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Abstract—We present a method for developing dense linear
algebra algorithms that seamlessly scales to thousands of cores.
It can be done with our project called DPLASMA (Distributed
PLASMA) that uses a novel generic distributed Direct Acyclic
Graph Engine (DAGuE). The engine has been designed for
high performance computing and thus it enables scaling of
tile algorithms, originating in PLASMA, on large distributed
memory systems. The underlying DAGuE framework has many
appealing features when considering distributed-memory plat-
forms with heterogeneous multicore nodes: DAG representation
that is independent of the problem-size, automatic extraction
of the communication from the dependencies, overlapping
of communication and computation, task prioritization, and
architecture-aware scheduling and management of tasks. The
originality of this engine lies in its capacity to translate a
sequential code with nested-loops into a concise and synthetic
format which can then be interpreted and executed in a dis-
tributed environment. We present three common dense linear
algebra algorithms from PLASMA (Parallel Linear Algebra for
Scalable Multi-core Architectures), namely: Cholesky, LU, and
QR factorizations, to investigate their data driven expression
and execution in a distributed system. We demonstrate through
experimental results on the Cray XT5 Kraken system that
our DAG-based approach has the potential to achieve sizable
fraction of peak performance which is characteristic of the
state-of-the-art distributed numerical software on current and
emerging architectures.

Keywords-Numerical linear systems, scalable parallel algo-
rithms, scheduling and task partitioning

I. INTRODUCTION AND MOTIVATION

Among the various factors that drive the momentous

changes occurring in the design of microprocessors and

high end systems, three stand out as especially notable:

1) the number of transistors per chip will continue the

current trend, i.e. double roughly every 18 months, while

the speed of processor clocks will cease to increase; 2) we

are getting closer to the physical limit for the number and

bandwidth of pins on the CPUs and 3) there will be a strong

drift toward hybrid/heterogeneous systems for petascale (and

larger) systems. While the first two involve fundamental

physical limitations that the state-of-art research today is

unlikely to prevail over in the near term, the third is an

obvious consequence of the first two, combined with the

economic necessity of using many thousands of CPUs to

scale up to petascale and larger systems.

More transistors and slower clocks means multicore de-

signs and more parallelism required. The fundamental laws

of traditional processor design – increasing transistor den-

sity, speeding up clock rate, lowering voltage – have now

been blocked by a set of physical barriers: excess heat

produced, too much power consumed, too much energy

leaked, useful signal overcome by noise. Multicore designs

are a natural response to this situation. By putting multiple

processor cores on a single die, architects can overcome the

previous limitations, and continue to increase the number

of gates per chip without increasing the power densities.

However, despite obvious similarities, multicore processors

are not equivalent to multiple-CPUs or to SMPs. Multiple

cores on the same chip can share various caches (including

TLB – Translation Look-aside Buffer) and they compete

for memory bandwidth. Extracting performance from such

configurations of resources means that programmers must

exploit increased thread-level parallelism (TLP) and effi-

cient mechanisms for inter-processor communication and

synchronization to manage resources effectively. The com-

plexity of parallel processing will no longer be hidden in

hardware by a combination of increased instruction level

parallelism (ILP) and pipeline techniques, as it was with

superscalar designs. It will have to be addressed at an

upper level, in software, either directly in the context of

the applications or in the programming environment. As

portability remains a requirement, clearly the programming

environment has to drastically change.

A thicker memory wall means that communication effi-

ciency will be even more essential. The pins that connect the

processor to main memory have become a strangle point,

with both the rate of pin growth and the bandwidth per

pin slowing down, if not flattening out. Thus the processor

to memory performance gap, which is already approaching
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a thousand cycles, is expected to grow, by 50% per year

according to some estimates. At the same time, the number

of cores on a single chip is expected to continue to dou-

ble every 18 months, and since limitations on space will

keep the cache resources from growing as quickly, cache

per core ratio will continue to go down. Problems with

memory bandwidth and latency, and cache fragmentation

will, therefore, tend to become more severe, and that means

that communication costs will present an especially notable

problem. To quantify the growing cost of communication,

we can note that time per flop, network bandwidth (between

parallel processors), and network latency are all improving,

but at significantly different rates: 59%/year, 26%/year and

15%/year, respectively. Therefore, it is expected to see a

shift in algorithms’ properties, from computation-bound,

i.e. running close to peak today, toward communication-

bound in the near future. The same holds for communication

between levels of the memory hierarchy: memory bandwidth

is improving 23%/year, and memory latency only 5.5%/year.

