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ABSTRACT
This paper introduces a novel implementation in reducing a sym-
metric dense matrix to tridiagonal form, which is the preprocess-
ing step toward solving symmetric eigenvalue problems. Based on
tile algorithms, the reduction follows a two-stage approach, where
the tile matrix is first reduced to symmetric band form prior to the
final condensed structure. The challenging trade-off between algo-
rithmic performance and task granularity has been tackled through
a grouping technique, which consists of aggregating fine-grained
and memory-aware computational tasks during both stages, while
sustaining the application’s overall high performance. A dynamic
runtime environment system then schedules the different tasks in
an out-of-order fashion. The performance for the tridiagonal re-
duction reported in this paper is unprecedented. Our implementa-
tion results in up to 50-fold and 12-fold improvement (130 Gflop/s)
compared to the equivalent routines from LAPACK V3.2 and In-
tel MKL V10.3, respectively, on an eight socket hexa-core AMD
Opteron multicore shared-memory system with a matrix size of
24000×24000.

1. INTRODUCTION
After traditional processor designs hit the edge of their power

capabilities, the gap between theoretical peak performance and the
actual performance realized by full applications has never been so
substantial. Indeed, the current hardware and software landscapes
show that (1) clock frequencies are now capped below 4 GHz and
trending even downward, (2) latencies in key areas (e.g., memory
access, bus) are expected to remain relatively stagnant and (3) the
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level of parallelism in the state-of-the-art numerical softwares is not
sufficient to handle the multicore shared-memory systems available
today. The exascale roadmap [15] has further exacerbated the chal-
lenges explained above, where complex systems of heterogeneous
computational resources with hundreds of thousands of cores af-
firm to be the next ubiquitous generation of computing platforms.
Therefore, designs of new numerical algorithms are not optional
anymore and become paramount to efficiently address future hard-
ware issues. The PLASMA [28] and FLAME [30] projects started
a few years ago to revise the commonly accepted linear algebra
algorithms present in LAPACK [4]. Successful results were re-
ported on multicore architectures for one-sided factorizations e.g.,
QR, LU and Cholesky [3, 10, 11, 24, 25]. However, the perfor-
mance of two-sided transformations e.g., Hessenberg, tridiagonal
and bidiagonal reductions are very limited on multicore architec-
tures and achieve only a small fraction of the system’s theoretical
peak. This is clearly still an open research problem. And this is
primarily due to the inherently problematic portion of those reduc-
tions i.e., the panel factorizations mainly composed of expensive
memory-bound operations, which impedes the overall high perfor-
mance.

In particular, the authors focus on the tridiagonal reduction (TRD),
which is the preprocessing step toward solving symmetric eigen-
value problems [16, 19, 27]. The TRD is actually the most time
consuming part when only eigenvalues are required and can take
more than 90% of the elapsed time. In fact, this paper introduces
a novel implementation (PLASMA-xSYTRD) for reducing a sym-
metric dense matrix to tridiagonal form. Based on tile algorithms,
the matrix is split into square tiles, where each data entry within a
tile is contiguous in memory. Following a two-stage approach, the
tile matrix is first reduced to symmetric band form prior to the fi-
nal condensed structure. The general algorithm is then broken into
tasks and proceeds on top of tile data layout, which eventually gen-
erates a directed acyclic graph (DAG) [9, 12], where nodes repre-
sent tasks and edges describe the data dependencies between them.
The algorithm employs high performance compute intensive ker-
nels for the first stage, which necessitates tasks with a coarse gran-
ularity in order to extract a substantial percentage of the machine’s
theoretical peak performance. Those coarse-grained tasks engender
a wide band structure of the matrix to be further reduced during the
second stage. On the other hand, the bulge chasing procedure in the
second stage annihilates, element-wise, the extra off-diagonal en-
tries, and because of potentially being memory-bound, it demands
a matrix with a small band size as input to prevent the applica-
tion’s overall performance from dropping. This challenging trade-
off between algorithmic performance and task granularity has been



tackled through a grouping technique, which consists of aggregat-
ing fine-grained tasks together during the first stage while sustain-
ing the application’s overall high performance. Furthermore, new
memory-aware computational kernels have been developed for the
second stage, which are highly optimized for cache reuse and en-
able us to run at the cache speed by appropriately fitting the data
into the small core caches. The dynamic runtime environment sys-
tem QUARK (available in PLASMA) schedules the tasks from both
stages across the processing units in an out-of-order fashion. Since
the different computational kernels may operate on the same ma-
trix data, a framework based on function dependencies tracks the
data areas accessed during both stages and detects and prevents any
overlapping region hazards to ensure the dependencies are not vi-
olated. A thread locality mechanism has also been implemented at
the runtime level in order to dramatically decrease the memory bus
traffic, especially for the memory-bound stage.

The remainder of this paper is organized as follows: Section 2
gives a detailed overview of previous projects in this area. Sec-
tion 3 lays out clearly our research contributions. Section 4 recalls
the bottlenecks seen in the standard TRD algorithm. Section 5 ex-
plains how the two-stage TRD approach using tile algorithms over-
comes those bottlenecks. Section 6 describes the new fine-grained
and cache-friendly numerical kernels used during both stages. Sec-
tion 7 presents the new grouping technique. Section 8 gives some
implementation details of our proposed PLASMA-xSYTRD. The
performance numbers are shown in Section 9, comparing our im-
plementation with the state-of-the-art, high performance dense lin-
ear algebra software libraries, LAPACK V3.2 [4] and Intel MKL
V10.3 [1], an open-source and a commercial package, respectively.
Finally, Section 10 summarizes the results of this paper and presents
the ongoing work.

2. RELATED WORK
The idea of splitting the matrix reduction phase to condensed

forms with multiple stages in the context of eigenvalue problems
and singular value decomposition has been extensively studied in
the past.

