
Parallel Performance Measurement of
Heterogeneous Parallel Systems with GPUs

Allen D. Malony∗, Scott Biersdorff∗, Sameer Shende∗, Heike Jagode†, Stanimire Tomov†, Guido Juckeland‡,
Robert Dietrich‡, Duncan Poole§ and Christopher Lamb§

∗University of Oregon, Eugene, Department of Computer and Information Science
†University of Tennessee, Knoxville, Innovative Computing Laboratory (ICL)

‡Technische Universität Dresden, Center for Information Services and High Performance Computing (ZIH), Germany
§NVIDIA Corporation, Santa Clara, CA

Abstract—The power of GPUs is giving rise to heterogeneous
parallel computing, with new demands on programming envi-
ronments, runtime systems, and tools to deliver high-performing
applications. This paper studies the problems associated with per-
formance measurement of heterogeneous machines with GPUs.
A heterogeneous computation model and alternative host-GPU
measurement approaches are discussed to set the stage for re-
porting new capabilities for heterogeneous parallel performance
measurement in three leading HPC tools: PAPI, Vampir, and the
TAU Performance System. Our work leverages the new CUPTI
tool support in NVIDIA’s CUDA device library. Heterogeneous
benchmarks from the SHOC suite are used to demonstrate the
measurement methods and tool support.

I. INTRODUCTION

Disruptive parallel technologies, both hardware and soft-
ware, will invariably cause ripple effects, if not shock waves,
through the high-performance computing (HPC) landscape,
as other HPC components, methods, and applications adjust,
compensate, or retarget in response. Such is the case with
general purposal GPUs (GPGPUs) and heterogeneous parallel
computing. The rapid ascent of GPU computing has unleashed
a tiger whose tail HPC is struggling to hold on through
zealous research and development in heterogeneous systems
architecture, compiler frameworks for manycore parallelism,
massively concurrent parallel libraries and runtime systems,
and heterogeneous programming environments. Indeed, it is
the inherent computing power of GPUs that is driving next-
generation tools to deliver solutions that can realize their
high performance potential. Tools for parallel performance
instrumentation, measurement, and analysis are no exception.

Presently, HPC performance tools are adequately meeting
the analysis requirements for scalable parallel systems built
from homogeneous multicore shared-memory nodes and pro-
grammed using MPI and OpenMP. While increasing CPU
multicore concurrency is stressing performance tool engineer-
ing for these environments, massive parallelism combined
with heterogeneous computation presents an even greater
challenge. It is naı̈ve to believe a simple tool retrofit will solve
the problem for two reasons: 1) the heterogeneous parallel
computation model is different in fundamental ways and this
must be addressed in the performance tool, and 2) there is a
dependency on necessary support in the GPU hardware and

software to expose performance events and data to the tool
measurement infrastructure.

The research reported here describes important initial efforts
to incorporate new methods and capabilities for heterogeneous
parallel performance measurement in three leading HPC tools:
PAPI [1], Vampir [2], and the TAU Performance System R© [3].
What makes the work unique is the integration of a new
performance tool interface developed as part of NVIDIA’s
GPU device library. The paper begins in Section §II with a de-
scription of the heterogeneous execution model being targeted
by the tools. This model forms the basis of the measurement
approach, presented in Section §III. Our development within
each tool is discussed in Section §IV, along with a description
of the NVIDIA CUDA performance tools interface (CUPTI).
Section §V gives illustrative examples from the NVIDIA SDK
and the SHOC benchmarks [4] as well as the CUBLAS [5]
and MAGMA [6] libraries which are used to demonstrate the
different execution scenarios that can be encountered. The
paper concludes with a summary of results and a discussion
of future directions.

II. HETEROGENEOUS COMPUTATION MODEL

A heterogeneous computing architecture based on GPUs
can be characterized as a scalable cluster of shared memory
nodes with multicore processors and PCI-attached GPUs,
interconnected by a high-performance network fabric for
fast, high-bandwidth inter-node communication; see Figure 1.
Heterogeneous computation with this architecture involves
three general types of operational interactions. First, there
are the interactions between nodes that take place through
communication between processes. These involve libraries that
implement message passing or global address space semantics.
Second, there are the intra-node interactions between threads
of execution as part of the node’s CPU multicore parallel exe-
cution. These involve shared memory programming and multi-
threaded runtime systems. Lastly, there are the interactions
between a node’s CPUs and the attached GPU devices. These
involve DMA memory transfers to/from the GPU device over
a PCI bus, launching of GPU kernels, and other functions
provided by the device and driver libraries supporting the
operations.

