
A Comprehensive Study of Task Coalescing for Selecting Parallelism Granularity in
a Two-Stage Bidiagonal Reduction

Azzam Haidar∗, Hatem Ltaief†, Piotr Luszczek∗, and Jack Dongarra∗
∗Innovative Computing Laboratory, University of Tennessee, Knoxville, TN 37996, USA

Email: haidar,luszczek,dongarra@eecs.utk.edu
†KAUST Supercomputing Laboratory, Thuwal, Saudi Arabia

Email: Hatem.Ltaief@kaust.edu.sa

Abstract—We present new high performance numerical
kernels combined with advanced optimization techniques that
significantly increase the performance of parallel bidiagonal
reduction. Our approach is based on developing efficient fine-
grained computational tasks as well as reducing overheads
associated with their high-level scheduling during the so-called
bulge chasing procedure that is an essential phase of a scalable
bidiagonalization procedure. In essence, we coalesce multiple
tasks in a way that reduces the time needed to switch execution
context between the scheduler and useful computational tasks.
At the same time, we maintain the crucial information about
the tasks and their data dependencies between the coalescing
groups. This is the necessary condition to preserve numerical
correctness of the computation. We show our annihilation
strategy based on multiple applications of single orthogonal
reflectors. Despite non-trivial characteristics in computational
complexity and memory access patterns, our optimization
approach smoothly applies to the annihilation scenario. The
coalescing positively influences another equally important as-
pect of the bulge chasing stage: the memory reuse. For the
tasks within the coalescing groups, the data is retained in high
levels of the cache hierarchy and, as a consequence, opera-
tions that are normally memory-bound increase their ratio of
computation to off-chip communication and become compute-
bound which renders them amenable to efficient execution on
multicore architectures. The performance for the new two-stage
bidiagonal reduction is staggering. Our implementation results
in up to 50-fold and 12-fold improvement (∼ 130 Gflop/s)
compared to the equivalent routines from LAPACK V3.2 and
Intel MKL V10.3, respectively, on an eight socket hexa-core
AMD Opteron multicore shared-memory system with a matrix
size of 24000 × 24000. Last but not least, we provide a
comprehensive study on the impact of the coalescing group
size in terms of cache utilization and power consumption in
the context of this new two-stage bidiagonal reduction.

Keywords-Bidiagonal Reduction; Two-Stage Approach; Tile
Algorithms; Bulge Chasing; Granularity Analysis; Power Pro-
filing; Dynamic Scheduling;

I. INTRODUCTION

The bidiagonal reduction (BRD) is an important first step
when calculating the singular value decomposition (SVD) of
a general rectangular dense matrix [1]–[3]. Various methods
of obtaining such reductions have been presented before [4],
[5]. Invariably, they all follow the decompositional approach
to dense matrix computation [6]. In particular, the new two-

stage BRD introduced in this paper is follow-up to previous
numerical algorithms for one-sided and two-sided transfor-
mations based on the tile data layout format associated with
the dynamic runtime environment system QUARK [7], in
the context of the PLASMA library [8]–[11].

The whole two-stage BRD computation proceeds as fol-
lows. The dense matrix is first reduced to a band bidiag-
onal form using compute-intensive kernels. The extra off-
diagonal elements are then annihilated using a bulge chasing
procedure during a second stage, which is characterized by
memory-bound kernels. While the parallelization of the first
stage is straightforward and highly efficient, most of the
performance bottlenecks reside in the scheduling of the fine-
grained computational tasks involved in the bulge chasing
phase. Indeed, there is a clear trade-off in the second stage
between the degree of parallelism and the resulting overall
performance – the larger the number of tasks the more
opportunities for parallelism. Also, the larger the number
of tasks the larger is the associated scheduling overhead due
to low computational intensity. This may completely over-
shadow any gains from parallel execution and, in addition, it
may excessively strain the memory bus if appropriate care is
not taken into consideration when scheduling the tasks with
nearly optimal core affinity to allow for cache reuse.

Our possible answer to solve the aforementioned problem
is twofold. We provide cache-aware fine-grained annihilation
kernels based on Householder reflectors [12], which chases
down single elements at a time. Highly optimized for cache
reuse, these kernels retain the data in high levels of the cache
memory hierarchy and, as a consequence, operations that
are originally memory-bound increase their ratio of com-
putation to off-chip communication and become compute-
bound which renders them amenable to efficient execution
on multicore architectures. And this cache behavior is further
enhanced thanks to the integration of advance optimization
techniques based on task coalescing, where multiple stan-
dalone tasks are grouped together to work on the same,
most likely shared data. We present the effect of the task
group size on the cache utilization, the overall execution
performance as well as the power consumption. All in all,
the new two-stage BRD implementation results in up to 50-

fold and 12-fold improvement (∼ 130 Gflop/s) compared to
the equivalent routines from LAPACK V3.2 and Intel MKL
V10.3, respectively, on an eight socket hexa-core AMD
Opteron multicore shared-memory system with a matrix size
of 24000× 24000.