Grimes and Simon [20] reported the first time 1 was used a two-
step reduction in their out-of-core solver for generalized symmetric
eigenvalue problems. Later, Lang [5] used a multiple-stage imple-
mentation to reduce a matrix to tridiagonal, bidiagonal and Hes-
senberg forms. The actual number of stages necessary to reduce
the matrix to the corresponding form is a tunable parameter, which
depends on the underlying hardware architecture. The general idea
is to cast expensive memory operations, occurring during the panel
factorization into fast compute intensive ones. Later, Bischof et
al. [6] integrated some of the work described above into a frame-
work called Successive Band Reductions (SBR). SBR is used to
reduce a symmetric dense matrix to tridiagonal form, required to
solve the symmetric eigenvalue problem (SEVP). This toolbox ap-
plies two-sided orthogonal transformations to the matrix based on
Householder reflectors and successively reduces the matrix band-
width size until a suitable one is reached. The off-diagonal ele-
ments are then annihilated column-wise, which produces large fill-
in blocks or bulges to be chased down, and therefore, may result
in substantial extra flops. If eigenvectors are additionally required,
the transformations can be efficiently accumulated using Level 3
BLAS operations to generate the orthogonal matrix. It is also note-
worthy that the the SBR package relies heavily on multithreaded
optimized BLAS to achieve parallel performance, which follows
the expensive fork-join paradigm.

1up to our knowledge.

Davis and Rajamanickam [14] implemented a similar toolbox
called PIRO_BAND, which only focusses on the last stage i.e., the
reduction from band form to the condensed structures. This soft-
ware enables us to reduce, not only symmetric band matrices to
tridiagonal form but also non-symmetric band matrices to bidiag-
onal form needed for the SEVP and the singular value decompo-
sition, respectively. This sequential toolbox employs fine-grained
computational kernels, since it only operates on regions located
around the diagonal structure of the matrix. However, the off-
diagonal entries are annihilated element-wise and the number of
fill-in elements is drastically reduced compared to the SBR imple-
mentation. As a consequence, the overall time to solution has been
improved compared to SBR package, even though the PIRO_BAND
implementation is purely sequential. Finally, PIRO_BAND relies
on pipelined plane rotations (i.e., Givens rotations) to annihilate the
off-diagonal entries.

More recently, Luszczek et al. [23] introduced a new parallel
high performance implementation of the tile TRD algorithm on
homogeneous multicore architectures using a two-stage approach.
The first stage uses high compute intensive kernels and reduces the
matrix to band tridiagonal form. The second stage follows the SBR
principle of annihilating the extra entries column-wise. However,
as opposed to the SBR toolbox, they brought the parallelism origi-
nally residing in the multithreaded BLAS-based kernels to the fore
and exposed it to a dynamic runtime system environment. The vari-
ous computational tasks then get scheduled in an out-of-order fash-
ion, as long as data dependencies among them are not violated. A
left-looking variant has been developed for the bulge chasing to
increase data locality and to reduce memory bus traffic. Further-
more, the algorithmic data layout mismatch between both stage al-
gorithms (tile and column-major data layout for the first and the
second stage, respectively) has been handled through a data depen-
dency layer (DTL), which provides crucial information to the dy-
namic scheduler to ensure numerical correctness. Last but not least,
the overall performance of their implementation is solely guided by
the tile size, which will eventually determine the bandwidth size
for the second stage. Therefore, because of the second stage being
memory-bound, a tuned tile size must be appropriately chosen in
order to extract the best performance out of both stages.

The next Section clearly details the research contributions of the
work presented in this paper.

3. RESEARCH CONTRIBUTIONS
The research contributions of this paper can be mainly listed in

three points:

• New high performance fine-grained and memory-aware ker-
nels have been implemented for the first and the second stages.
The first stage kernels described in Luszczek et al. [23] have
been fused to form more compute intensive tasks, while re-
ducing the overhead of the dynamic runtime system. The
new kernels employed during the second stage aggregate the
left and right applications of Householder reflectors occur-
ring within a single data block, in order to reduce the memory
bus traffic and contentions, and at the same time, taking full
advantage of running at the cache speed. Section 6 provides
more information about those new fine-grained and cache-
friendly numerical kernels.

• Getting a small matrix bandwidth after the first reduction
stage is a key benefit for the second stage i.e., the bulge
chasing procedure. In other words, this procedure requires
a small tile size, which is not optional for the first stage be-
cause it usually relies on coarse-grained compute intensive



tasks to achieve high performance. This challenging trade-
off has been handled using a grouping technique, which al-
lows us to use fine-grained computational kernels during the
first stage instead, while sustaining the original high perfor-
mance of this first phase. A bench of small tiles are combined
together to form what we call a super tile. The general tile
TRD algorithm then proceeds on the super tiles in an obliv-
ious manner, which drastically reduces the overhead of the
runtime system as well. This grouping technique has also
been used during the second stage to merge the new fine-
grained memory-aware kernels in order to further increase
data reuse and to significantly reduce the memory bus traffic.
This contribution is further described in Section 7.

• During the second stage, the dependence tracking was per-
formed using function dependencies rather than data depen-
dencies. The former can translate to the latter but the main
advantage of the former is that the number of dependencies
is flat and equal to two, while many more dependencies need
to be monitored by the dynamic runtime system when us-
ing a dependence translation layer (DTL) as suggested in
Luszczek et al. [23]. Also, the function dependencies frame-
work allows two different kernels to run simultaneously on
a single data tile as long as there are no overlapping regions,
as opposed to DTL, in which the access to the data tile by
a kernel is atomic. Although function dependencies played
a major role in getting the performance numbers reported in
this paper, and thus perfectly suits the current problem being
solved, DTL offers a more systematic and general mecha-
nism to track data dependencies for any problem types. More
details about this contribution can be found in Section 8.2.

Our research contributions can be seen as a substantial improve-
ment of the first stage compared to SBR [6] by exposing more par-
allelism thanks to tile algorithms as well as compared to Luszczek
et al. [23] due to the new kernel implementations and the group-
ing technique. Our second stage has also considerably benefited
from the grouping technique and has therefore leveraged the con-
tributions in Luszczek et al. [23], especially by chasing the extra
entries one-by-one rather than an entire entry column, which gen-
erates less fill-in elements, and thus less additional flops. Last but
not least, our second stage can also be seen to some extent as a very
efficient parallel implementation of the PIRO_BAND package [14]
using Householder reflectors instead and a dynamic runtime system
optimized for thread and data locality to schedule the fine-grained
memory-aware kernels.