���������������	
������

����� �����

��� ��� ���

����������	�

�	���

��� ��� ���

�
��

Fig. 1. Architecture of a heterogeneous computer system.

Ideally, we want parallel performance tools to provide a
comprehensive heterogeneous performance perspective that
represents the different operational aspects of the computation
in a unified way. In contrast to existing performance tools
for “homogeneous” parallel systems, what distinguishes the
challenge in a heterogeneous environment is how the GPU
performance and CPU-GPU interactions are observed and
represented in the context of the overall application. Thus, if
we can focus on the technical aspects of accurately capturing
the GPU performance data and associating it with node-level
parallel execution, then we can leverage existing support for
scalable performance measurement and analysis to provide a
complete solution.

A. CPU-GPU Operational Semantics

It is convenient to abstract the use of GPUs as an accelerator
for executing tasks that would otherwise execute on the host
(i.e., a node CPU). Each task is set up, launced, executed
by the GPU, and finalized. There can be multiple tasks in
execution on one or more GPUs. From this perspective, a
performance observation model for task-based execution might
try to establish when the tasks started and finished, their
execution time and other performance data, and the overhead
for set up and finalization.

Now, if we take a more physical perspective, GPUs as
hardware accelerators are controlled by a host CPU which
handles data movement between the disjoint memory locations
of the two and instructs the GPU to execute kernels that
exploit its manycore data parallelism. The controlling process
(or thread) will bind against one available GPU device, transfer
the necessary input data into the device memory, launch one
or multiple kernels, and copy the results back [7]. Figure 2
portrays these basic operations for different scenarios.

When a GPU kernel is launched, the device executes its
work asynchronously to the host processor. Launching a GPU
kernel is technically just an enqueuing of a function pointer
into a list of kernels to run on the GPU. The GPU device
interfaces are typically non-blocking, allowing a CPU to
launch/enqueue multiple kernels one after another which will
then be executed in sequential order. This asynchronous nature
of the GPU interaction also applies to the data transfers.

In addition, it is possible for multiple GPU kernels to
be launched and be in execution concurrently. The technical
realization of this concurrency for NVIDIA GPUs is done

����
����
�	
��

�

����������� ��������� ���������������� ���������

�������������

��������������������������������� ���

����
����
�	
��

�

����������� ��������� ���������������� ���������

�������������

 ���

�������������

��������������� ��������� ���������������� ���������

!������"
!������#

����
 �����
�	
��"�

��"

����������� ��������� ���������������� ���������

�������������

 ���

����

���

����������� ��������� ���������������� ���������

�������������

 �����
�	
����

����� �����

Fig. 2. Timelines for different CPU-GPU scenarios. Top: single thread, 1
kernel with 1 GPU; Middle: single thread, 2 kernels with 1 GPU; Bottom:
multiple kernels and GPUs.

by introducing multiple execution streams that are simply
independent kernel execution queues. The GPU hardware
scheduler then picks the kernel from the top of each queue and
tries to run them concurrently, balancing the resources between
the concurrent streams. This naturally translates to multiple
GPU devices being in use simultaneously under control of
multiple CPU threads. Figure 2 portrays these two scenarios.

B. Heterogeneous Execution and Performance

In a heterogeneous parallel program, the GPU-accelerated
task execution as described above is happening concurrently
with the other inter-node and intra-node parallelism in the
application. A problem domain can be split so that the
CPU cores, using one form of multi-threading (OpenMP or
pthreads) and the GPU are working on different parts of
the domain at the same time. Furthermore, multiple servers
offering GPU acceleration can also do a coarse domain de-
composition and use underlying fine-grained decomposition
offered by multi-threading and/or GPU acceleration. A couple
of technical difficulties make this approach not as straightfor-
ward as one would expect. First, in a multi-threaded program
each thread can bind against the same GPU device, but
will receive a different context, limiting interaction. Second,
communication of data between GPU devices in different
physical hosts now requires three steps: moving the data from
device memory to host memory of the sending host, send the
data to the receiving host, and moving the data from host
memory to device memory on the receiving host.

Our objective is to characterize the heterogeneous execution
performance to evaluate several concerns:
• GPU kernel execution. Performance data characterizing

how a kernel executed on the GPU hardware can provide

feedback for kernel optimization.

• Host-GPU interactions. Measurements of kernel set up,
memory transfer times, concurrency overlap, and syn-
chronization waiting enable calculations of host overhead
and efficiency.

• Intra-node execution. Here we are capturing perfor-
mance metrics to evaluate shared-memory multi-threaded
execution with respect where and what threads are doing
(e.g., routines) and their interactions (e.g., coordination).