Many familiar and widely used algorithms and libraries will

become obsolete, especially dense linear algebra algorithms

which try to fully exploit all these architecture parameters.

They will need to be reengineered and rewritten in order to

fully exploit the power of the new architectures.

In this context, the PLASMA project [1] has developed

several new algorithms for dense linear algebra on shared

memory system based on tile algorithms (see section II).

In this paper, we present DPLASMA, a follow up project

related to PLASMA, that operates in the distributed-memory

environment. DPLASMA introduces a novel approach to

schedule dynamically dense linear algebra algorithms on

distributed systems. It, too, is based on tile algorithms, and

takes advantage of DAGuE [2], a new generic distributed Di-

rect Acyclic Graph Engine for high performance computing.

This engine supports a DAG representation independent of

problem-size, overlaps communications with computation,

prioritizes tasks, schedules in an architecture-aware manner

and manages micro-tasks on distributed architectures featur-

ing heterogeneous many-core nodes. The originality of this

engine resides in its capability of translating a sequential

nested-loop code into a concise and synthetic format which

it can interpret and then execute in a distributed environment.

We consider three common dense linear algebra algorithms,

namely: Cholesky, LU and QR factorizations, to investigate

through the DAGuE framework their data driven expression

and execution in a distributed system. We demonstrate

through performance results at scale that our DAG-based

approach has the potential to bridge the gap between the

peak and the achieved performance that is characteristic in

the state-of-the-art distributed numerical software on current

and emerging architectures. However, the most essential con-

tribution, in our view, is the ease with which new algorithmic

variants may be developed and how they can be simply

launched on a massively parallel architecture without much

consideration to the underlying hardware structure. It is due

to the flexibility of the underlying DAG scheduling engine

and straightforward expression of parallel data distributions.

The remainder of the paper is organized as follows.

Section II describes the related work. Section III details

the background information on translating a domain-specific

algorithm into to a generic DAG of tasks. Section IV

presents the DAGuE framework. Finally, Section V gives the

experimental results and Section VI provides the conclusion

and future work.

II. RELATED WORK

This paper reflects the convergence of algorithmic and

implementation advancements in the area of dense linear

algebra in the recent years. This section presents the solu-

tions that laid the foundation for this work, which include:

the development of the class of tile algorithms, the applica-

tion of performance-oriented matrix layout and the use of

dynamic scheduling mechanisms based on representing the

computation as a Directed Acyclic Graph (DAG) [3].

A. Tile Algorithms

The tile algorithms are based on the idea of processing

the matrix by square submatrices, referred to as tiles, of rela-

tively small size. This makes the operation efficient in terms

of cache and TLB use. The Cholesky factorization lends

itself readily to tile formulation, however the same is not

true for the LU and QR factorizations. The tile algorithms

for them are constructed by factorizing the diagonal tile first

and then incrementally updating the factorization using the

entries below the diagonal tile. This is a very well known

concept, that dates back to the work by Gauss, and is clearly

explained in the classic book by Golub and Van Loan [4]

and Stewart [5]. These algorithms were subsequently redis-

covered as very efficient methods for implementing linear

algebra operations on multicore processors [6], [7], [8], [9],

[10].

It is crucial to note that the technique of processing the

matrix by square tiles yields satisfactory performance only

when accompanied by data organization based on square

tiles. This fact was initially observed by Gustavson [11],

[12] and recently investigated in depth by Gustavson, Gun-

nels and Sexton [13]. The layout is referred to as square
block format by Gustavson et al. and as tile layout in

this work. The paper by Elmroth, Gustavson, Jonsson and

Kågström [14] provides a systematic treatment of the sub-

ject.

Finally, the well established computational model that

uses DAGs as its representation together with the dynamic

task scheduling have gradually made their way into aca-

demic dense linear algebra packages. The model is currently

used in shared memory codes, such as PLASMA (University

of Tennessee, University of California Berkeley, University

of Colorado at Denver) [1] and FLAME (Formal Linear
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Algebra Methods Environment; University of Texas Austin)

[15].