The next Section describes the various drawbacks of the one-
stage approach used to perform the standard TRD algorithm.

4. THE BOTTLENECKS OF THE
STANDARD TRD ALGORITHM

It is very important to first identify the bottlenecks of the stan-
dard one-stage approach used to compute the TRD algorithm, as
implemented in the state-of-the-art numerical package, namely LA-
PACK [4]. LAPACK is characterized by two successive compu-
tational steps: the panel factorization and the update of the trail-
ing submatrix. The panel factorization computes the transforma-
tions within a specific rectangular region using Level 2 BLAS op-
erations (memory-bound) and accumulates them so that they can
be applied into the trailing submatrix using Level 3 BLAS op-
erations (compute-bound). The parallelism in LAPACK resides
within the BLAS library, which follows the expensive fork and join
model. This produces unnecessary synchronization points between

the panel factorization and the trailing submatrix update phases.
The serious coarse granularity is also a significant drawback and
prevents us from getting a higher degree of parallelism.

In particular, the TRD algorithm implemented in LAPACK is
no exception. Furthermore, it follows a one-stage approach where
the final condensed form is obtained in one shot, after performing
successive panel-update sequences. The panel factorization step
is actually more critical for two-sided reductions (e.g., TRD) than
one-sided factorizations (e.g., LU) because each reflector column
computation of the panel requires four matrix-vector products in-
volving the current panel and one substantial symmetric matrix-
vector product involving the trailing submatrix. Thus, the entire
trailing submatrix needs to be loaded into memory. As memory is
a very scarce resource, this will obviously not scale for larger ma-
trices, and thus will generate a tremendous amount of cache and
TLB misses. Indeed, Figure 1 shows the performance evaluation in
Gflop/s of the one-stage LAPACK TRD algorithm linked with op-
timized Intel MKL BLAS as well as the amount of TLB misses as-
sociated with it (determined using the performance counter library
PAPI [2]). The machine has dual-socket quad-core Intel Nehalem
2.93GHz Processors (8 cores total) with 8MB of cache memory and
16GB of main memory. The TRD of small matrices delivers super
linear speedups since they are able to fit into cache memory. As
the matrix size increases, the number of TLB misses starts to grow
exponentially, which makes the asymptotic performance reach only
8% of the theoretical peak of the machine.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10
G

flo
p/

s

Matrix Sizes
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

5

x 10
7

T
LB

 M
is

se
s

Figure 1: Performance evaluation and TLB miss analysis of the
one-stage LAPACK TRD algorithm with optimized Intel MKL
BLAS, on a dual-socket quad-core Intel Xeon (8 cores total).

The idea is then to try to overcome those bottlenecks by tackling
the problem using a different strategy mostly defined by: a) the
tile two-stage approach, b) exposing and bringing the parallelism
to the fore, c) fine-grained optimized computational kernels and d)
efficient dynamic runtime system for task scheduling. This strategy
is explained in the following Sections.

5. THE TILE TWO-STAGE TRD APPROACH
The two-stage approach permits us to cast expensive memory

operations occurring during the panel factorization into faster com-
pute intensive ones. This results in splitting the original one-stage
approach into a compute-intensive phase (first stage) and a memory-
bound phase (second stage). The first stage reduces the original
symmetric dense matrix to a symmetric band form. The second
stage applies the bulge chasing procedure, where all the extra off-
diagonal entries are annihilated element-wise.



The next milestone is to break those stages into small granularity
tasks in order to expose and to bring to the fore the parallelism re-
siding within the BLAS library. The concepts of tile algorithms for
one-sided factorizations [3] have been extended to address the two-
sided reduction algorithms, and in particular, the two-stage TRD
algorithm. The matrix is basically split into square tiles, where
each data entry within a tile is contiguous in memory. This re-
quires implementations of new computational kernels to be able to
operate on the tiled structure. The general algorithm is then broken
into tasks and proceeds on top of tile data layout, which eventu-
ally generates a directed acyclic graph (DAG), where nodes repre-
sent tasks and edges describe the data dependencies between them.
Those kernels will ultimately need to be optimized for each stage
they will be running on. Moreover, an efficient dynamic runtime
system named QUARK (available within the PLASMA library and
described in Section 8.1) is used to schedule the different tasks from
both stages in an out-of-order fashion, as long as data dependencies
are not violated for numerical correctness purposes. Therefore, the
top left matrix corner may have reached the final tridiagonal form
(second stage) while the bottom right corner of the matrix is still
being reduced to the symmetric band form (first stage).

Last but not least, the degree of parallelism i.e., the number of
concurrent tasks, is fairly high for the first stage but very low for the
second stage. Indeed, the bulge chasing procedure generates many
overlapping regions of computations, which may considerably im-
pede the overall parallel scaling of the tile TRD algorithm. There-
fore, the goal is (1) to obtain, after the first reduction stage, a matrix
bandwidth small enough that, the element-wise bulge chasing oper-
ations do not become a bottleneck, and (2) to develop fine-grained
memory-aware computational kernels to speed up this memory-
bound stage through caching improvement mechanisms e.g., by en-
forcing data and thread locality with the dynamic runtime system
support.

The next Section presents the new numerical kernels implemented
for the tile two-stage TRD algorithm.

6. HIGH PERFORMANCE FINE-GRAINED
AND MEMORY-AWARE KERNELS

This Section gives detailed information about the high perfor-
mance fine-grained and cache-friendly computational kernels in-
volved in the first and second stage, respectively.