• Inter-node communication. Observed performance in-
cludes communication times, overheads, and synchro-
nization effects.

We can regard these as layered performance perspectives in
a heterogeneous environment. However, to create a compre-
hensive heterogeneous performance measurement solution we
must not only support these performance perspectives, but also
their integration.

Developing tool support for the first two perspectives is
complicated by two factors: the lack of visibility in the GPU
for kernel measurement and the asynchronous concurrency
that exists between the CPU and GPU. Our work attempts
to resolve these problems.

III. HOST-GPU MEASUREMENT APPROACHS

In measuring GPU performance and host-GPU interactions,
there are three sources of information potentially available to
us:
• GPU programming language. CUDA [8] and

OpenCL [9] are the emerging standards for software
development on GPUs, providing language syntax and
APIs to express kernels and perform GPU operations.
Each contains support for observing events associated
with GPU use, primarily kernel execution.

• GPU driver. The driver library provided by the GPU
manufacturers implement the GPU device interface. If
this interfaces is accessible by tools, it makes visible host-
to-device operations, as well as provides access to internal
data that would be useful for tracking performance.

• GPU device. The GPU device typically includes support
for hardware performance measurements. Using mecha-
nisms to query this data can make it possible to associated
GPU metrics with kernel execution. interface.

All three of these sources are useful and together would
provide substantial data. However, performance tools must
work with what is available to them on a particular platform
and this can restrict the coverage.

In considering the methods developed in this paper, it is
convenient to simplify the GPU execution model as follows:

1) User code is executed on a GPU device in the form of
kernels which run without access to direct performance
information.

2) A given device can be logically divided into streams
of execution and in each stream kernels are executed
sequentially in a pre-determined order.

3) Each kernel is executed after an associated kernel launch
that runs on the CPU. These launches also execute in the
same sequence as do the kernels (though not necessarily
at the same time).

With these assumptions, we explore three methods for observ-
ing the state of the GPU before and after kernels are executed
on these devices. Without loss of generality, we will consider
only the measurement of execution time.

���

���

����	
��
��
�

�
��
�

����

���	�
�����

Fig. 3. Synchronous method timeline. Measurements are made on the CPU
by recording events before kernel launch and after synchronization. Shaded
area represents the execution time.

A. Synchronous method

Consider the measurement timeline in Figure 3. The validity
of the time measurement is predicated on when the kernel
begins and when it ends. We use the term “synchronous” to
indicate that it is the CPU (host) who is observing the begin
and end events, as denoted by the diamonds in the figure. If the
host immediately waits on kernel termination after launch, its
kernel measurement is, in effect, synchronized with the kernel
execution. In this case, the measurement method is equivalent
to measuring a subroutine call.

In essence, a synchronous approach assumes the kernel
will execute immediately, and the interval of time between
the begin and end events will accurately reflect kernel per-
formance. Unfortunately, this assumption is overly restrictive
and leads to inaccuracies when more flexible modes of kernel
execution are used. As the figure suggests, the host need not
block after kernel launch and it can be a long time before it
is synchronized with the kernel, resulting in poor estimates
of actual kernel execution time. Moreover, multiple kernels
can be launched into a stream or multiple streams before a
synchronization point is encountered.

The benefit of a synchronous approach is that it does not
require any additional performance measurement mechanisms
beyond what is presently available. Also, interestingly, syn-
chronous measurement is fine to use when the GPU program-
ming utilizes a synchronous library such as CUBLAS. Since
the kernels are hidden by the library, putting begin and end
events before and after the CUBLAS routine call provides a
reasonable estimate of the library’s performance.

B. Event queue method

The main problem with the synchronous approach is that
the kernel execution is measured indirectly, not by the GPU.

��������	
�	�

�	
�	�

��
�	�	�
��	��

��	��

��
�	�	�
��	��

��	��

�	��
��	���

����

�����
�����

���

���

Fig. 4. Event queue method timeline. Measurements are made on the event
kernels placed in the same stream as the computational kernel. Shaded area
represents the measured execution time.

Consider a special type of kernel called an event kernel which
will record the state of the GPU when it is executed. If we
could inject an event kernel into the stream immediately before
and after the computational kernel, it would be possible to
obtain performance data more closely linked with kernel begin
and end. The “event queue” method is portrayed in Figure 4.
While it is the responsibility of the host to generate the event
kernels, queue them into the stream, and read the results, it is
the underlying GPU device layer that will take responsibility
for making the measurement.