B. Parameterized Task Graphs

One challenge in scaling to large scale many-core systems

is how to represent extremely large DAGs of tasks in a

compact fashion, incorporating the dependency analysis and

structure within the compact representation. Cosnard and

Loi have proposed the Parameterized Task Graph [16] as a

way to automatically generate and represent the task graphs

implicitly in an annotated sequential program. The data flow

within the sequential program is automatically analyzed to

produce a set of tasks and communication rules. The re-

sulting compact DAG representation is conceptually similar

to the representation described in this paper. Using the

parameterized task graph representation various static and

dynamic scheduling techniques were explored by Cosnard

et al. [17], [18].

C. Task BLAS for distributed linear algebra algorithms

The Task-based BLAS (TBLAS) project [19], [20] is an

alternative approach to task scheduling for linear algebra al-

gorithms in a distributed memory environment. The TBLAS

layer provides a distributed and scalable tile based substrate

for projects like ScaLAPACK [21]. Linear algebra routines

are written in a way that uses calls to the TBLAS layer,

and a dynamic runtime environment handles the execution

in an environment consisting of a set of distributed memory,

multi-core computational nodes.

The ScaLAPACK style linear algebra routines make a

sequence of calls to the TBLAS layer. The TBLAS layer

restructure the calls as a sequence of tile-based tasks, which

are then submitted to the dynamic runtime environment. The

runtime accepts additional task parameters (data items are

marked as input, output or input and output) upon insertion

of tasks into the system and this information is later used

to infer the dependences between various tasks. The tasks

can then be viewed as comprising a DAG with the data

dependences forming the edges. The runtime system uses

its knowledge of the data layout (e.g., block cyclic) in

order to determine where the data items are stored in a

distributed memory environment and decide which tasks

will be executed on the local node and which tasks will

be executed remotely. The portion of the DAG relevant to

the local tasks are retained at each node. Any task whose

dependences are satisfied can be executed by the cores on the

local node. As tasks execute, additional dependences become

satisfied and the computation can progress. Data items that

are required by a remote task are forwarded to that remote

node by the runtime.

This approach to task scheduling scales relatively well,

and has performance that is often comparable to that of

ScaLAPACK. However, there is an inherent bottleneck in

the DAG generation technique. Each node must execute the
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Figure 1. Pseudocode of the tile Cholesky factorization (right-looking
version).
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Figure 2. Pseudocode of the tile QR factorization.

entire ScaLAPACK level computation and generate all the

tasks in the DAG, even though only the portions of the

DAG relevant to that node are retained. This is one of the

most fundamental design differences between TBLAS and

DAGuE.

III. BACKGROUND ON DEPENDENCE ANALYSIS

We will apply the DAGuE framework to three of the most

fundamental one-sided factorizations of numerical linear

algebra: Cholesky, LU, and QR factorizations. Figure 1

shows the pseudocode of the Cholesky factorization (the

right-looking variant). Figure 2 shows the pseudocode of

the tile QR factorization. Figure 3 shows the pseudocode of

the tile LU factorization. Each of the figures shows the tile

formulation of the respective algorithm: a single tile of the
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Figure 3. Pseudocode of the tile LU factorization.
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matrix is denoted by double-index notation A[i][j].
The DAGuE framework is generic by design and requires

from a specific algorithm to be represented as a DAG of

dependences. This may be readily achieved for the three

linear algebra factorizations by recasting the linear alge-

bra meaning of the computational kernels into dependence

scheduling nomenclature [22] commonly used in the com-

piler community. To start with a simple example, in Figure 1,

the first (and only) invocation of the DPOTRF computational

kernel has a form:

A[k][k] <- DPOTRF(A[k][k])

From the compiler stand point, this operation reads from

A[k][k] (input dependence) and writes to A[k][k] (output

dependence). To simplify the dependence analysis we could

rewrite the operation as:

A[k][k] <- A[k][k] + 1

The loss of semantics (the new form is not equivalent to the

original) may easily be compensated by preserving a refer-

ence to the original code. It is trivial for most of mainstream

compiler frameworks to analyze the modified form of the

statement: it is both input and output dependence – INOUT
for short (following the notation borrowed from Fortran 90’s

function parameter annotation). It is also possible to have

input-only dependences:

A[m][k] <- DTRSM(A[k][k], A[m][k])