6.1 First Stage: Efficient Fine-grained Ker-
nels

Figure 2 highlights the execution breakdown at the second step
of the first stage reduction. Since the matrix is symmetric, only
the lower part is referenced and the upper part (gray color) stays
untouched. We reuse some of the QR factorization kernels [3] to
compute the panel factorizations and to generate the correspond-
ing Householder reflectors. We recall that xGEQRT computes a
QR factorization of a single sub-diagonal tile, as presented in Fig-
ure 2(a). The left and right applications of a Householder reflector
block on a symmetric diagonal tile is done by the new xSYRFB
kernel, as shown in Figure 2(b). The right applications on the sin-
gle tiles then proceed along the same tile column using the xOR-
MQR kernel, as depicted in Figure 2(c). Figure 2(d) shows how
xTSQRT computes a QR factorization of a matrix composed by
the sub-diagonal tile and a square tile located below it, on the same
tile column.

Once the Householder reflectors have been calculated, they need
to be applied to the trailing submatrix. We developed a new kernel
to appropriately handle the symmetric property of the trailing ma-

trix. Indeed, the xTSMQRLR kernel in Figure 2(e) loads three tiles
together – two of them are symmetric diagonal tiles – and carefully
applies left and right orthogonal transformations on them. This new
kernel is a fusion of four distinct kernels previously introduced in
Luszczek et al. [23]. Not only does this fused kernel improve the
readability of the code, but it also may eventually enhance the over-
all performance by improving data reuse. Once the special treat-
ment for the symmetric structure has completed, we then apply the
same transformations to the left side of the matrix as well as to the
right side (down to the bottom of the matrix) using the xTSMQR
kernel with the corresponding side variants, as displayed in Fig-
ure 2(f) and 2(g), respectively. It is necessary to further explain the
left variant, as it should require the light gray tile located in posi-
tion (3,4) from Figure 2(f). In fact, this tile is not referenced since
only the lower part of the matrix is being operated. Therefore, by
taking the transpose of the tile located in position (4,3) from the
same Figure, we are able to compute the right operations. Finally,
Figure 2(h) represents the matrix structure at the end of the second
step of the reduction. The symmetric band structure starts to appear
at the top left corner of the matrix (the dashed area).

(a) xGEQRT: QR
factorization of a
single tile.

(b) xSYRFB:
Left/right updates on
a symmetric diagonal
tile.

(c) xORMQR: Right
updates of a single
tile down to the bot-
tom.

(d) xTSQRT: QR fac-
torization of a trian-
gular tile on top a
square tile.

(e) xTSMQRLR:
Left/right applica-
tions on the diagonal
region.

(f) xTSMQR: Left
application using the
transpose of the light
gray upper tile.

(g) xTSMQR: Right
application down to
the bottom.

(h) Matrix structure
at the end of the re-
duction step 2.

Figure 2: Kernel execution breakdown of the tile TRD algo-
rithm during the first stage.

Algorithm 1 describes the different steps of the general tile band
TRD algorithm (first stage) for the lower case, using the double
precision naming convention for the computational kernels. The
reduction to symmetric band tridiagonal form can be easily derived
for the upper case. All the operations will then be based on the LQ



Algorithm 1 First stage: reduction to symmetric band tridiagonal
form with Householder reflectors.
1: for step = 1, 2 to NT−1 do
2: DGEQRT(Astep+1,step)
3: {Left/right updates of a symmetric tile}
4: DSYRFB(Astep+1,step, Astep+1,step+1)
5: for i = step+2 to NT do
6: {Right updates}
7: DORMQR(Astep+1,step, Ai,step+1)
8: end for
9: for k = step+2 to NT do

10: DTSQRT(Astep+1,step, Ak,step)
11: for j = step+2 to k-1 do
12: {Left updates (transposed)}
13: DTSMQR(A j,step+1, Ak, j)
14: end for
15: for m = k +1 to NT do
16: {Right updates}
17: DTSMQR(Am,step+1, Ak,m)
18: end for
19: {Left/right updates on the diagonal symmetric structure}
20: DTSMQRLR(Astep+1,step+1, Am,step+1, Am,m)
21: end for
22: end for

factorization numerical kernels, as described in Ltaief et al. [22].
Most of the kernels from the first stage are compute-intensive and
rely on Level 3 BLAS operations (i.e., matrix-matrix multiplica-
tion) to achieve high performance. Therefore, it is critical to sup-
ply a large enough tile size to run them close to the theoretical peak
performance of the machine.

The next Section presents the kernels of the bulge chasing pro-
cedure (the second stage) used to annihilate the extra off-diagonal
elements.

6.2 Second Stage: Cache-Friendly Kernels
It is very important to understand the shortcomings of the stan-

dard bulge chasing procedure before explaining the cache-friendly
numerical kernels. Figure 3 shows how the annihilation of the
off-diagonal elements proceeds, as implemented in the LAPACK
routine xSBTRD, following Schwarz [26] and Kaufman [21] algo-
rithms. Multiple bulges are successively chased down (Figure 3(a))
followed by the corresponding left updates (Figure 3(b)), symmet-
ric updates of the two-by-two diagonal elements (Figure 3(c)) and
right updates leading to the creation of bulges (Figure 3(d)).

This present algorithm requires the matrix to be accessed from
multiple disjoint locations in order to apply the corresponding left
and right orthogonal transformations. In other words, there is an
accumulation of substantial latency overhead each time the differ-
ent portions of the matrix are loaded into the cache memory, which
is not yet compensated for by the low execution rate of the actual
computations (the so-called surface to volume effect).

To overcome those critical limitations, we have designed a novel
bulge chasing algorithm based on three new kernels, which allow
us to considerably enhance the data locality:

• The xSBELR kernel: this kernel triggers the beginning of
each sweep by successive element-wise annihilations of the
extra non-zero entries within a single column, as shown in
Figure 4(a). It then applies all the left and right updates on
the corresponding data block loaded into the cache memory
and cautiously handles the symmetric property of the block.
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Figure 3: The LAPACK bulge chasing algorithm: xSBTRD (on
top of column-major data layout).

• The xSBRCE kernel: this kernel successively applies all the
right updates coming from the previous kernel, either xS-
BELR or xSBLRX (described below). This subsequently
generates single bulges, which have to be immediately anni-
hilated by appropriate left transformations in order to even-
tually avoid an expansion of the fill-in structure (Figure 4(b))
by subsequent orthogonal transformations.