In theory this method works well. It adequately addresses
the case where multiple kernels are launched in a stream, if
each is wrapped by an associated event kernel they are all
accounted for even if the synchronization point is not until
much later. However, there are a few practical downsides.
First, it relies entirely on the device manufacture to provide
support for the event kernel concept. The notion of events is a
part of both the CUDA and OpenCL specification. However,
restrictions on how events can be used and what performance
information is returned is implementation dependent. Second,
it still requires explicit participation on the part of the host
read back the events and process them. The application code
will need to be modified in some form for this purpose,
although it is possible to hide the changes through automatic
instrumentation or library wrapping. Third, if timestamps are
used to merge GPU events with CPU events for purposes of
performance tracing, the times will need to be synchronized
between host and device [10], as the the GPU device has a
different internal clock frequency than the host.

���

���

����	
��
��
�

�
��
�

�
����
��
������	�

������	�������	�

Fig. 5. Callback method timeline. Registered callbacks are triggered by GPU
actions, allowing more tightly couple measurements to take place.

C. Callback method

A third method relies on a mechanism in the device layer
that triggers callbacks on the host for registered actions, like

the begin and end of kernel execution. The “callback” method
portrayed in Figure 5 suggests that more immediate kernel
performance measurement is possible since control can be
given directly to a CPU process via the callback. It is also more
flexible since a wider range of callbacks might be provided,
and performance measurement can be specific to callback type.
The process of callback registration makes it possible to avoid
code modification at locations of kernel launch in the appli-
cation. Clearly, a callback method is dependent on the device
manufacturer to provide support in the device layer and even
the GPU hardware. It is important, that the implementation
ensures an immediate callback before and after the kernel’s
execution to provide accurate timing information.

D. Method support and implementation

The three approaches attempt to abstract host-GPU mea-
surement methods for purposes of comparing alternatives.
Whether the methods are effective for heterogeneous perfor-
mance measurement depends on how well they are supported
within GPU languages and devices, and how complex it is to
integrate them with performance measurement tools.

1) Synchronization method: The synchronization method is
trivial to implement in both CUDA and OpenCL since their
programming models define kernel launching and synchro-
nization semantics and mechanisms. It is simply a matter of
constructing the measurement instrumentation correctly.

2) Event queue method: The event queue method is avail-
able in both CUDA and OpenCL. The CUDA Event interface
which provides the GPU timestamp when the event is queued.
In its present implementation, the CUDA Event interface
only works on one stream of execution that encompasses the
entire device, making it unable to measure the performance of
kernels that execute simultaneously.

In OpenCL, the clGetProfilingInfo interface im-
plements the event queue method. Here, information about
a kernel can be obtained via clEvents objects which are
activated with a kernel launch.

3) Callback method: The callback method is only available
at the language level in the OpenCL specification 1.1 (tested
in paper with a developer restricted NVIDIA driver) via the
clSetEventCallback interface. However, it should be
noted that the OpenCL specification [9] leaves undefined
certain behavior of this interface that can potentially affect
performance measurement. Specifically, it states (see section
5.9) that:

• The registered callback function will be called
when after the execution status of command
associated with event changes to the execution
status specified by command_exec_status.

• Each call to clSetEventCallback registers
the specified user callback function on a call-
back stack associated with event. The order in
which the registered user callback functions are
called is undefined.

Thus which command_exec_status is allowed and the
order in which callbacks are called is left to implementor of

the specification.
4) CUPTI: At the device level, NVIDIA is developing

the CUDA Performance Tool Interface (CUPTI) [8] to enable
the creation of profiling and tracing tools that target CUDA
applications. CUPTI provides two APIs, the Callback API and
the Event API. The Callback API allows you to interject tool
code at the entry and exit to each CUDA runtime and driver
API call. The CUPTI Event API allows the tool to query,
configure, start, stop, and read the event counters on a CUDA-
enabled device. Using these CUPTI APIs, profiling and tracing
tools can gain insight into the CPU and GPU behavior of
CUDA applications. CUPTI is delivered as a dynamic library
on all platforms supported by CUDA.

The next section discusses how these approaches are inte-
grated in the performance tools PAPI, Vampir, and TAU.

IV. HETEROGENEOUS PERFORMANCE TOOLS

Our working premise is that measurement methods for GPU
kernel execution and host-GPU interaction can be integrated
with existing parallel performance tools to create a heteroge-
neous performance measurement solution. The tools targeted
in this paper support performance counter measurement, pro-
filing, and tracing for scalable parallel applications, and are
generally representative of probe-based measurement systems.
Below we describe how these tools have incorporated the
GPU measurement methods presented in Section §III in their
implementation.