A[k][k] carries input dependence and the whole statement

may be rewritten in simpler (but dependence preserving)

form:

A[m][k] <- A[k][k] + A[m][k]

For output-only dependences:

A[k][k], T[k][k] <- DGEQRT(A[k][k])

T[k][k] carry output dependence. And the equivalent form

could be:

T[k][k] <- A[k][k] + 1
A[k][k] <- A[k][k] + 1

Finally, it is also possible to have SCRATCH designation

for temporary storage that doesn’t carry any dependence

but is necessary for proper functioning of the algorithm

(this is again borrowed from Fortran 2008’s SCRATCH
designation). The SCRATCH parameters allow for dynamic

allocation of memory of size not known before runtime

(i.e. at compile time). In addition, the allocated memory

is automatically deallocated upon exiting the lexical scope

where such allocation occurred.

By rewriting the original statement we can simplify the

original code and have it accessible for loop-carried depen-

dence analysis. An alternative approach is to use the de-

pendence designation introduced above (IN, OUT, INOUT,

and SCRATCH) inserted into the original code and have the

rewriting and dependence analysis done automatically. This

is in fact the approach taken by the DAGuE framework as it

separates the semantics of the domain specific code from its

DAG representation required for efficient scheduling. For

example, the DPOTRF function is designated to accept a

single argument (a matrix tile) that carries input and output

dependence:

DPOTRF(A : INOUT)

And this is the only change required from the end user in the

implementation of DPOTRF() which otherwise should just

be a standard sequential function: an LAPACK subroutine

in this case.

IV. THE DAGUE FRAMEWORK

This section introduces the DAGuE framework [2], a new

runtime environment which schedules tasks dynamically in a

distributed environment. The tile QR factorization is used as

a test case to explain how the overall execution is performed

in parallel.

A. Description

The originality of this framework for distributed environ-

ment resides in the fact that its starting point is a sequential

nested-loop user-application, similar to the pseudocode from

Fig. 1-3. The framework then translates it in DAGuE’s

internal representation called JDF (Job Description Format),

which is a concise parameterized representation of the

sequential program’s DAG. This intermediate representation

is eventually used as input to trigger the parallel execution by

the DAGuE engine. It includes the input and output depen-

dences for each task, decorated with additional information

about the behavior of the task.

For an NT ×NT tile matrix, there are O(NT 3) tasks.

The memory requirement to store the full DAG quickly

increases with NT . In order to have a scalable approach

however, DAGuE uses symbolic interpretation to schedule

tasks without unrolling the JDF in memory at any given

time, and thus spares computation cycles to walk the DAG,

and memory to keep a global representation. So, basically

this synthetic representation allows the internal dependence

management mechanism to efficiently compute the flow of

data between tasks without having to unroll the whole DAG,

and to discover on the fly the communications required to

satisfy these dependences. Indeed, the knowledge of the IN
and OUT dependences, accessible anywhere in the DAG

execution, is sufficient to implement a fully distributed

scheduling engine for the underlying DAG. At the same

time, the concept of looking variants (i.e., right-looking,

left-looking, top-looking) in the context of LAPACK and

ScaLAPACK becomes irrelevant with this representation:

instead of hard-coding a particular variant of tasks ordering,

the execution is now data-driven and dynamically scheduled.
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The issue of which “looking” variant to choose is avoided

because the execution of a task is scheduled when the data

is available. On the other hand, it is still possible to insist

on a particular traversal order of the DAG which would

yield a particular “looking” variant. This kind of extension

to DAGuE is supported mostly for educational purpose.

Such representation is expected to be internal to the

DAGuE framework though, and not a programming lan-

guage at user disposal. The framework, as described here,

does not automate the computation of the data and task

distribution. The user is thus required to manually add such

information in the JDF. The process of such automation is

beyond the scope of this writing as we are trying to compare

against the established practices of distributed linear algebra

software which assumes fixed data distribution.

From a technical point of view, the main goal of the

distributed scheduling engine is to select a local task for

which all the IN dependences are satisfied, i.e. the data

is available locally, select one of the local cores where to

run the task and execute the body of the task when it is

scheduled. Once executed, the scheduling engine releases

all the OUT dependences of this task, thus making more

tasks available to be scheduled, locally or remotely. It is

noteworthy to mention that the scheduling mechanism is

architecture aware, taking into account not only the physical

layout of the cores, but also the way different cache levels

and memory nodes are shared between the cores. This allows

to determine the best local core, i.e. the one that minimizes

the number of cache misses and data movements over the

memory bus.

