelerator-based hardware are nowadays employed in many HPC software
libraries and applications, where they often outperform homogeneous x86 archi-
tecture in performance, power consumption, and cost-effectiveness. The STI Cell
processor and GPUs have already been used in accelerating dense linear algebra
([7], [12] and [10]) as well as stencil computations [4].

An up-to-date highly tuned SYMV kernel was recently presented in [9]. The
basic idea is to divide the matrix A into square blocks. Each Streaming Multipro-



cessor (SM) is responsible for one or more blocks. The kernel launches as many
thread blocks as the number of diagonal matrix blocks. Each thread block is re-
sponsible for exactly one block-row. Figure 1(a) shows an example thread block
movement. Each non-diagonal block is computed in two fashions: transposed
and non-transposed. Partial results from transposed computations are written
to global memory so that the correct thread blocks can consume them. The
MAGMA implementation is, therefore, divided into two kernel calls. The first
one does the computation. The second kernel is a final reduction step through
global memory. Recursive blocking [9] was used to save shared memory usage
in GPUs. In addition, pointer redirecting was adopted to handle matrix dimen-
sions that are not multiples of the block dimension. The next section describes
the design outlines of our proposed kernel and how it differs from the MAGMA
kernel strategy.

3 Kernel Description

GPU kernels are conceptually designed following two main strategies. The first
one (the per-block strategy) is how blocks are distributed over SMs, or in other
words, how thread blocks travel throughout the matrix blocks. The second one
(the per-element strategy) is how a single block is processed within the SM. The
first strategy has to optimize memory accesses through global memory and L2
cache, while the second strategy should go deeper into the memory hierarchy
i.e., registers and L1 cache/shared memory, to optimize the processing block
elements through efficient use of the single SM’s limited resources.

The new design has similar per-block strategy to the MAGMA kernel, with
the exception it organizes memory accesses more efficiently. Moreover, as op-
posed to MAGMA, there are three successive kernel calls in the proposed design.
The first kernel is a computation kernel for diagonal blocks only. The second one
is a computation kernel for the non-diagonal blocks. The third kernel is a fi-
nal reduction step done through global memory, which is very similar to the
MAGMA kernel. The reason for separating the computation into three kernels
will be shortly apparent. The proposed design divides the matrix into 64×64
blocks. This is an auto-tuning result obtained from MAGMA’s internal param-
eters. In the first kernel, we launch as many thread blocks as the number of
the diagonal blocks. When a thread block finishes computation, the partial re-
sult (64 element-vector representing the block row of Y ) is written into global
memory. The second kernel has the same number of threads as the first kernel.
Each thread block travels vertically through the matrix (Figure 1(b)). This is a
more memory-friendly scheme compared to MAGMA, since blocks are fetched in
compliance with the data layout (column-major format). This scheme achieves
thus better profiling in terms of number of load instructions from global memory
and L2 cache than MAGMA (see Section 5). Going at a lower level in the kernel
design (the per-element strategy), each diagonal block computation produces a
partial result, a 64-element vector. A non-diagonal block computation produces
two 64-element vectors. We enumerate the new contributions in this strategy.



Separating Different Computation Patterns. Diagonal blocks have dif-
ferent per-element computation strategy than non-diagonal blocks. Therefore,
they require different resources in terms of registers and shared memory. Sep-
arating different computation strategies into different kernels can achieve bet-
ter occupancy for kernels that do not consume a lot of resources. This is the
main reason why the diagonal block computation has been separated from non-
diagonal block computation.

Data Prefetching. Data prefetching [6] arises almost everywhere in our
design. Each block is divided into smaller pieces, which we refer to as chunks. A
software pipeline is implemented to hide the memory latency by prefetching the
next chunk of data, while a current chunk is being processed. This is a burden
on the GPU memory resources, so organizing the work between threads has
to be within the physical resource limit allowed per thread as well as per SM.
Figures 2(a) and 2(b) describe how data prefetching is applied to diagonal and
non-diagonal blocks, respectively. In the non-diagonal case, prefetching spans
blocks; while processing the second chunk of a given block, the first chunk of the
next matrix block is being prefetched.

Using More Registers. A very important feature of our kernel is that it
completely avoids computing partial products in shared memory. Shared memory
is used only in a final reduction step before a partial result of an entire block is
written into global memory. This feature avoids paying penalty in terms of shared
memory latency. It also reduces the occurrences of synchronization points. Using
registers pays off very well, especially when register spilling to local memory does
not happen. This is guaranteed on Fermi as long as each thread uses 63 registers
or less.