A. PAPI CUDA Component

The PAPI project aims to provide a consistent interface and
methodology for the measurement of hardware performance
information, which is not only available on most major micro-
processors, but also scattered across the chip and system [11],
[12]. The PAPI CUDA component is a hardware performance
counter measurement technology for the NVIDIA CUDA
platform which provides access to the hardware counters inside
the GPU. PAPI CUDA is based on CUPTI support in the
NVIDIA driver library. In any environment where the CUPTI-
enabled driver is installed, the PAPI CUDA component can
provide detailed performance counter information regarding
the execution of GPU kernels.

During use, the PAPI CUDA component invokes the CUDA
runtime routine cudaGetDevice() to get the ID of the cur-
rently used device. When a user is running an application on
a system that features multiple GPU devices, the PAPI CUDA
component gets the CUDA context for either the default device
or the device specified with cudaSetDevice() in the user’s
application. In order for PAPI to prevent termination in the
case a user starts PAPI before a CUDA context has been
created in the user’s application, PAPI creates a CUDA context
for the device returned from the cudaGetDevice() routine.
Having access to the correct CUDA context is important for
setting the PAPI counter control structure as well as for starting
/ stopping counters and writing / reading counter values to or
from the counters.

Within the PAPI CUDA component, initialization, device
management, and context management is enabled by the
CUDA driver API, while the domain and event management
is enabled by CUPTI.

Because there are different hardware counters associated
with different GPU devices, PAPI provides a utility called
papi_native_avail to list events available on a specific
GPU device. Table I lists a portion of the events that are
available on a system that features two different GPUs: a
GeForce GTX 480 (a member of the Fermi family) and a
Tesla C870 device. To efficiently differentiate similar or even
identical events on different devices, the name of the events
is established by a Component.Device.Domain.Event
hierarchy.

B. Vampir/VampirTrace

The Vampir performance analysis tool suite allows trace-
based performance analysis of MPI and/or thread-parallel
applications. The methodology consists of [2], [13], [14]:

1) instrumenting the source code of the application to be
studied and linking it with the VampirTrace library,

2) executing the instrumented application to generate a
detailed execution log (trace file), and

3) conducting post-mortem analysis of the trace file with
command line tools to generate execution profiles or
with the Vampir tool for timeline-based visualization of
the program execution combined with statistical profiles.

VampirTrace supports the event queue method with a library
wrapping approach for CUDA and OpenCL to generate log
information about GPU utilization [14], [10]. By intercepting
calls into the CUDA or OpenCL libraries, VampirTrace can
log the occurrence of these CUDA calls on the host and can
add more semantics in the trace file to the calls as needed by:
• creating a thread for each used GPU device (or stream in

case of concurrently running kernels),

• assigning a data transfer between host and device memory
with the same properties as an MPI message, so that the
log record can also hold the amount of data transfered
which can be used later on to calculate transmission rates
or message statistics, and

• enclosing asynchronous events like kernel launches and
asynchronous memory copies with CUDA events and use
these timestamps to log the tasks execution time on the
previously created GPU/stream thread.

This approach will produce perfectly valid trace files that
can be analyzed without changes to the visualization tool
Vampir. There are, however, two shortcomings to address.
First, the reuse/abuse of already existing metrics (MPI mes-
sages, threads) pollutes the statistics for those metrics with
the added GPU events. A workaround for this is the creation
of process/thread and message groups that can be individually
selected using the filter mechanism in Vampir. Second, the
introduced CUDA events are limited in how many can be
outstanding (not yet read) at any time.

TABLE I
A PORTION OF CUDA EVENTS AVAILABLE ON GEFORCE GTX 480 AND TESLA C870 DEVICES.