The DAGuE engine is obviously responsible of moving

data from one node to another when necessary. These data

movements are necessary to release dependences of remote

tasks. The framework language introduces a type qualifier

called modifier, expressed as MPI datatypes in the current

version. It tells the communication engine what is the shape

of the data to be transferred from a remote location to

another. By default, the communication engine uses a default

data type for the tiles (the user defines it to fit the tile size

of the program). But the framework has also the capability

to transfer data of any shape. Indeed, sometimes, only a

particular area of the default data type must be conveyed.

Again, at this stage, the user has still to manually specify

how the transfers must be done using these modifiers.

Moreover, the data tracking engine is capable to understand

if the different modifiers overlap, and behaves appropriately

when tracking the data dependences. One should note that

the DAGuE engine allows modifier settings on both input

and output dependences, so that one can change the shape

of the data on the fly during the communication.

B. A Test Case: QR Factorization

A realistic example of the DAGuE’s internal representa-

tion for the QR factorization is given in Fig. 4. As stated

in the previous section, this example has been obtained

starting from the sequential pseudocode shown in Fig. 2

using the DAGuE’s translation tools. The logic to determine

the task distribution scheme has been hard-coded and could

be eventually provided by auto-tuning techniques. The tile

QR consists of four kernel operations: DGEQRT, DSSMQR,

DORMQR, and DTSQRT. For each operation, we define

a function (lines 1 to 13 for DGEQRT) that consists of

1) a definition space (DGEQRT is parametrized by k, the

step of the factorization, that takes values between 0 and

NT −1); 2) how task distribution maps the data distribution

(DGEQRT(k) runs on the process that holds the tile A(k,

k)); 3) a set of data flows (lines 7 to 13 for DGEQRT(k));

and 4) a body that holds the effective C-code that will

eventually be executed by the scheduling engine (the body

has been excluded from the picture. It is a simple C code to

call the DGEQRT routine of LAPACK on the variables V

and T which are instanciated to the corresponding memory

locations of the process by the DAGuE framework before

the execution of the body).

Dependencies apply on data that are necessary for the

execution of the task, or that are produced by the task. For

example, the task DGEQRT uses one data V as input, and

produces two data, a modified version of the input V, and

T a data locally produced by the task. Input data, such

as V, are indicated using the left arrow. They can come

either from input matrix (local to the task, or located on

a remote process), or from the output data of another task

(executed either locally, or remotely). For example, the V of

DGEQRT(k) comes either from the original matrix located

in tile A(0, 0) if k==0, or from the output data C2 of task

DSSMQR(k-1, k, k) otherwise. Output dependences, marked

with a right arrow, work in the same manner. In particular,

DGEQRT produces V which can be sent to DTSQRT and

DORMQR depending on the values of k. These dependences

are marked with a modifier (line 8 and 9) at their end:

[U] and [L] for DTSQRT and DORMQR, respectively. This

tells the DAGuE engine that the functions DTSQRT and

DORMQR only require the strict lower part of V and only

the upper part of V as inputs, respectively. The whole tile

could have been transferred instead, but this would engender

two main drawbacks: (1) communicating more data than

required and (2) add extra dependences into the DAG which

will eventually serialize the DORMQR and DTSQRT calls.

This works in the same manner for output dependences. For

example, in line 10, only the lower part of V is written and

stored on the memory in the lower part of the tile pointed

by A(k, k). Also, a data that is sent to memory is final,

meaning that no other task will modify its contents until the

end of the DAG execution. However, this does not prevent

other tasks from using it as a read-only input.