• The xSBLRX kernel: this kernel successively applies all the
left updates (coming from the xSBRCE kernel) and the cor-
responding right updates on a symmetric data block, as de-
picted in (Figure 4(c)).

Those kernels share a fundamental principle. The sequences of
interleaved left and right updates embedded in each kernel have
been decoupled and reordered such that fusing some update opera-
tions is possible, as long as the data dependencies are not violated.
Moreover, those kernels run on top of tile data layout and perfectly
control the various situations, especially in the case where a par-
ticular data block spans over several tiles (see Figure 4(d)). Here,
the golden rule of thumb is that, once a data block is loaded into
the cache memory, all possible computational operations have to
be applied at once. This prevents going back and forth to request
the data from main memory and therefore, permits reuse of the
data block already residing within the cache memory. Also, each
instance of those functions is given a unique identification number
within a sweep to identify the proper kernel to be executed. Let
us then introduce T sw

me , a task T from the sweep sw with the iden-
tification number me. We note that, each sweep represents a set
of tasks needed to annihilate a column. Those tasks are numbered
in increasing order and the identifier me represents that number, as
seen in Figure 5. The identifier me will also be used as a new way
to track the complex data dependencies, as explained later in Sec-
tion 8.2. The data locality can be further enhanced by interleaving
tasks form different sweeps producing a zigzag pattern (see Fig-
ure 5). For example, the task T 2

1 can start as soon as the task T 1
3
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Figure 4: First sweep on top of tile data layout of our bulge
chasing procedure using the new memory-aware kernels.

returns and will actually benefit from the previous tasks still being
in the cache memory. Algorithm 2 presents the step-by-step bulge
chasing procedure, reducing a symmetric band tridiagonal to con-
densed form based on element-wise annihilation.

As opposed to the first stage kernels, the kernels of the second
stage are clearly memory-bound and rely on Level 1 BLAS opera-
tions. Their performances will be solely guided by how much data
can fit in the actual cache memory. Thus, if the tile size chosen dur-
ing the first step is too large, the second stage may encounter high
difficulties coping with the memory bus latency. The challenging
problem is the following: on the one hand, the tile size needs to
be large enough to extract high performance from the first stage
and on the other hand, it has to be small enough to extract high
performance (thanks to the cache speed up) from the second stage.
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Figure 5: Data dependencies between subsequent sweeps.

Algorithm 2 Second stage: reduction from symmetric band tridi-
agonal to condensed form using the bulge chasing procedure based
on element-wise annihilation.
1: for j = 1, 2 to N−1 do
2: {Loop over the sweeps}
3: last_sweep = j;
4: for m = 1 to 3 do
5: for k = 1, 2 to last_sweep do
6: {I am at column k, generate my task identifier}
7: me = (j-k) * 3 + m ;
8: {Set the pointer (matrix row/col position) for kernels}
9: p2 = floor((me+1)/2) * NB + k;

10: p1 = p2 - NB +1;
11: if (id == 1) then
12: {the first red task at column k}
13: DSBELR(Ap1:p2,p1−1:p2);
14: else if (mod(id,2) == 0) then
15: {a blue task at column k}
16: DSBRCE(Ap2+1:p2+NB,p1:p2);
17: else
18: {a green task at column k}
19: DSBLRX(Ap1:p2,p1:p2);
20: end if
21: end for
22: end for
23: end for

This trade-off between the kernel granularities and performance
has been tackled using a grouping technique, which is the subject
of the next Section.

7. THE GROUPING TECHNIQUE
The concept of the grouping technique is straightforward. This

technique has been applied to both stages, as presented in the next
sections.

7.1 Grouping the Kernels From the First Stage
In the first stage, the grouping technique consists of aggregating

different data tiles as well as the computational kernels operating
on them, in order to build a super tile where the data locality may
be further enhanced. Figure 6 shows the super tiles of size 2 dur-
ing the third step of the reduction to symmetric band form. The
kernels operating on those super tiles are actually a combination of
the kernels previously introduced in Section 6.1. For instance, in
Figure 6(a), the single call to the xTSMQRLR-s kernel on the dark
gray super tiles will be internally decoupled by multiple calls to the
xTSMQR and xTSMQRLR kernels. In the same manner, in Fig-
ures 6(b) and 6(c), the single calls to the xTSMQR-s kernel variants
(i.e., left transposed and right updates) on the dark gray super tiles
will be internally decoupled by multiple calls to the correspond-
ing xTSMQR kernel variants. Therefore, applying the grouping
technique during the first stage permits us to obtain a small matrix
bandwidth size, while, at the same time, increasing the data reuse
in order to compensate, the eventual performance losses by running
finer-grained kernels.

7.2 Grouping the Kernels From the Second Stage
Following the same principles, Figure 7 describes the grouping

technique applied during the second stage to further improve the
data locality and the cache reuse. This can actually be considered as
a second level of grouping, the first one already being nested within
the kernel implementations, by aggregating and fusing the different



(a) xTSMQRLR-s. (b) xTSMQR-s: left
transposed updates.

(c) xTSMQR-s:
right updates.

Figure 6: Grouping technique during the first stage using super
tiles of size 2.

orthogonal transformations within a single data block (as explained
in Section 6.2). The group size then becomes a critical parameter
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Figure 7: Grouping technique during the second stage.

to tune and it is specific for each stage. It is obvious to envision that
a small group size will reduce the impact of the data locality and
increase the parallelism, while a larger group size will increase the
data locality at the expense of decreasing the degree of parallelism.
A detailed analysis of the impact of the grouping technique for the
first and second stages is presented later in Sections 9.2 and 9.3,
with performance comparisons against the equivalent functions in
the state-of-the-art numerical libraries.

As a consequence, along with the data locality aspect, thread lo-
cality is yet another feature which needs to be taken into account to
achieve parallel performance, and is described in the next section.

8. PARALLEL IMPLEMENTATION DETAILS
This Section first recalls the dynamic runtime system environ-

ment QUARK used to schedule the different kernels from the first
and second stage using a thread locality mechanism. It also ex-
plains how the new function dependency tracking helps to simplify
the actual data dependencies of our tile two-stage TRD (PLASMA-
DSYTRD).