Event Code Symbol Long Description
0x44000000 CUDA.GeForce_GTX_480.gpc0.local_load # executed local load instructions per warp on a multiprocessor
0x44000001 CUDA.GeForce_GTX_480.gpc0.local_store # executed local store instructions per warp on a multiprocessor
0x44000002 CUDA.GeForce_GTX_480.gpc0.gld_request # executed global load instructions per warp on a multiprocessor
0x44000003 CUDA.GeForce_GTX_480.gpc0.gst_request # executed global store instructions per warp on a multiprocessor
0x44000004 CUDA.GeForce_GTX_480.gpc0.shared_load # executed shared load instructions per warp on a multiprocessor
0x44000005 CUDA.GeForce_GTX_480.gpc0.shared_store # executed shared store instructions per warp on a multiprocessor
0x44000006 CUDA.GeForce_GTX_480.gpc0.branch # branches taken by threads executing a kernel
0x44000007 CUDA.GeForce_GTX_480.gpc0.divergent_branch # divergent branches within a warp
0x4400000b CUDA.GeForce_GTX_480.gpc0.active_cycles # cycles a multiprocessor has at least one active warp
0x4400000c CUDA.GeForce_GTX_480.gpc0.sm_cta_launched # thread blocks launched on a multiprocessor
0x4400000d CUDA.GeForce_GTX_480.gpc0.l1_local_load_hit # local load hits in L1 cache
0x4400000e CUDA.GeForce_GTX_480.gpc0.l1_local_load_miss # local load misses in L1 cache
0x44000011 CUDA.GeForce_GTX_480.gpc0.l1_global_load_hit # global load hits in L1 cache
0x4400002e CUDA.Tesla_C870.domain_a.tex_cache_hit # texture cache misses
0x4400002f CUDA.Tesla_C870.domain_a.tex_cache_miss # texture cache hits
0x44000034 CUDA.Tesla_C870.domain_b.local_load # local memory load transactions
0x44000037 CUDA.Tesla_C870.domain_b.branch # branches taken by threads executing a kernel
0x44000038 CUDA.Tesla_C870.domain_b.divergent_branch # divergent branches within a warp
0x44000039 CUDA.Tesla_C870.domain_b.instructions # instructions executed

CUPTI callbacks for CUDA runtime and driver API func-
tions are an alternative for the VampirTrace library tracing
approach, which is currently used to get the runtime of
CUDA API functions. As the tested CUPTI implemenation
does not yet support kernel callbacks, the callback method
cannot be used to get timing information of CUDA kernels
in an asynchronous manner. However, performance counters
are accessed by VampirTrace via the CUPTI API, in order to
get more information about kernel execution. If this feature is
enabled, a synchronization is done after every kernel to gather
the performance counters and to ensure, that no other kernel
is running on the device, which could have an impact on the
counter values.

The limitations induced by the reuse of metrics is, however,
still an issue. This is a trace file format limitation and will
solved by the next generation infrastructure OTF2 and Score-
P [15].

C. TAU Performance System

TAU [3] provides scalable profile and trace measurement
and analysis for high-performance parallel applications. Dur-
ing the last two years, we first developed prototypes of TAU-
cuda that used synchronous and event queue approaches [16],
and then applied an experimental Linux device library from
NVIDIA which provided extensive callback capabilities [17].
Those efforts have now been translated into the current support
in TAU for CUDA and OpenCL described below.

TAU has tools for source instrumentation, compiler instru-
mentation, and library wrapping that allows CPU events to be
easily observed. In particular, they allow library wrapping of
the CUDA runtime/driver API and preloading of the wrapped
library prior to execution. Then, each call made to a runtime
or driver routine is intercepted by TAU for measurement be-
fore/after calling the actual CUDA routine. TAU library inter-
position happens dynamically with the Linux LD_PRELOAD
mechanism and can be used on an un-instrumented executable.
Such features are commonly used in other performance tools.
For instance, VampirTrace also applies the LD_PRELOAD

mechanism with the CUDA libraries [10]).
The cuLaunch or cudaLaunch function parameters do

not contain information about either the name of the kernel
being launched or the stream on which it will be executed. In
order to retrieve this information both TAU and VampirTrace
wrap the __cudaRegisterFunction call. This routine
is guaranteed to occur right before each kernel launch so
the information contained in its arguments can be applied
to the forthcoming cuLaunch/cudaLaunch (however
__cudaRegisterFunction can occur independently of
a subsequent kernel launch). Here, there is a small difference
between TAU and VampirTrace. TAU will only record the oc-
currences of a kernel if both __cudaRegisterFunction
and its associated launch are intercepted. VampirTrace on the
other hand will record the __cudaRegisterFunction
regardless and if a launch is not subsequently issued—the
duration of this kernel event will be the time spent in
__cudaRegisterFunction.

Regardless of how the CPU events are instrumented, TAU
gathers GPU-related events via the event queue method for
both CUDA and OpenCL (support is in development) and the
callback method section (for OpenCL). TAU offers parallel
profiling for GPU-based heterogeneous programs, in addition
to tracing. Profile measurement raises an interesting problem
for linking GPU kernel to its launch points in the code.
Whereas VampirTrace is able to generate trace events that
can associate in time GPU kernel event with CPU events,
GPU kernel profiling needs extra measurement support to
contextualize the kernels events in relation to CPU execution.
To associate the GPU operation to the application thread that
invokes the CUDA driver routine, we retrieve the current
TAU event stack (aka, the TAU context), which represents
the nested CPU events that TAU is measuring at the time of
the kernel launch. In this way, TAU can distinguish kernels
launched from different parts of the application. This is done
for both CUDA and OpenCL measurement. TAU’s parallel
profile analysis tool, ParaProf, has been updated to present
heterogeneous performance events with context information

included.