The remainder of this paper is organized as follows: Sec-
tion II gives a detailed overview of previous research works
in this area. Section III clearly describes our research con-
tributions. Section IV recalls the two-stage BRD approach
using tile algorithms. Section V presents the fine-grained
and cache-friendly numerical kernels used during both stages
associated with the dynamic scheduler QUARK. Section VI
explains the importance of the coalescing group size. The
impact of the coalescing group size on cache behavior and
performance is shown in Section VII, comparing our imple-
mentation with the state-of-the-art, high performance dense
linear algebra software libraries, LAPACK V3.2 [13] and
Intel MKL V10.3 [14], an open-source and a commercial
package, respectively. Section VIII demonstrates the impact
of the coalescing group size on power consumption. Finally,
Section IX summarizes the results of this paper and presents
some future work.

II. RELATED WORK

The standard approach from LAPACK [13] is to use a
single phase to reduce a general (and possibly symmetric)
matrix to a special form. This includes reductions to Hes-
senberg, tridiagonal, and bidiagonal forms each of which
is a similarity matrix for general or symmetric eigenvalue
problems or the singular value computation. This has been
challenged by the method of splitting the reduction phase to
condensed forms into multiple stages.

One of the first uses of a two-step reduction occurred in
the context of out-of-core solvers for generalized symmetric
eigenvalue problems [15]. Then, a multi-stage method was
used to reduce a matrix to tridiagonal, bidiagonal and
Hessenberg forms [16]. The number of stages necessary
to reduce the matrix to the corresponding form was no
longer fixed but was instead a tunable parameter, which
depended on the specifics of the underlying hardware pa-
rameters. With this approach, it was possible to recast the
expensive memory-bound operations, that occur during the
panel factorization into a compute-bound procedure.

Consequently, a framework called Successive Band Re-
ductions (SBR) was created [17], that integrated some of
the multi-stage work. SBR toolbox may be used to reduce
a symmetric dense matrix to tridiagonal form, required
to solve the symmetric eigenvalue problem (SEVP). The
toolbox applies two-sided orthogonal transformations based
on Householder reflectors and successively reduces the
matrix bandwidth size until a suitable width is reached.
The off-diagonal elements are then annihilated column-
wise, which produces large fill-in blocks or bulges that
need to be chased down toward the bottom right corner

of the matrix. The bulge chasing procedure may result in
substantial increase in the floating point operation count
when compared with the standard single-phase approach
from LAPACK. If eigenvectors are required in addition
to eigenvalues, then the transformations may be efficiently
accumulated using Level 3 BLAS operations to generate
these vectors. It is also noteworthy to mention that SBR
heavily relies on multithreaded BLAS that are optimized
to achieve satisfactory parallel performance. However, such
parallelization paradigm incurs substantial overheads [10] as
it fits the Bulk Synchronous Parallelism (BSP) model [18].
Communication bounds for such two-sided reductions have
been established under the Communication Avoiding frame-
work [5]. A multi-stage approach has also been applied
to the Hessenberg reduction [19] as well as the QZ algo-
rithm [20] for the generalized non symmetric eigenvalue
problem. These approaches, in contrast to our own, use
neither tile algorithms nor tile storage.

Tile algorithms have recently seen a rekindled inter-
est when applied to the two-stage tridiagonal [10] and
bidiagonal reductions [4]. Using high performance kernels
combined with a data translation layer to execute on top
of the tile data layout format, both implementations achieve
a substantial improvement compared to the equivalent rou-
tines from the state-of-the-art numerical libraries. The off-
diagonal elements are annihilated column-wise instead dur-
ing the bulge chasing procedure, which engenders signif-
icant extra-flops due to the size of the bulges introduced.
An element-wise annihilation has then been implemented
based on cache-aware kernels, in the context of the two-
stage tridiagonal reduction [9]. Using the coalescing task
technique presented in this paper, the performance achieved
is by far greater than any other available implementations.

The next Section highlights our main research contribu-
tions in this paper.

III. CORE CONTRIBUTIONS

The aim of this Section is to clearly distinguish our four
main contributions:
• New high performance computational kernels based

on element-wise annihilation have been implemented
to efficiently tackle the second stage (i.e., the bulge
chasing procedure) of the two-stage BRD algorithm.
Running on top of tile data layout format, the kernels
are optimized for cache reuse thanks to the fine-grained
computation. An advanced optimization strategy, which
consists of coalescing the fine-grained tasks, is em-
ployed to drastically remove the scheduler overhead as
well as to enhance the memory reuse.

• The impact of the coalescing task size on the cache
utilization has been studied through the performance
counter library PAPI [21].

• The impact of the coalescing task size on the overall
execution performance has been demonstrated on a

cutting-edge shared-memory multicore system.
• The impact of the coalescing task size on the algorithm

power consumption has been analyzed using the Pow-
erPack framework [22].

The combination of new highly optimized kernels and
coalescing task techniques represent the crux of the research
work presented in this paper.

The next Section recalls the two-stage approach for BRD
using tile algorithms.

IV. TWO-STAGE BIDIAGONAL REDUCTION USING TILE
ALGORITHMS

This Section recalls the principles of tile algorithms as
well as the two-stage approach and how both can be applied
in the context of BRD.

A. Tile Algorithm Principles

Tile algorithms consist of splitting the dense matrix into
tiles. Each of the tiles is contiguous in memory, as op-
posed to the standard column-major data layout format (see
Figure 1) in which only a single column is contiguous in
memory and may not be use effectively for cache-blocked
operations. The numerical algorithm proceeds by taking into
account this high performance data storage, which may
require the redesign of the original algorithm. In fact, not
only the tile data layout format allows to substantially reduce
the cache and TLB misses but it also allows to generate a
tremendous amount of concurrent tasks. The program data
flow can then be represented as a directed acyclic graph
(DAG), where tasks represent nodes and edges – data de-
pendencies between tasks. An efficient runtime environment
system is necessary to schedule such computational tasks
among the available processing units (see Section V-B).