8.1 The Dynamic Runtime System Environ-
ment QUARK

Restructuring linear algebra algorithms as a sequence of tasks
that operate on tiles of data can remove the fork-join bottlenecks
seen in block algorithms (as seen in Section 4). This is accom-
plished by enabling out-of-order execution of tasks, which can hide
the work done by the bottleneck (sequential) tasks. In order for the
scheduler to be able to determine dependencies between the tasks,
it needs to know how each task is using its arguments. Arguments
can be VALUE, which are copied to the task, or they can be IN-

PUT, OUTPUT, or INOUT, which have the expected meanings. Given
the sequential order that the tasks are added to the scheduler, and
the way that the arguments are used, we can infer the relationships

between the tasks. A task can read a data item that is written by
a previous task (read-after-write RAW dependency); or a task can
write a data item that is written by a previous task (write-after-write
WAW dependency); a task can write a data time that is read by a
previous task (write-after-read WAR dependency). The dependen-
cies between the tasks form an implicit DAG, however this DAG
is never explicitly realized in the scheduler. The structure is main-
tained in the way that tasks are queued on data items, waiting for
the appropriate access to the data. The tasks are inserted into the
scheduler, which stores them to be executed when all the depen-
dencies are satisfied. That is, a task is ready to be executed when
all parent tasks have completed. Since we are working with tiles
of data that should fit in the local caches on each core, we have
the ability to hint the cache locality behavior. A parameter in a
call can be decorated with the LOCALITY flag in order to tell the
scheduler that the data item (parameter) should be kept in cache if
possible. After a computational core (worker) executes that task,
the scheduler will assign, by default, any future task using that data
item to the same core. Note that the work stealing can disrupt the
by-default assignment of tasks to cores.

8.2 Translating Data Dependencies to Func-
tions Dependencies

For the first stage (reduction from dense to band form), the data
dependencies are tracked using QUARK, which analyzes the pa-
rameter directions (i.e., VALUE | INPUT | OUTPUT | INOUT) pro-
vided for each task and appropriately determines the order of task
scheduling. The second stage (reduction from band to tridiagonal
form) is probably one of the main challenging algorithms, when
it comes to tracking data dependencies. Indeed, the bulge chasing
algorithm proceeds to the next step column-by-column rather than
tile-by-tile like in the first stage (Figure 2). As opposed to the first
stage, the kernels may thus span over portions of several tiles (one,
two or three). Moreover, the subsequent sweeps will generate tasks,
which will partially overlap tasks from previous sweeps, and this is
where the challenge is inherent. To our knowledge, there are no
runtime frameworks available which properly handle overlapping
region hazards. Luszczek et al. [23] proposed a data dependency
layer (DTL) to handle those data dependencies and to provide cru-
cial information to the runtime to achieve the correct scheduling.
This layer will basically lock a tile as soon as a single task tries to
access it in order to prevent other tasks from acquiring it at the same
time, even though the region requested by the latter task may be dis-
joint from the one operated by the original task. DTL provides a
systematic mechanism to handle data dependencies in the presence
of overlapping regions, and it may thus unnecessarily lock data tiles
in situations where it should not. Therefore, we have investigated
a new tracking technique based rather on function dependencies,
which is very suitable for the problem we are trying to solve. Not
only does it allow several kernels to access the same data tile but
also it drastically simplifies the tracking of the data dependencies
and reduces the corresponding analysis overhead of the runtime.
To understand how the function dependency technique works, let
us recall the previous notation T sw

me from Section 6.2, where me is
the task identifier within the sweep sw. Then, we should differenti-
ate two types of dependencies:

• Dependencies within a sweep:
The analysis of the bulge chasing algorithm highlights the
fact that the tasks of a single sweep are purely sequential.
Thus, within a single sweep j, a task T j

me has to return before
the task T j

me+1 can be scheduled, e.g., from Figure 4, a green
task can not start before the previous blue task finishes.



• Dependencies between sweeps:
Now, when can a task from the subsequent sweeps start?
From Figure 5, T 2

1 overlaps portions of T 1
1 , T 1

2 and T 1
3 and

can run once the latter tasks are finished. Therefore, the
task T j

me can be scheduled only when the tasks T j−1
me , T j−1

me+1,

T j−1
me+2 have been completed.

From the different dependencies described above, we can com-
bine them and induce a general definition as follows:

DEFINITION 8.1. The complete elimination of a column at a
sweep“ j” of the symmetric band matrix, can be viewed as a set of
tasks where each task represents one of the three kernels introduced
in Section 6.2. Each task is assigned an identifier “me” following
an ascending order starting from “1” at the beginning of a sweep.
The data dependencies of a particular task “me” can be translated
to function dependencies, such that the task T j

me will only depend
on two tasks, T j

me−1 and T j−1
me+2.

Once generated by each task, the two function dependencies will
be turned over to QUARK, which will consider them in return as
simple dependencies and will accordingly schedule the different
tasks. Definition 8.1 actually also helps to distinguish potential
parallelism opportunities in the second stage. Indeed, interleaving
tasks from subsequent sweeps may not only increase the data local-
ity but also the degree of parallelism at the same time. For instance,
from Figure 5, the set of tasks T 3

1 , T 2
4 and T 1

7 are completely dis-
joint and can concurrently run, although the impact on the overall
performance may be moderate.

However, there exists a discrepancy between the dependency
policies of the first stage (data dependencies) and the second stage
(function dependencies) and the next section explains how the issue
has been resolved.

8.3 Tracking Data Dependencies Between the
Two Stages

Since different dependency tracking mechanisms have been used
for the first and the second stage, a sort of dependency homoge-
nization needs to be set up in order to be able to run tasks from
both stages in an out-of-order fashion without a barrier or a syn-
chronization point between them.