�������� ����	�

��� �����	�	�
�

�������

���

����

���� �����	 ���� �����	

����	�
�

�
���������

��������
�������

��������
���
�

Fig. 6. Tools interoperability from data collection to performance analysis.

In addition, TAU utilizes the OpenCL callback feature
included in specification 1.1[9]. In order to use this feature
a few adjustments needed to be made. The specification gives
no conditions on when a callback will be entered and more
importantly does not insist that be callback be thread-safe. It
is possible then for a kernel callback to occur during another
kernel’s callback and thereby risking that a kernel’s enter event
could be invoked before the exit of the previous kernel. This
would violate the principle of well-nested events in TAU, so
thread locking was added so that each time a callback is
entered a lock is set atomizing each callback.

D. Tool interoperability

The tool implementations demonstrate methods for hetero-
geneous performance measurement. However, it is important
that the tools provide effective solutions for users. The dif-
ferent measurement capabilties covered might be used for
different experiments depending on the performance evalua-
tion goals. Tool interoperability is important for this purpose.
Figure 6 show how the methods and tools work together to
provide heterogeneous performance information to the user.
Reading downward, the three sources of information about
GPUs – CUPTI, CUDA, and OpenCL – are tapped in different
ways by each tool and after some post-processing of the data
(if needed) the performance data can be view in parallel profile
or trace display forms.

In the next section we show how the tools, using these
methods, are applied to heterogeneous GPU applications.

V. EXPERIMENTS

There are various ways in which GPUs can be used in
heterogeneous applications and the measurement methods and
tools discussed above provide the means to observe perfor-
mance in these different cases. Here we present several ap-
plication experiments to highlight both the different execution
scenarios and the capabilities of the tools. Our premise in this
paper has been that the heterogeneous challenge with GPUs
is in capturing host-GPU interactions and GPU performance
at the node-level, and then integrating that performance infor-
mation with the intra-node and inter-node perspectives.

A. Multiple GPU Test

First let us consider a case where multiple GPUs are used
by an application running on a single node. This quickly
tests the tools’ ability to properly measure performance of
the different GPU devices, each with a different context
controlled by a separate application thread. The NVIDIA
SDK[18] includes the program “simpleMultiGPU” that we
can use for this purpose. One main thread spawns multiple
solverThreads, each launching a single reduceKernel
on a different GPU device. Using synchronous instrumentation
with CUDA library wrappers, we ran the program on one
Keeneland [19] node with three Tesla C2070 (Fermi) GPUs
to generate a TAU profile. Figure 7 shows the TAU overview
profile for the main thread, each solverThread, and the
GPU reduceKernel (labeled as threads 4, 5, 6). The
figure further shows a comparison of the solverThread
performance for cudaMalloc and cudaSetDevice, and
a detailed listing of one solverThread/reduceKernel
pair. Here we see the relationship between the spawn-
ing cutStartThread routine and the SolverThread,
and the cudaLaunch initiatiation of the reduceKernel
(.TAU application represents the CPU calling context).

Notice the interesting performance behavior of
cudaMalloc which is executed soon after each thread
starts. Its time is large for each thread and appears to increase
from thread to thread. The reason we discovered for this
behavior is the high initial cost for creating a GPU device
context. It also suggests that the GPU context creation is
not re-entrant. Indeed, this is the case. For our purposes, the
experiment demonstrates the measurement’s ability to observe
the different operations associated with a simple multi-GPU
program, include this unexpected result.

B. Symmetric Matrix Vector Product (SYMV)

A more realistic example is a library routine to compute a
symmetric matrix vector (SYMV) product. We consider two
implementations, from the CUBLAS [5] and MAGMA [6],
[20] libraries, and analyze their performance with the help of
PAPI counter measurements using CUPTI. This example is on
a memory-bound kernel. In contrast to the simpler case when
the matrix is general, exploiting the symmetry is more chal-
lenging for optimization on GPUs as the computation would
involve irregular data accesses. We are interested in seeing how
well symmetry is exploited and if bank conflicts and branching
(inherent for irregular computations) are reduced.