Figure 1. Column-major (left) and tile data layout (right) for a matrix.

B. Two-Stage Reduction Approach

As previously shown in Section II, the two-stage reduction
approach has been extensively studied in the context of
block algorithms (e.g., SBR [17]) and more recently with
tile algorithms (e.g., tridiagonal [9], [10] and bidiagonal
reductions [4]). The core idea consists of reducing the dense
matrix to band form using compute-intensive kernels. This

stage has also the particularity to be highly parallel by
benefiting from the parallelism brought to the fore thanks to
tile algorithms. The band form is further reduced to the final
condensed form using the bulge chasing technique. This pro-
cedure annihilates the extra off-diagonal elements by chasing
the created fill-in elements down to the bottom right side of
the matrix using successive orthogonal transformations at
each sweep. The condensed form is eventually computed
and the corresponding eigenvalue or singular value solver
can then be initiated.

C. Application to BRD Algorithm

The difficulty now is to map the two-stage approach
with tile algorithms. While the first stage can entirely run
on tile data layout format, there is however a mismatch
for the bulge chasing procedure. The different orthogonal
operations may span over some portions of multiple tiles
and therefore, data dependencies need to be cautiously
tracked to avoid any violations, which would jeopardize
the numerical correctness. Multiple frameworks have already
been implemented to handle such critical situations, namely
the data translation layer in Section VI A and Section IV
from [4], [10], respectively, and the function dependencies
in Section 8.2 from [9]. Although the data translation
layer expresses the data dependencies more naturally, the
function dependencies framework is preferred in this paper
because it is less restrictive and does not require an atomic
access whenever a particular task spans across multiple tiles.
Moreover, following the annihilation strategy introduced
in [9], the extra off-diagonal entries are rather zeroed out
element-by-element, as opposed to column-wise annihilation
from [4]. Thus, the size of the fill-in structure during
the bulge chasing procedure is severely reduced, which
considerably engenders less floating-point operations. At the
same time, the kernel computation intensity using element-
wise annihilation decreases and in this case, it becomes
paramount to make sure that the actual computation happens
at the high level caches to balance the loss of computation
intensity.

The next Section describes the high performance numer-
ical kernels involved in the two-stage BRD tile algorithm.

V. IMPLEMENTATIONS DETAILS

This Section recalls the numerical compute-bound kernels
of the first stage (reduction to band bidiagonal form) and
introduces the new high performance fine-grained and cache-
friendly computational kernels involved in the second stage
(reduction to condensed bidiagonal form).

A. Kernel Descriptions

1) First Stage Kernels: These kernels are available
from previous BRD implementations (see Section III A
from [23]). Therefore, the purpose of this subsection is
only to make the paper self-contained. This phase basically

interleaves the QR and LQ factorizations at each step and,
all together, uses six compute-intensive kernels:
• CORE DGEQRT/CORE DGELQT compute a QR and

an LQ factorizations of a single tile, respectively.
• CORE DTSQRT/CORE DTSLQT perform a QR and

an LQ factorizations by combining a triangular tile
(upper if QR, lower if LQ) with a corresponding full
square tile. CORE DTSQRT and CORE DTSLQT are
shown in Figure 2(a) and Figure 2(b), respectively.

• CORE DORMQR/CORE DORMLQ apply the
orthogonal transformations computed from
CORE DGEQRT/CORE DGELQT to the left/right
side of the trailing submatrix.

• CORE DTSMQR/CORE DTSMLQ apply the
orthogonal transformations computed from
CORE DTSQRT/CORE DTSLQT to the left/right
side of the trailing submatrix. The right and left
applications from CORE DTSMQR/CORE DTSMLQ
are laid out in Figure 2(c) and Figure 2(d) (the black
and dark grey data tiles), respectively.

In terms of extra storage, only the triangular factor T , that
was generated from the block reflectors [24], needs to be
saved to eventually apply Level 3 BLAS operations, during
the update of the trailing submatrix that has not been reduced
yet.

(a) Right Reduction Step 1. (b) Left Reduction Step 1.

(c) Right Reduction Step 2. (d) Left Reduction Step 2.

Figure 2. First stage: reduction to band bidiagonal form applied on a 4x4
tile matrix.

2) Second Stage Kernels: We have designed a novel
bulge chasing algorithm (similar to our previous implemen-
tation [9]) based on three new kernels, which allow us to

considerably enhance the data locality:
• The xGBELR kernel: this kernel triggers the beginning

of each sweep by successive element-wise annihilations
of the extra non-zero entries within a single column, as
shown in Figure 3(a). It then applies all the left updates
creating single bulges, which have to be immediately
annihilated and then followed by the right updates on
the corresponding data block loaded into the cache
memory.

• The xGBRCE kernel: this kernel successively applies
all the right updates coming from the previous kernel,
either xGBELR or xGBLRX (described below). This
subsequently generates single bulges, which have to be
immediately annihilated by appropriate left transforma-
tions in order to eventually avoid an expansion of the
fill-in structure (Figure 3(b)) by subsequent orthogonal
transformations.