From Definition 8.1, it turns out that the only dependency nec-
essary to bridge both stages is to create function dependencies be-
tween the tasks of the first sweep “only” with the corresponding
tasks of the first stage. One can easily derive the following depen-
dency formula using the task identifier “me” of the first sweep tasks
(from the second stage) to determine the coordinates of the data tile
(from the first stage) it is linked to:

1: if (I am from the first sweep (T 1
: )) then

2: if (mod(me,2) == 0) then
3: related_step = me/2
4: else
5: related_step = (me+1)/2
6: end if
7: end if

As a result, all the tasks of the first sweep (T 1
: ) in the bulge chas-

ing procedure depend on their corresponding tiles
Arelated_step+1,related_step from the first stage. This crucial informa-
tion will be handed to QUARK, which will then ensure tasks form
both stages can actually overlap whenever possible.

9. PERFORMANCE RESULTS
This Section presents the performance comparisons of our tile

two-stage TRD against the state-of-the-art numerical linear algebra
libraries.

9.1 Experimental Environment

9.1.1 Hardware and Software Description
Our experiments have been performed on the largest shared-memory

system we could access at the time of writing this paper. It is repre-
sentative of a vast class of servers and workstations commonly used
for computationally intensive workloads. It clearly shows the in-
dustry’s transition from chips with few cores to tens of cores; from
compute nodes with order O(10) cores to O(100) designs, and from
Front Side Bus memory interconnect (Intel’s NetBurst and Core
Architectures) to Non-Uniform Memory Access (NUMA) and cache
coherent NUMA hardware (AMD’s HyperTransport). It is com-
posed of eight AMD Opteron(tm) Processor, 8439 SE of six cores
(48 cores total), each running at 2.81 GHz with 128 GB of mem-
ory. The total number of cores is evenly spread among two physical
boards. The cache size per core is 512 KB. All the computations
are done in double precision arithmetics. The theoretical peak for
this architecture in double precision is 539.5 Gflop/s (11.2 Gflop/s
per core).

There are a number of software packages that implement the
tridiagonal reduction. For comparison, we used as many as we
were aware of, and here we briefly describe each one in turn. LA-
PACK [4] is a library of Fortran 77 subroutines for solving the most
commonly occurring problems in dense matrix computations. LA-
PACK can solve systems of linear equations, linear least squares
problems, eigenvalue problems and singular value problems. The
equivalent routine name performing the tridiagonal reduction is
DSYTRD. LAPACK has been linked with the optimized Intel MKL
BLAS V10.3.2 to support parallelism. ScaLAPACK [7, 13] is a
library of high-performance linear algebra routines for distributed-
memory message-passing MIMD computers and networks of work-
stations supporting PVM [18] and/or MPI [17]. It is a continua-
tion of the LAPACK project, which designed and produced analo-
gous software for workstations, vector supercomputers, and shared-
memory parallel computers. The other extension to LAPACK is
that ScaLAPACK uses a two-dimensional block cyclic distribution,
which improves the memory locality. The reference implementa-
tion of the SBR Toolbox [6] provides an equivalent routine for the
tridiagonal reduction, named DSYRDD. This routine is actually a
driver, which automatically tunes the successive reductions. It is
also linked with the optimized MKL BLAS V10.3.2 to achieve par-
allelism. MKL (Math Kernel Library) [1] is a commercial software
from Intel that is a highly optimized programming library. It in-
cludes a comprehensive set of mathematical routines implemented
to run well on multicore processors. In particular, MKL includes
a LAPACK-equivalent interface that allows for easy swapping of
the LAPACK reference implementation for the MKL by simply
changing the linking parameters. The SBR Toolbox interface is
also available in MKL, under the name DSYRDB. We recall that
the algorithmic complexity of the standard full tridiagonal reduc-
tion is 4

3 N3.

9.2 Tuning the Group Size
One of the key parameters to tune is the group size. It corre-

sponds to a trade-off between the degree of parallelism and the
amount of data reuse. Figure 8 shows the effect of the group size
for each computational stage for a matrix size N= 12000 using 48
cores. For the first stage, a large group size impedes the task-based



parallelism, and thus significantly increases the elapsed time. How-
ever, it does not really affect the second stage since this stage does
not expose parallelism enough anyway. For this particular matrix
size, the optimized super tile size for the first stage is 2 and the
optimized group size for the second stage is 8, respectively.
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Figure 8: Effect of the group size on both stages for a matrix
size N= 12000 using eight socket hexa-core AMD Opteron (48
cores total).

9.3 Tuning the Tile Size
The tile size is yet another critical parameter to tune. We present

below how different the optimized tile sizes are for each stage.

9.3.1 Performance Comparisons of The First Stage
Table 1 shows timing comparisons in seconds of the first stage

(reduction from dense to band) using 48 cores, with and without the
task grouping technique, while varying the tile size. The elapsed
time dramatically increases as the tile size gets smaller when the
grouping technique is disabled. Enabling the grouping technique
enhances the cache reuse, minimizes the overhead of the scheduler
by tracking less data dependencies and thus, significantly decreases
the elapsed time of the first stage. Figure 9 highlights the scal-
ability of the first stage (PLASMA-DSYRBT) when the number
of cores increases. We compare our first stage procedure against
the equivalent function from the SBR toolbox using the optimized
tile size reported in Table 1 i.e., NB= 160. Our implementation
of the first stage scales reasonably, thanks to the increased paral-
lelism degree brought by tile algorithms. Although this stage is
very compute-intensive, the equivalent SBR function to reduce the
symmetric dense to band form does not scale at all, surprisingly,
mainly due to the overhead of the nested-parallelism within the
fork-join paradigm.

Second w/o grouping with grouping
stage 4k 8k 16k 20k 24k 4k 8k 16k 20k 24k

NB= 160 1.6 6.9 32 54 88 1.6 6.8 32 55 88
NB= 80 2.6 10.1 54 92 125 1.3 5.6 32 56 92
NB= 40 14.2 243 780 * * 2.0 8.4 46 84 132

Table 1: Impact in seconds of the grouping technique on the
first stage using eight socket hexa-core AMD Opteron (48 cores
total). (* means >2000).