Fig. 5 depicts the complete unrolled DAG of a 4x4

tiles QR, as resulting from the execution of the previously

described DAG on a 2x2 processor grid. The color represents

1435143114311431143114361436



1 DGEQRT( k ) ( h i g h p r i o r i t y )
2 / / E x e c u t i o n s p a c e
3 k = 0 . . NT−1
4 / / Data D i s t r i b u t i o n
5 : A( k , k )
6 / / Data f l o w s
7 V <− ( k ==0) ? A( 0 , 0 ) : C2 DSSMQR( k−1,k , k )
8 −> ( k==NT−1) ? A( k , k ) : R DTSQRT( k , k +1) [U]
9 −> ( k !=NT−1) ? V1 DORMQR( k , k + 1 . .NT−1) [ L ]

10 −> A( k , k ) [ L ]
11 T −> T DORMQR( k , k + 1 . .NT−1) [ T ]
12 −> T ( k , k ) [ T ]
13
14 DTSQRT( k ,m) ( h i g h p r i o r i t y )
15 / / E x e c u t i o n s p a c e
16 k = 0 . . NT−2
17 m = k + 1 . .NT−1
18 / / Data D i s t r i b u t i o n
19 : A(m, k )
20 / / Data f l o w s
21 V2 <− ( k ==0) ? A(m, 0 ) : C2 DSSMQR( k−1,k ,m)
22 −> V2 DSSMQR( k , k + 1 . .NT−1,m)
23 −> A(m, k )
24 R <− (m==k +1) ? V DGEQRT( k ) :
25 R DTSQRT( k ,m−1) [U]
26 −> (m==NT−1) ? A( k , k ) :
27 R DTSQRT( k ,m+1) [U]
28 T −> T DSSMQR( k , k + 1 . .NT−1,m) [ T ]
29 −> T (m, k ) [ T ]

36 DORMQR( k , n ) ( h i g h p r i o r i t y )
37 / / E x e c u t i o n s p a c e
38 k = 0 . . NT−2
39 n = k + 1 . .NT−1
40 / / Data D i s t r i b u t i o n
41 : A( k , n )
42 / / Data f l o w s
43 T <− T DGEQRT( k ) [ T ]
44 V1 <− V DGEQRT( k ) [ L ]
45 C1 <− ( k ==0) ? A( k , n ) : C2 DSSMQR( k−1,n , k )
46 −> C1 DSSMQR( k , n , k +1)
47
48 DSSMQR( k , n ,m)
49 / / E x e c u t i o n s p a c e
50 k = 0 . . NT−2
51 n = k+1 . . NT−1
52 m = k+1 . . NT−1
53 / / Data D i s t r i b u t i o n
54 : A(m, n )
55 / / Data f l o w s
56 V2 <− V2 DTSQRT( k ,m)
57 T <− T DTSQRT( k ,m) [ T ]
58 C2 <− ( k ==0) ? A(m, n ) : C2 DSSMQR( k−1,n ,m)
59 −> ( n==k+1 & m==k +1) ? V DGEQRT( k +1)
60 −> ( n==k+1 & k<m−1) ? V2 DTSQRT( k +1 ,m)
61 −> ( k<n−1 & m==k +1) ? C1 DORMQR( k +1 , n )
62 −> ( k<n−1 & k<m−1) ? C2 DSSMQR( k +1 , n ,m)
63 C1 <− (m==k +1) ? C1 DORMQR( k , n ) :
64 C1 DSSMQR( k , n ,m−1)
65 −> (m==NT−1) ? A ( k , n ) : C1 DSSMQR( k , n ,m+1)

Figure 4. Concise representation of tile QR factorization

DGEQRT

DORMQR

DTSQRT

DSSMQR

node 0

node 2

node 3

node 1

comm

local

Figure 5. DAG of QR for a 4x4 tile matrix.

the task to be executed (DGEQRT, DORMQR, DTSQRT

and DSSMQR), while the border of the circles represents

the node where the tasks has been executed. The edges

between the tasks represents the data flowing from one tasks

to another. A solid edge indicate that the data is coming

from a remote resource, while a dashed edge indicate a local

output of another task.

C. DPLASMA and the DAGuE framework

DPLASMA is an extension of the PLASMA idea us-

ing the DAGuE framework. It implements a subset of

PLASMA’s tile algorithms for some of the linear algebra op-

erations of LAPACK inside the DAGuE system. It provides

an implementation of these algorithms for a distributed-

memory system with multicore nodes. Four operations have

been implemented in DPLASMA today: the Cholesky, QR

and LU factorizations, as well as the distributed matrix

matrix multiply (GEMM). Although DPLASMA is imple-

mented on top of DAGuE, it is useable in any MPI scientific

program. Thus, in this context, DPLASMA provides a re-

placement for ScaLAPACK, as PLASMA replaces LAPACK

for shared-memory multicore systems.