• The xGBLRX kernel: this kernel successively ap-
plies all the left updates (coming from the xGBRCE
kernel) and create single bulge out of the diagonal,
then similarly to xGBELR, it eliminate the bulge and
apply the corresponding right updates, as depicted in
(Figure 3(c)).

0 5 10 15 20 25

0

5

10

15

20

25

nz = 135

xGBELR:
 1- element-wise annihilation
 2- by row left update
 3- creating/elimination bulge
 4- by col right update

(a) xGBELR.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 131

xGBELR:
 1- by col right update
 2- creating/elimination bulge
 3- by row left update

(b) xGBRCE.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 131

xGBELR:
1- by row left update
2- creating/elimination bulge
3 - by col right update

(c) xGBLRX.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 131

(d) Unrolling the kernel calls within
one sweep.

Figure 3. First sweep on top of tile data layout of our bulge chasing
procedure using the new memory-aware kernels.

Algorithm 1 represents the bulge chasing procedure,
which reduces the band bidiagonal form to condensed form
using element-wise annihilation.

Once the computational kernels are defined, the key is to
efficiently schedule them on the available processing units.

Algorithm 1 Second stage: reduction from band bidiagonal
to condensed form using the bulge chasing procedure based
on element-wise annihilation.

1: for j = 1, 2 to N−1 do
2: {Loop over the sweeps}
3: last sweep = j;
4: for m = 1 to 3 do
5: for k = 1, 2 to last sweep do
6: {I am at column k, generate my task identifier}
7: me = (j-k) * 3 + m ;
8: {Set the pointer (matrix row/col position) for

kernels}
9: p2 = floor((me+1)/2) * NB + k;

10: p1 = p2 - NB +1;
11: if (id == 1) then
12: {the first red task at column k}
13: DGBELR(Ap1:p2,p1−1:p2);
14: else if (mod(id,2) == 0) then
15: {a blue task at column k}
16: DGBRCE(Ap2+1:p2+NB,p1:p2);
17: else
18: {a green task at column k}
19: DGBLRX(Ap1:p2,p1:p2);
20: end if
21: end for
22: end for
23: end for

We rely on a highly productive runtime environment system,
which is described in the next Section.

B. The Runtime Environment System QUARK

By now, multicore processors are ubiquitous in both
low-end consumer electronics and high-end servers and su-
percomputer installations. This leads to the emergence of nu-
merous multithreading frameworks, both academic and com-
mercial, embracing the idea of task scheduling: Cilk [25],
OpenMP (tasking features) [26], Intel Threading Building
Blocks [27], just to name a few prominent examples.
From our perspective, one especially important category of
such frameworks are the multithreading systems based on
dataflow principles. They represent the computation as a
Direct Acyclic Graph (DAG) and schedule tasks at runtime
through resolution of data hazards: Read after Write (RaW),
Write after Read (WaR) and Write after Write (WaW).
QUeueing And Runtime for Kernels (QUARK) is an ex-
ample of such a system. Two other, very similar, academic
projects are also available: StarSs [28] from Barcelona Su-
percomputer Center and StarPU [29] from INRIA Bordeaux.
While all three systems have their strength and weaknesses,
QUARK [7] has vital extensions for use in a numerical
library.

VI. COALESCING TASK GRANULARITY STUDY

In this Section, we propose to study the consequences of
coalescing of computational tasks.

A. Enhancing Cache Memory Reuse

As previously explained in Sections IV-C and V-A2,
the element-wise annihilation kernels are so fine-grained
that their computation performance is solely guided by the
memory bus speed. Although these kernels are optimized for
cache reuse, a single kernel function call cannot, on its own,
take advantage of running in-cache. Once the data is fetched
into the high level caches and the registers, it needs to stay
there as much as possible and has to be reused between
computational tasks. Indeed, the true sharing cache protocol
will permit in practice to reduce the latency overhead and
by the same token, to remove the pressure from the memory
bus bandwidth.

The idea of coalescing computational tasks was born from
this conclusion. By aggregating tasks together into groups,
we ensure that the data will be reused among the various
tasks belonging to a certain group. As a consequence,
operations that are supposedly memory-bound increase their
ratio of computation to off-chip communication and become
compute-bound, which renders them amenable to efficient
execution on multicore architectures.

B. Reducing the Scheduler Overhead

Another positive aspect of coalescing of computational
tasks during the second stage is the direct attenuation of
the scheduler overhead. As a dynamic scheduler, QUARK
has shown very good performance on compute-intensive
tile algorithms including QR, LU, and Cholesky factoriza-
tions [30], [31]. However, it could potentially get in the way
when the tasks are mostly memory-bound and depend crit-
ically not only on good data locality but also on very short
periods of time required for switching between tasks eligible
for execution. Under such constraints tracking complex data
dependencies may turn out to be prohibitively expensive.
The very large amount of fine-grained tasks generated in
the bulge chasing procedure will further exacerbate these
problems. Naturally then, merging computational tasks is
necessitated by the confluence of the above factors. By
coalescing multiple annihilation steps, that could concep-
tually become separate tasks, we address directly both of
the issues. When merged, tasks naturally follow good data
locality guidelines by retaining data in caches for as long
as the computation continues – QUARK does not migrate
threads that are in the state of execution. And the look-up
and update of the data dependence information takes place
only once per each merged task. The savings in overhead
will come from both lack of cache memory pollution from
QUARK’s internal data structures and elimination of tens
if not hundreds of instructions that help QUARK make
scheduling decisions and keep its data in a consistent state.