9.3.2 Performance Comparisons of The Second Stage
Table 2 presents timing comparisons in seconds of the second

stage (reduction from band to tridiagonal form), with and without
the grouping technique, using different tile sizes. The elapsed time
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Figure 9: Performance comparisons of the first stage with a
matrix bandwidth size NB= 160.

of the second stage without the grouping technique is roughly di-
vided into 12 when the grouping technique is enabled. However,
extracting parallelism from this the bulge chasing is very chal-
lenging because of its memory-bound and strong sequential nature.
Figure 10 shows the scalability of the second stage (PLASMA-
DSBTRD) against the equivalent routines from the SBR toolbox
and MKL using 6 and 48 cores. While our implementation shows
some limitations in scaling, the SBR and MKL implementations
clearly present extremely poor scaling.

Second w/o grouping with grouping
stage 4k 8k 16k 20k 24k 4k 8k 16k 20k 24k

NB= 160 6.6 15 54 123 161 5.1 11 30 46 61
NB= 80 5.2 20 148 124 214 3.4 7.3 23 35 50
NB= 40 12 69 162 434 357 2.8 7.3 23 36 53

Table 2: Impact in seconds of the grouping technique on the
second stage using eight socket hexa-core AMD Opteron (48
cores total).
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Figure 10: Scalability limitations of the second stage.

9.4 Performance Comparisons of The Overall
Tile Two-Stage TRD

Figure 11 shows the performance of the overall tile two-stage
TRD (PLASMA-DSYTRD) when using different NB = 160 | 80 | 40.
It turns out that the optimized empirical tile size for the whole re-
duction is NB = 80, which is similar to the one from the second
stage. This confirms the importance of the bulge chasing proce-
dure in the overall algorithm. In other words, close attention to the
second stage with an appropriate tuning of the tile size is neces-
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Figure 11: Effect of the tile size on the overall performance
of PLASMA-DSYTRD using eight socket hexa-core AMD
Opteron (48 cores total).

sary to extract high performance from the overall algorithm. Fig-
ure 12 describes the performance comparisons of our tile two-stage
TRD against the equivalent functions, optimized accordingly, from
the state-of-the-art numerical libraries. Namely, (1) the DSYTRD
routine from LAPACK reference, (2) the DSYRDD function from
SBR toolbox, both linked with Intel MKL BLAS, (3) the DSYTRD
routine from the vendor Intel MKL library, (4) the Intel MKL im-
plementation of the DSYRDB routine from the reference SBR tool-
box, (5) the PDSYTRD routine, which is the distributed version of
LAPACK DSYTRD, from the vendor Intel MKL library of ScaLA-
PACK and finally, (6) the two-stage TRD from [23]. The best
grouping sizes for the first and the second stages, as well as the
tile size have been empirically selected for each matrix size. For
a 24000× 24000 matrix size, the group sizes for the two stages
are equal to 2 and 8, respectively and the optimized tile size is
NB = 80, as mentioned above. Our implementation asymptotically
achieves a 2-fold speedup against the Intel MKL implementation
of the SBR toolbox routine, using only the new fine-grained and
memory-aware kernels (w/o grouping) and is slightly lower than
the previous implementation in [23]. After enabling the group-
ing technique, the new computational kernels take advantage of
the data locality enhancement and at the same, the runtime system
overhead is considerably reduced. PLASMA-DSYTRD asymptoti-
cally scores a 50-fold speedup against the LAPACK reference rou-
tine, a 12-fold speedup against the Intel MKL DSYTRD and the
SBR reference implementation, and a 7-fold speedup against the
Intel MKL implementation of the SBR toolbox routine. Calcu-
lating the eigenvalues (e.g., with a divide-and-conquer approach)
from the tridiagonal form is an O(N2) complexity and therefore, the
performance curves in Figure 12 would drop slightly (up to 5%).

9.5 Scalability
Figure 13 shows the performance scalability of PLASMA-DSYTRD

on 48 cores. Our implementation scales perfectly up to 24 cores
and the performance then starts to deteriorate. This is mainly due
to (1) the scalability limitations of the second stage, as pointed out
earlier in Figure 10, and (2) the NUMA design, especially when the
cores are located on one physical board and initiate data requests
to the other remote physical board; those data requests consistently
happen during the second stage.

10. SUMMARY AND FUTURE WORK
This paper describes an efficient implementation of PLASMA-

xSYTRD on the latest generation of shared-memory systems we
could access. The symmetric dense matrix is reduced using a two-
stage approach on top of tile data layout, where the tile matrix is

Figure 12: Performance comparisons of PLASMA-DSYTRD
against the state-of-the-art numerical libraries using eight
socket hexa-core AMD Opteron Processors (48 cores total).
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Figure 13: Performance scalability of PLASMA-DSYTRD.

first reduced to symmetric band form prior to the final condensed
structure. The authors have developed high performance new fine-
grained and memory-aware kernels, tightly coupled with the dy-
namic runtime environment system QUARK. They have further
leveraged the overall performance thanks to the grouping technique
as well as the use of function dependencies, which simplifies the
complex data dependencies between the different tasks from both
stages. The PLASMA-xSYTRD performance reported in this pa-
per is unprecedented. Our implementation results in up to a 50-fold
improvement compared to the equivalent routine from LAPACK
V3.2 and Intel MKL V10.2 on an eight socket hexa-core AMD
Opteron multicore shared-memory system (48 cores total) with a
matrix size of 24000×24000. It is worth mentioning that the over-
all performance of PLASMA-xSYTRD (130 Gflop/s) represents
only a small fraction of the machine’s theoretical peak, roughly
25%. But considering the memory-bound nature of the second
stage, the performance obtained is actually very encouraging and
exceeds the expectation for this type of algorithm. The computa-
tion of the eigenvectors is the next milestone the authors will be
looking at, along with the natural extension to the bidiagonal and
Hessenberg reductions, which are the first processing step toward
computing the singular value decompositions and the eigenvalues
of a non-symmetric matrix, respectively. Last but not least, the
authors believe that understanding the challenges involved when
implementing such an application on a shared-memory system is
critical before tackling the distributed environment, although the
last generation of shared-memory machines, like the one used in
our experiments, emulates to some extent, the distributed context.
A future distributed implementation will eventually be integrated
into the DPLASMA library [8].
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