V. PERFORMANCE RESULTS

In this section we show the cost of using DPLASMA as

opposed to an optimized vendor library. This is to ascertain

the feasibility of our approach for performance-conscious

codes. In particular, the penalty associated with decoupling

the optimized sequential kernels from the parallelization and

scheduling components. We focus on the three common

algorithms we have described extensively earlier: the tile

Cholesky, tile QR, and tile LU.

A. Hardware Description

The Kraken system is a Cray XT5 with 8256 com-

pute nodes interconnected with SeaStar that features a 3D

torus topology. Each compute node has two six-core AMD
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Opterons (clocked at 2.6 GHz) for a total of 99072 cores. All

nodes have 16 Gbytes of memory: 4/3 Gbytes of memory

per core. Cray Linux Environment (CLE) 2.2 is the OS on

each node. The Kraken system is located at the National

Institute for Computational Sciences (NICS) at Oak Ridge

National Laboratory.

B. Software Description

For comparative studies, we used Cray LibSci – the best

set of parallel routines available on the system from the

hardware vendor. From the numerical analysis stand point,

LibSci offers functional equivalents of the aforementioned

DPLASMA routines. Cray LibSci shares input data layout

and API with ScaLAPACK. However, to increase the achiev-

able fraction of peak performance, the library was tuned

by tightly integrating the computational portion and the

communication layer of the library. Additional optimizations

incorporated into Cray LibSci take advantage of the Cray

XT5 interconnect characteristics and the peculiarities of the

CLE, and that includes the job scheduler’s strict affinity

policies, kernel aggregation of hardware interrupt handlers,

and a very long process scheduler’s tick (it is almost an

order of magnitude longer than the setting in most Linux

distributions). Neither DPLASMA nor DAGuE take advan-

tage of this kind of optimizations in the version of the code

presented here.

Figure 6. Performance comparison of Cholesky factorization codes on
Cray XT5 in weak scaling scenario.

C. Performance Tuning

Maximizing the performance and minimizing the execu-

tion time of scientific applications is a daily challenge for

the HPC community. The tile QR and LU factorizations

depend strongly on tunable execution parameters, namely the

outer and the inner blocking sizes (NB and IB), which trade

utilization of different system resources. The tile Cholesky

depends only on the outer blocking size.

Figure 7. Performance comparison of LU factorization codes on Cray
XT5 in weak scaling scenario.

The outer block size (NB) trades off parallelization gran-

ularity and scheduling flexibility with single core utilization,

while the inner block size (IB) trades off memory load with

extra-flops due to redundant calculations. Hand-tuning by

active probing has been performed to determine the optimal

NB and IB for each factorization. NB = 1800 has been

selected for all three factorizations and IB = 225 for LU

and QR factorizations.

Moreover, in a parallel distributed framework, the efficient

parallelization of the tile QR and LU factorization algorithms

greatly relies on the data distribution.

There are several indicators of a “good” data distribution

and it is actually a challenge to optimize all of these cost

functions at once. A good distribution has to unlock tasks

on remote nodes as quickly as possible (concurrency); it

has to enable a good load balance of the algorithm; and

it definitely has to minimize communication. ScaLAPACK

popularized elementwise 2D block cyclic data distribution as

its data layout. The distribution currently used in DPLASMA

is tilewise 2D block cyclic. As we have raised the level of

abstraction from scalars to tiles when going from LAPACK

to PLASMA, we found it useful to raise the level for the

data distribution from scalars to tiles when going from

ScaLAPACK to DPLASMA. In ScaLAPACK, each process

contains an rSIZE×cSIZE block of scalars and this pattern

is repeated in a 2D block cyclic fashion. In DPLASMA, each

process possesses an rtileSIZE x ctileSIZE block of tiles

(of size NB x NB). This block of tiles enable multiple cores

within a nodes to work concurrently on the various tiles

of the block (as opposed to the elementwise distribution)

while enabling good load balancing, low communication and

great concurrency among nodes (similarly to elementwise

distribution). We found it best for the tilewise 2D block

cyclic distribution to be strongly rectangular for QR and
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LU (with more tile rows than tile columns) and more

square for Cholesky. These facts on tilewise distribution for

DPLASMA matches previous results obtained for element-

wise distribution for ScaLAPACK [23].