(a) Diagonal computation. (b) Non-diagonal computation.

Fig. 2. Computation strategy inside a block. In (a), diagonal blocks are processed as
two chunks. Hashed elements are loaded from DRAM then overwritten in a mirroring
step. Black elements are not loaded at all from memory. Their values are loaded from
shared memory during the mirroring step. In (b), non-diagonal blocks are also divided
into two chunks. Threads are originated at the black elements. As threads move from
left to right in the upper chunk, they prefetch hashed elements from the lower chunk
in their registers.



4 Experimental Results

All experiments were executed on a single Fermi C2070 GPU, with 448 cores
and 6 GB of DRAM. The kernel is implemented using CUDA C v4.0. The
kernel is originally designed for matrices of dimensions that are multiples of 64.
For other irregular dimensions, the matrix is padded with zeros inside the SM
shared memory and registers. No padding is done in global memory. Figures 3(a)
and 3(b) show the performance results (in Gflop/s) for SP and DP, respectively.
The proposed design is far better than the CUBLAS 4.0 kernel. There are some
dips in the SP performance, which we are trying to resolve. Ignoring such dips,
there is a 7-8% improvement over MAGMA in SP. The performance gap widens
in DP and reaches more than 30%. Although our kernel is mainly tuned for
DP, the smaller improvement seen for SP against MAGMA is explained below
along with the memory performance analysis. Since the kernel is memory bound,
the reported performance numbers are far below the theoretical floating point
peak performance. However, we can get intuition about the quality of the kernel
design by translating Gflop/s into GB/s to see how close we are from the Fermi
peak memory bandwidth. Fermi C2070 GPUs have theoretical peak memory
bandwidth of 144 GB/s (with ECC turned on). However, the actual (sustainable)
peak memory bandwidth is about 103 GB/s (when ECC is on). This information
is obtained by running a CUDA implementation of the STREAM benchmark
[8]. The memory bandwidth is calculated by dividing the amount of useful data
loaded/stored from/into global memory by the total runtime of the kernel. For
the SYMV kernel, and a matrix of dimension N , the total amount of useful
data is from A, X, and Y , that is, 1

2N(N + 1) + 2N elements, where each
element consumes 4 bytes in SP and 8 bytes in DP. Figures 3(c) and 3(d) show
the memory bandwidths of the SP and DP kernel versions. Our kernel scores
about 70% (SP) and 80% (DP) of the actual peak memory bandwidth. This
is 7-8% (SP) and 30% (DP) better than MAGMA, and 250% (SP) and 140%
(DP) better than CUBLAS 4.0. It is interesting to see how the improvements
in memory bandwidth matches those of performance. As previously mentioned,
memory bandwidth improvement in SP is less than in DP. Running the same
DP kernel for SP means saving more registers per thread, and loading less data
each time. We thought that doubling the block size as well as the number of
threads would result in memory bandwidth similar to the DP case. However,
we were not able to double the number of threads in an SM because we are
already using the maximum possible number on Fermi. A possible work around
is to use 64-bit load instructions in SP instead of 32-bit instructions as in [11],
which is, unfortunately, an assembly-level technique that is unavailable through
the standard CUDA library.

5 Performance Analysis

In this section, we try to analyze the performance of the new kernel, by study-
ing the performance counters obtained from the nVidia and PAPI-CUDA [3]



(a) Performance of SYMV in SP (b) Performance of SYMV in DP

(c) Memory BW of SYMV in SP (d) Memory BW of SYMV in DP

Fig. 3. Performance of the SYMV kernel in SP and DP on Fermi C2070.

profilers. All three kernels were tested for matrix dimensions up to 10000. We
selected the most relevant performance counters to the proposed kernel study.
All results in this section are for the DP kernel. The first performance counter is
the number of 64-bit load instructions made to the global memory. In general,
going to global memory is a penalty, so the less we refer to global memory the
better. Our experiments shows that the proposed design achieves 17% less in-
structions than CUBLAS, and 13% less instructions than MAGMA. Although
the improvement is not significant, it could potentially have strong impact on
performance, due to the huge penalty of going to global memory. In addition,
shared memory has higher latency than registers. Since we minimize the us-
age on shared memory, Figures 4(a) and 4(b) show that we refer less to shared
memory and thus, pay much less penalty in terms of bank conflicts. The burden
is rather put on registers, which are faster to read and compute, and do not
have restrictions of the load pattern. It is noteworthy to mention that CUBLAS
does not encounter any bank conflicts, though being the slowest kernel. Two
final performance counters are SM activity and registers-per-thread usage. Sur-
prisingly, CUBLAS 4.0 took the lead for occupancy at 98.36%, followed by our
design at 94.54%, and MAGMA at 80.90%. This result again shows it is indeed
critical to consider all performance counters, when judging the kernel quality.
A single performance metric can not reflect a comprehensive performance view.
Regarding the registers-per-thread usage, CUBLAS 4.0 uses the least number of
registers/thread i.e., 29, while MAGMA uses 51 and our kernel uses 63.