The next Section describes the impact of coalescing of
tasks on the cache utilization and the execution performance.
It also compares the new tile two-stage BRD algorithm with
the state-of-the-art numerical libraries.

VII. PERFORMANCE RESULTS

A. Environment Settings

Our experiments have been performed on the largest
shared-memory system we could access at the time of
writing of this paper. It is representative of a vast class
of servers and workstations commonly used for computa-
tionally intensive workloads. It clearly shows the industry’s
transition from chips with few cores to tens of cores;
from compute nodes with order O(10) cores to O(100)
designs, and from Front Side Bus memory interconnect
(Intel’s NetBurst and Core Architectures) to Non-Uniform
Memory Access (NUMA) and cache coherent NUMA hard-
ware (AMD’s HyperTransport and Intel’s QuickPath Inter-
connect). Our experimental server was composed of eight
AMD Opteron(tm) Processor, 8439 SE of six cores (48
cores total), each running at 2.81 GHz with 128 GB of
memory. The total number of cores is evenly spread among
two physical boards. The cache size per core is 512 KB. All
the computations are done in double precision arithmetic.
The theoretical peak for this architecture in double precision
is 539.5 Gflop/s (11.2 Gflop/s per core).

There are a number of software packages that implement
the bidiagonal reduction. For comparison, we used as many
as we were aware of, and here we briefly describe each one
in turn. LAPACK [13] is a library of FORTRAN 77 subrou-
tines for solving the most commonly occurring problems in
dense matrix computations. LAPACK can solve systems of
linear equations, linear least squares problems, eigenvalue
problems and singular value problems. The equivalent rou-
tine name performing the bidiagonal reduction is DGEBRD.
LAPACK has been linked with the optimized Intel MKL
BLAS V10.3.2 to support parallelism at the BLAS level.
ScaLAPACK [32], [33] is a library of high-performance lin-
ear algebra routines for distributed-memory message-passing
MIMD computers and networks of workstations supporting
PVM [34] and/or MPI [35]. It is a continuation of the
LAPACK project, targeting distributed environment systems.
The machine used in our experiments emulate to some
extend a distributed environment and it is natural to include
this library in our experiments. The equivalent routine name
performing the bidiagonal reduction is PDGEBRD. Last but
not least, we also compare our implementation against our
previous version of the tile two-stage BRD algorithm [4].

We recall that the algorithmic complexity of the standard
full bidiagonal reduction is 8

3N3 and this is the formula
used to compute the performance in Gflop/s for all the
experiments. We refer in the subsequent figures to our new
tile two-stage BRD algorithm as PLASMA-DGEBRD and
the associated singular value solver as PLASMA-DGESVD.

B. Coalescing Task Size Impact on Cache Behavior

One of the key studies is the effect of the group size on the
cache utilization. Figure 4 shows the effect of the coalescing
task size on the cache TLB misses. These results were
generated using the performance counter library PAPI [21].
A coalescing task size of four seems to be the best value for
minimizing the cache TLB misses and thus, one could expect
the highest performance. A small group size engenders
however a large penalty in terms of TLB misses. We also
note that for large matrices, a group size of six, may give
us similar performance to a group size equal to four.

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k
0

2

4

6

8

10

12

14

16 x 108

Matrix size

TL
B

 m
is

se
s

PLASMA DGEBRD gr=1
PLASMA DGEBRD gr=2
PLASMA DGEBRD gr=4
PLASMA DGEBRD gr=6
PLASMA DGEBRD gr=16

Figure 4. Effect of the group size on the cache TLB misses.

C. Coalescing Task Size Impact on Performance

Figure 5 shows the effect of the coalescing group size on
the overall performance of the tile two-stage BRD algorithm.
The trade-off is between the degree of parallelism and the
amount of data reuse: the higher the degree of parallelism
(due to small coalescing group size), the smaller the data
reuse and the smaller the degree of parallelism (due to high
coalescing group size), the higher the data reuse. In our
experiments, a coalescing task size of four seems to get
the highest performance when asymptotic matrix sizes are
considered.

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

Matrix size

G
flo

p/
s

PLASMA DGEBRD gr=16
PLASMA DGEBRD gr=10
PLASMA DGEBRD gr= 8
PLASMA DGEBRD gr= 6
PLASMA DGEBRD gr= 4
PLASMA DGEBRD gr= 2
PLASMA DGEBRD gr= 1

Figure 5. Effect of the group size on the tile two-stage BRD algorithm
using eight socket hexa-core AMD Opteron (48 cores total).

D. Performance Comparisons

Figure 6 compares our tile two-stage BRD algorithm
against the state-of-the-art numerical libraries described in
Section VII-A. Our new implementation outperforms by
far the other BRD algorithms. It achieves up to 50-fold
speed up against LAPACK and 12-fold speed up against
the equivalent routine from the commercial package Intel
MKL. It also achieves an impressive 2-fold speed up against
our previous implementation of the tile two-stage BRD
algorithm [4], which further emphasizes the importance of
the task coalescing technique.