Figure 8. Performance comparison of QR factorization codes on Cray
XT5 in weak scaling scenario.

D. Comparative Study

We present our results in Figure 6, Figure 7, and Fig-

ure 8. The results indicate that the performance obtained by

DAGuE and DPLASMA is nearly identical to Cray’s LibSci

in a weak scaling context and remains at a constant fraction

of the peak performance at the scale of multiple thousands

of cores.

Even though DPLASMA already matches the perfor-

mance of Cray’s LibSci there are a number of improvements

we consider.

First, for QR and LU, we have tested DPLASMA with

square tile 2D block cyclic distribution. The configuration

is depicted in Figure 5. Starting from the top we see that

DGEQRT is executed on node 0, followed by DTSQRT

on node 2, followed by another DTSQRT on node 0, and

another DTSRQT on node 2. We are doing three inter-node

communications. A better algorithm would be to have DGE-

QRT on node 0, followed by DTSQRT on node 0, followed

by DTSQRT on node 2, followed by DTSQRT on node 2.

The total number of inter-node communication is now re-

duced to 1 (instead of 3). Such an execution pattern can be

achieved by adjusting the data distribution or by changing

the DAG traversal order of the algorithm. In the global sense,

the number of messages sent is O((N/NB) ∗ (N/NB)) and

the volume of messages sent is O((N/NB)∗ (N/NB)∗NB),
both of which are asymptotically larger than the lower bound

afforded by ScaLAPACK’s 2D block-cyclic distribution. We

consider this to be the cost that comes with the flexibility

of the automatically scheduled DAG.

Second, we need to improve the broadcast operations in

DAGuE. Currently the broadcast is implemented with the

root sending the data to each of the recipients. This is

suitable for some operations but certainly not for Cholesky,

LU or QR. A better way to do the broadcast in this context

is with a ring broadcast [24]. We believe that DAGuE needs

to be able to support broadcast topology provided by the

user and thus better adapt to a given algorithm. The BLACS

(Basic Linear Algebra Communication Subroutines) [25]

has this capacity. Also DAGuE is not yet able to group

messages, this would be useful for example in the tile LU or

QR factorizations where two arrays need to be broadcast at

once in the same broadcast configuration. As an illustration,

in Figure 5, the three pairs of arrows going from the

first DGEQRT to the three DORMQR below, represent the

broadcast of the same data (T and V) from the same root

to the same nodes. These two arrays can obviously been

concatenated to work around the network latency.

VI. SUMMARY AND FUTURE WORK

This paper introduced a method of developing distributed

implementation of linear algebra kernels using DPLASMA.

The three particular examples used throughout were QR,

LU, and Cholesky factorizations. DPLASMA is based on

tile algorithms and DAGs of tasks that are scheduled dynam-

ically. It is implemented on top of the DAGuE engine, which

is capable of extracting tasks and their data dependencies

from the sequential user applications based on nested loops.

DPLASMA expresses such algorithms with an intermedi-

ate concise and synthetic format (JDF). The engine then

schedules the generated tasks across a distributed system

without the need to unroll the entire DAG. Compared to

established software provided by vendor, DPLASMA’s linear

algebra routines are equivalent in functionality, accuracy,

and performance. Based on these results we conclude that

DAGuE is a promising framework that provides a scalable

and dynamic scheduling for parallel distributed machines.

All the existing distributed-memory codes rely on static

scheduling of the operations. This is inadequate in cases

when multiple scheduling variants are required to achieve

performance on vastly different hardware platforms. Paral-

lel distributed dynamic schedulers offer a viable solution.

However, the current dynamic parallel distributed sched-

ulers are intrinsically limited in scalability. However, we

have shown that our dynamic scheduler scales over 3000

cores and achieves, or even surpasses, performance levels

available only from highly tuned parallel libraries that were

developed by the hardware vendor. And unlike any existing

distributed-memory implementation, our approach is much

more flexible from the user perspective as it requires only

a sequentiential loop nest as input. Multiple variants of the

same factorization may be easily provided by the user and

our system is able to generate a parallel distributed im-

plementation automatically and will schedule the execution
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accordingly thus creating a rapid development capability

without sacrificing performance.
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