(a) Shared memory loads (b) L1 shared bank conflicts

Fig. 4. Performance counters for shared memory on Fermi C2070.

6 Case Study: The Symmetric Eigenvalue Solver

The proposed DSYMV (in DP) was integrated into MAGMA, and a test was
made for the tridiagonalization routine (DSYTRD) and the overall symmetric
eigensolver (DSYEVD). We repeated the tests for MAGMA, and for CUBLAS.
Results are shown in Figures 5(a) and 5(b). The new DSYTRD improves asymp-
totically by 88% with CUBLAS SYMV and by 20% with MAGMA SYMV. Look-
ing at the overall symmetric eigensolver, the new DSYEVD is about 66% better
with CUBLAS SYMV and about 17% better with MAGMA SYMV.

(a) DSYTRD Performance (b) DSYEVD Runtime

Fig. 5. Impact of tuned SYMV kernels on DSYTRD and DSYEVD.

7 Summary and Future Work

This paper introduces an optimized kernel for computing the symmetric matrix-
vector product on Fermi GPUs. The kernel achieves 3.5x (SP) and 2.5x (DP) fold
speedups over CUBLAS 4.0, and 7-8% (SP) and 30% (DP) improvement over
MAGMA, similarly to the memory bandwidth. One possible extension to the
work presented in this paper is to consider the load imbalance in the per-block



strategy. The vertical movement encounters different loads for thread blocks.
We intend to apply a 1D block cyclic distribution of non-diagonal blocks. Non-
diagonal blocks are to be mapped in a periodic manner over the available number
of SMs (14 on Fermi C2070), as done in [7]. Although this scheme might not be
friendly with respect to the column-major data layout, we expect that the load
balance can compensate for this penalty, especially if a tile data layout within
each block is considered.

Acknowledgements

We would like to thank Timothy Lanfear (nVidia), for providing the STREAM
benchmark for CUDA, and Rajib Nath (UCSD) for his help in understanding
MAGMA design outlines of the SYMV kernel.

References

1. Matrix Algebra on GPU and Multicore Architectures. Innovative Computing Lab-
oratory, University of Tennessee. Available at http://icl.cs.utk.edu/magma/.

2. Nvidia visual profiler. http://developer.nvidia.com/nvidia-visual-profiler.
3. Performance Application Programming Interface (PAPI). Innovative Computing

Laboratory, University of Tennessee. Available at http://icl.cs.utk.edu/papi/.
4. K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick.

Auto-tuning the 27-Point Stencil for Multicore. In In Proc. iWAPT2009: The
Fourth International Workshop on Automatic Performance Tuning, 2009.

5. P. N. Glaskowsky. nVidia’s Fermi: The first complete gpu computing architecture.
Technical report, 2009.

6. D. Kirk and W. Mei Hwu. Programming Massively Parallel Processors, A Hands-
on Approach. Morgan Kaufmann, 2010.

7. J. Kurzak, A. Buttari, and J. J. Dongarra. Solving systems of linear equations on
the CELL processor using Cholesky factorization. IEEE Transactions on Parallel
and Distributed Systems, 19(9):1–11, Sept. 2008.

8. J. McCalpin. Stream: Sustainable memory bandwidth in high performance com-
puters. http://www.cs.virginia.edu/stream/.

9. R. Nath, S. Tomov, T. Dong, and J. Dongarra. Optimizing symmetric dense
matrix-vector multiplication on gpus. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC’11,
pages 6:1–6:10, New York, NY, USA, 2011. ACM.

10. R. Nath, S. Tomov, and J. Dongarra. Accelerating GPU kernels for Dense Linear
Algebra. In Proceedings of the 9th International Conference on High Performance
Computing for Computational Science, VECPAR’10, pages 83–92, Berlin, Heidel-
berg, 2011. Springer-Verlag.

11. G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun. Fast implementation
of DGEMM on Fermi GPU. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC’11, page 35,
New York, NY, USA, 2011. ACM.

12. V. Volkov and J. W. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra.
In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC’08,
pages 31:1–31:11, Piscataway, NJ, USA, 2008. IEEE Press.