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

Matrix size

G
flo

p/
s

PLASMA DGEBRD
PLASMA DGEBRD w/o grouping
DGEBRD from [4]
MKL DGEBRD
MKL Scalapack PDGEBRD
LPK reference DGEBRD

50X

12X

Figure 6. Performance comparisons of the tile two-stage BRD algorithm
against the state-of-the-art numerical libraries using eight socket hexa-core
AMD Opteron Processors (48 cores total).

E. Performance Scalability

Figure 7 presents the performance scalability of the tile
two-stage BRD algorithm achieved on the entire system.
Our new algorithm scales as the matrix sizes increase and
asymptoticly achieves a perfect speedup, despite the side
effects of running on a NUMA system.

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

Matrix size

G
flo

p/
s

 48 th
 36 th
 24 th
 12 th
 6 th

Figure 7. Performance scalability of the tile two-stage BRD algorithm.

F. Performance of the Singular Value Solver

Figure 8 shows the performance of the entire singular
value solver. Calculating the singular values from the bidi-
agonal form is an O(n2) procedure and therefore, has not

been optimized yet. We simply call the routine DBDSQR
from LAPACK to perform the singular value computations.
As expected, our solver implementation still considerably
outperforms the singular value solvers from open-source and
vendor software packages.

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k
0

10

20

30

40

50

60

70

80

90

100

110

120

Matrix size

G
flo

p/
s

PLASMA DGESVD
MKL DGESVD
MKL Scalapack PDGESVD
LPK reference DGESVD

Figure 8. Performance comparisons of the singular value solver) based
on our BRD implementation) against the state-of-the-art numerical libraries
using eight socket hexa-core AMD Opteron Processors (48 cores total).

VIII. POWER CONSUMPTION ANALYSIS

A. Hardware/Software Setup

The experiments have been conducted on a single node of
a distributed system named systemg.cs.vt.edu from Virginia
Tech composed of 324 nodes with InfiniBand interconnect.
Each node is a dual-socket quad-core Intel Xeon 2.8GHz
(2592 cores total) with 8GB of memory. It is actually the
largest power-aware compute system in the world. It has
over 30 power and thermal sensors per node and relies
on PowerPack [22] to obtain measurements of the major
system components’ power consumption using power meters
attached to the hardware of the system. The PowerPack
framework shown in Figure 9 is a collection of software
components, including libraries and APIs, which enable
system component-level power profiling correlated to ap-
plication functions. PowerPack obtains measurements from
power meters attached to the hardware of the system. As
multicore systems evolve, the framework can be used to
indicate the application parameters and the system compo-
nents that affect the power consumption on the multicore
unit. PowerPack allows the user to obtain direct measure-
ments of the major system components’ power consumption,
including the CPU, memory, hard disk, and motherboard.
This fine-grain measurement allows power consumption to
be measured on a per-component basis.

B. Power Profiling

Here, we present the power consumption profiles for
bidiagonal reduction of a matrix of size 5000. For tile
algorithm runs, we use the tile size NB of 80 and the internal
blocking parameter IB to be 20. Such profiles allow us to
not only observe temporal changes of the power drawn by

Figure 9. Conceptual flow chart of the PowerPack framework.

the hardware but, primarily, give us additional information
about the usage of system components and how changes in
this usage are influenced by various algorithms. However,
one thing to keep in mind is the fact that the external power
measurements, such as the one we were using, provide
much less precise results than the built-in capabilities of
modern processors in the form of hardware counters and
the associated libraries such as PAPI [36].

In an earlier work [37], power profiles were used to reveal
varying power demand from the major components of a
smaller computer system. A somewhat similar analysis may
be done in the case of our variable grain bidiagonalization
schemes. Figure 10 compares directly the best shared-
memory implementation of the bidiagonal reduction from
MKL [14] with our most efficient tile code that features the
optimal task grouping size. Clearly, the time to solution is
much different for both codes but we chose to use the same
time scale to underscore this difference and make a statement
about the energy savings brought about by the drastic reduc-
tion of computation time. Another observation is virtually
constant power profile for the MKL implementation – both
the CPU and the main memory consume about 100 Watts
throughout the running time with a short spike at the very
end. This is to be expected from a mostly memory-bound
code like this. Throughout the execution, the performance
is mostly limited by the memory bandwidth. And at the
end, the problem size becomes small enough to fit in cache
which increases the computational intensity of the run which
corresponds to the spike in the CPU power draw. On the
other hand, the tile algorithm reaches almost 150 Watts in
CPU power usage which may be attributed to a better cache
locality which leads to a higher computational rate.

C. Coalescing Task Size Impact on Power Consumption

Figures 11, 12, 13, 14, 15, 16, 17, and 18 show the
effect of the task group size on the power profile of the
tile algorithm. A most obvious observation is the fact that
both stages are clearly delineated by two different levels
of nearly constant power consumption. The reduction to
band form draws almost 150 Watts while the reduction
from band to bidiagonal form consumes a little bit over

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

(a) MKL DGEBRD implementation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

(b) PLASMA DGEBRD implementation with the optimal task group size
of 6.

Figure 10. Power profiles of first stage of singular value computation:
reduction to band bidiagonal form when applied on a matrix of size 5000.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 11. PLASMA DGEBRD implementation with task group size equal
1.

100 Watts. The latter phase is memory-bound which leads to
pipeline stalls of each of the cores which result in decreased
demand for power. In addition, we may readily observe a
transition from one phase to the next by noticing a gradual
descent of the power curve at the border of the stages. This
transition corresponds to the overlap between the phases
afforded by the dynamic runtime scheduler which mixes the
tasks from the two phases as long as the data dependencies

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 12. PLASMA DGEBRD implementation with task group size equal
2.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 13. PLASMA DGEBRD implementation with task group size equal
4.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 14. PLASMA DGEBRD implementation with task group size equal
6.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 15. PLASMA DGEBRD implementation with task group size equal
12.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 16. PLASMA DGEBRD implementation with task group size equal
24.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 17. PLASMA DGEBRD implementation with task group size equal
32.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU
Memory

Disk
Motherboard

Figure 18. PLASMA DGEBRD implementation with task group size equal
64.

have been satisfied. Finally, there is a further decrease in
power consumption at the end of the second phase as the
bulge chasing procedure runs out of tasks which limits the
available degree of parallelism and thus leaves some cores
in the idle state. Finally, only the bulge chasing procedure
is affected by the size of the task groups and the power
profiles from the figures show clearly how the corresponding
portions of the plots are the only ones that change.

IX. SUMMARY AND FUTURE WORK

We presented a study of task coalescing and its effects on
performance and power consumption of a two-stage matrix
bidiagonalization procedure. We have shown how the tuning
of the size of task grouping can substantially improve the
running time on modern multicore hardware – a many-fold
speedup may be expected (up to 50X). Although only a small
fraction of the system theoretical peak is achieved (25%),
the performance of this memory-bound algorithm has been
significantly accelerated on homogeneous multicore thanks
to in-cache computations.

In our future work we will concentrate on calculation of
singular vectors. This will require appropriate accumulation
of all the transformations that were applied throughout
our current algorithm and it may also provide additional
opportunities for even larger overlap between the multiple
computational stages. This could further improve the degree
of parallelism and remove inherent sequential bottlenecks
by hiding them behind the tasks that accumulate the unitary
transformations and calculate the singular vectors.

In terms of improving the energy efficiency of our im-
plementation, we are also looking at the Dynamic Voltage
and Frequency Scaling (DVFS) feature and how it may
be applied, especially in the second stage of the code. In
that stage, the computational intensity of most tasks is low
enough to warrant reduction in CPU frequency. We would
like to further investigate under what circumstances such a
scheme could yield reduction in energy consumption without
adversely impacting the execution time.

Finally, we consider introducing static scheduling and
thus doing away with the runtime scheduling layer. If
implemented efficiently, this will have a beneficial effect
of reducing overheads of the dynamic scheduler. This will

certainly alter the balance between the need to reduce these
overheads and the struggle to keep the level of parallelism
high. At the very least, we expect for many of the tuned
parameters to no longer be optimal when carried over di-
rectly from the dynamically scheduled code to the statically
scheduled one.

X. ACKNOWLEDGMENT

The authors would like to thank Kirk Cameron and Hung-
Ching Chang from the Department of Computer Science at
Virginia Tech, for granting us access to their experimental
platforms for the power profiling study.

REFERENCES

[1] G. H. Golub and C. Reinsch, “Singular value decomposition
and least squares solutions,” Numer. Math., vol. 14, pp. 403–
420, 1970.

[2] G. H. Golub and C. F. Van Loan, Matrix Computations,
3rd ed., ser. John Hopkins Studies in the Mathematical
Sciences. Baltimore, Maryland: Johns Hopkins University
Press, 1996.

[3] L. N. Trefethen and D. Bau, Numerical Linear Algebra.
Philadelphia, PA: SIAM, 1997. [Online]. Available: http:
//www.siam.org/books/OT50/Index.htm

[4] H. Ltaief, P. Luszczek, and J. Dongarra, “High Performance
Bidiagonal Reduction using Tile Algorithms on Homoge-
neous Multicore Architectures,” ACM TOMS, 2011, Accepted.

[5] G. Ballard, J. Demmel, and I. Dumitriu, “Communication-
optimal parallel and sequential eigenvalue and singular value
algorithms,” EECS University of California, Berkeley, CA,
USA, Technical Report EECS-2011-14, February 2011, LA-
PACK Working Note 237.

[6] G. W. Stewart, “The decompositional approach to matrix
computation,” Computing in Science & Engineering, vol. 2,
no. 1, pp. 50–59, Jan/Feb 2000, iSSN: 1521-9615; DOI
10.1109/5992.814658.

[7] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’
Guide: QUeueing And Runtime for Kernels,” University of
Tennessee Innovative Computing Laboratory Technical Re-
port ICL-UT-11-02, 2011.

[8] PLASMA Users’ Guide, Parallel Linear Algebra Software for
Multicore Architectures, Version 2.3, University of Tennessee
Knoxville, November 2010.

[9] A. Haidar, H. Ltaief, and J. Dongarra, “Parallel reduction
to condensed forms for symmetric eigenvalue problems us-
ing aggregated fine-grained and memory-aware kernels,” in
SC11: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Seattle, WA, USA,
November 12-18 2011.

[10] P. Luszczek, H. Ltaief, and J. Dongarra, “Two-stage tridi-
agonal reduction for dense symmetric matrices using tile
algorithms on multicore architectures,” in IPDPS 2011: IEEE
International Parallel and Distributed Processing Symposium,
Anchorage, Alaska, USA, May 16-20 2011.

[11] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra, “Compara-
tive study of one-sided factorizations with multiple software
packages on multi-core hardware,” SC ’09: Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, pp. 1–12, 2009.

[12] A. S. Householder, “Unitary triangularization of a nonsym-
metric matrix,” Journal of the ACM (JACM), vol. 5, no. 4,
October 1958, DOI 10.1145/320941.320947.

[13] E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W.
Demmel, J. J. Dongarra, J. D. Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. C. Sorensen, LAPACK User’s
Guide, 3rd ed. Philadelphia: Society for Industrial and
Applied Mathematics, 1999.

[14] Intel, “Math Kernel Library,” Available at http://software.
intel.com/en-us/articles/intel-mkl/.

[15] R. G. Grimes and H. D. Simon, “Solution of large, dense
symmetric generalized eigenvalue problems using secondary
storage,” ACM Transactions on Mathematical Software,
vol. 14, pp. 241–256, September 1988. [Online]. Available:
http://doi.acm.org/10.1145/44128.44130

[16] B. Lang, “Efficient eigenvalue and singular value compu-
tations on shared memory machines,” Parallel Computing,
vol. 25, no. 7, pp. 845–860, 1999.

[17] C. H. Bischof, B. Lang, and X. Sun, “Algorithm 807: The
SBR Toolbox—software for successive band reduction,” ACM
Transactions on Mathematical Software, vol. 26, no. 4, pp.
602–616, 2000.

[18] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, Aug. 1990, dOI
10.1145/79173.79181.

[19] L. Karlsson and B. Kågström, “Parallel two-stage reduc-
tion to Hessenberg form using dynamic scheduling on
shared-memory architectures,” Parallel Computing, 2011,
dOI:10.1016/j.parco.2011.05.001.

[20] B. Kågström, D. Kressner, E. Quintana-Orti, and G. Quintana-
Orti, “Blocked Algorithms for the Reduction to Hessenberg-
Triangular Form Revisited,” BIT Numerical Mathematics,
vol. 48, pp. 563–584, 2008.

[21] “Performance Application Programming Interface (PAPI).
Innovative Computing Laboratory, University of Tennessee.
Available at http://icl.cs.utk.edu/papi/.”

[22] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W.
Cameron, “Powerpack: Energy profiling and analysis of high-
performance systems and applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. PDS-21, no. 5, pp.
658–671, May 2010.

[23] H. Ltaief, J. Kurzak, and J. Dongarra, “Parallel band two-
sided matrix bidiagonalization for multicore architectures,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 4, April 2010.

[24] R. Schreiber and C. Van Loan, “A storage efficient WY
representation for products of householder transformations,”
SIAM J. Sci. Statist. Comput., vol. 10, pp. 53–57, 1989.

[25] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” in Principles and Practice of Parallel Pro-
gramming, Proceedings of the fifth ACM SIGPLAN sympo-
sium on Principles and Practice of Parallel Programming,
PPOPP’95. Santa Barbara, CA: ACM, July 19-21 1995, pp.
207–216.

[26] OpenMP Application Program Interface, Version 3.0,
OpenMP Architecture Review Board, 2008.

[27] “Intel Threading Building Blocks,” http://www.
threadingbuildingblocks.org/.

[28] SMP Superscalar (SMPSs) User’s Manual, Version 2.0,
Barcelona Supercomputing Center, 2008.

[29] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier,
“StarPU: A unified platform for task scheduling on het-
erogeneous multicore architectures,” Concurrency Computat.
Pract. Exper., 2010, (to appear).

[30] J. Kurzak, H. Ltaief, J. J. Dongarra, and R. M. Badia,
“Scheduling dense linear algebra operations on multicore
processors,” Concurrency Computat.: Pract. Exper., vol. 21,
no. 1, pp. 15–44, 2009.

[31] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov, “Numerical
linear algebra on emerging architectures: The PLASMA and
MAGMA projects,” J. Phys.: Conf. Ser., vol. 180, no. 1, 2009.

[32] L. S. Blackford, J. Choi, A. Cleary, E. F. D’Azevedo, J. W.
Demmel, I. S. Dhillon, J. J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. W. Walker, and R. C.
Whaley, ScaLAPACK Users’ Guide. Philadelphia: Society
for Industrial and Applied Mathematics, 1997.

[33] J. Choi, J. J. Dongarra, S. Ostrouchov, A. Petitet, D. W.
Walker, and R. C. Whaley, “The design and implementation
of the ScaLAPACK LU, QR, and Cholesky factorization
routines,” Scientific Programming, vol. 5, pp. 173–184, 1996.

[34] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam, PVM: Parallel Virtual Machine. A Users’
Guide and Tutorial for Networked Parallel Computing. Cam-
bridge, MA: MIT Press, 1994.

[35] M. P. I. Forum, “MPI-2: Extensions to the Message-Passing
Interface,” 18 Jul. 1997, available at http://www.mpi-forum.
org/docs/mpi-20.ps.

[36] S. Browne, J. J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
portable programming interface for performance evaluation
on modern processors,” The International Journal of High
Performance Computing Applications, vol. 14, no. 3, pp. 189–
204, 2000.

[37] H. Ltaief, P. Luszczek, and J. Dongarra, “Profiling High
Performance Dense Linear Algebra Algorithms on Multicore
Architectures for Power and Energy Efficiency,” in EnA-HPC
2011: Second International Conference on Energy-Aware
High Performance Computing, Hamburg, Germany, Sept 7-
9 2011.