As the matrix is symmetric, the SYMV kernel can be
implemented by accessing each element of the lower (or
correspondingly upper) triangular part of the matrix only once.
Thus, for an N × N matrix A the SYMV kernel can be
implemented ideally using N2/2 element reads. An alternative
is not to explore the symmetry and have implementation
similar to the general matrix vector product, which results in
N2 element reads. Since the SYMV is memory bound, the
former choice - implemented in the MAGMA SYMV kernel
- is expected to be twice as fast than the latter. The MAGMA
SYMV uses the symmetry by organizing the computation so

Fig. 7. TAU performance profile of SimpleMultiGPU program with three GPUs. Upper left: overall profile showing CPU threads and proxy GPU threads.
Lower left: CPU thread comparison for three events. Right: breakout of profiles for the main thread, one solverThread, and the associated GPU. Times
are in milliseconds.

Fig. 8. Number of read requests from L1 to L2 (green), which is equal to the
number of read misses in L2 (orange); number of read requests from L2 to
DRAM (black) for the CUBLAS_dsymv kernel (left) and the MAGMA_dsymv
kernel (right).

that any sub-matrix Ai, read by thread block i (e.g., from just
the lower part of A), is used in the computation associated not
only with Ai but with AT

i as well. However, to accomplish
this, additional global memory workspace is used to store
intermediate results. In particular, the workspace is N/64
vectors of size N each (here 64 comes from the size of the
thread block size used in the computation). These intermediate
N2/64 elements are first computed and then written back to
the global memory, and in a second step read from the global
memory and reduced to a single vector, which is the final result
of the computation. Thus, although N2/2 element reads are
reduced, N2/64 writes (and N2/64 reads) are introduced.

We ran experiments using the CUBLAS_dsymv and
MAGMA_dsymv kernels and varied the size of the matrix
to observe the effects of cache behavior on the Tesla S2050
(Fermi) GPU. Figures 8 and 9 report the CUDA performance
counters for the read and write behavior for these experiments
as measured by PAPI. As expected the number of read requests
and misses is reduced by a factor of 2 in the MAGMA_dsymv
kernel which is due to exploitation of the symmetry of the
matrix. Also the increasing write requests are apparent from
the counter data.

Furthermore, from the PAPI measurements we were able
to detect shared cache bank conflicts in the MAGMA_dsymv

Fig. 9. Number of write requests from L1 to L2 (green), which is equal to the
number of write misses in L2 (orange); number of write requests from L2 to
DRAM (black) for the CUBLAS_dsymv kernel (left) and the MAGMA_dsymv
kernel (right).

Fig. 10. Number of L1 shared bank conflicts in the MAGMA_dsymv kernel
for medium to large matrix sizes (left); Performance of MAGMA_dsymv kernel
with and without shared cache bank conflicts (right).

kernel. Those are due to addresses for two or more shared
memory requests that fall in the same memory bank. Fig-
ure 10 (left) reports the number of bank conflicts for different
matrix sizes. To address those conflicts, we applied array
padding which causes cache lines to be placed in different
cache locations and consequently were able to completely
eliminate shared cache bank conflicts. This minor change to
the kernel code also promotes a performance improvement
of 1 Gflop/s for larger matrix sizes. Figure 10 (right) shows
the performance of the MAGMA_dsymv kernel with bank
conflicts (dashed) versus the performance of the modified
MAGMA_dsymv kernel with array padding which eliminates
bank conflicts (solid). Note, we only compare the performance

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

%
#
(
"

%
&
)
"

%
)
%
"

&
$
$
"

&
(
'
"

'
#
$
"

'
(
&
"

(
$
#
"

(
)
&
"

*
'
%
"

)
$
+
"

+
#
%
"

#
,!
!
'
"

#
,#
!
(
"

#
,$
#
*
"

#
,%
%
+
"

#
,&
*
&
"

#
,(
$
$
"

#
,*
)
'
"

#
,+
(
&
"

$
,#
(
#
"

$
,%
*
)
"

$
,(
#
(
"

$
,)
*
)
"

%
,#
(
(
"

%
,&
)
%
"

%
,)
%
$
"

&
,$
#
(
"

&
,(
%
)
"

'
,#
!
$
"

'
,(
#
%
"

(
,#
*
'
"

(
,*
+
%
"

*
,&
*
%
"

)
,$
$
#
"

!
"#
$%
&'
()
*
#
+$
,

!-%&".,/"01,

2$345,61,

-./012"

31431"

Fig. 11. Left: Also due to the exploitation of the symmetry of the matrix, the
number of branches executed in the MAGMA_dsymv kernel is reduced by a
factor of ∼ 30 compared to the number of branches in the CUBLAS_dsymv
kernel. Right: We also see that MAGMA is more efficient in instruction access.

for larger matrix sizes since the number of bank conflicts
is 0 or relatively low for smaller and medium matrix sizes.
Figure 11 highlights others aspects - branches and instruction
rate of execution - of why MAGMA performs more efficiently.

C. SHOC Benchmarks – Stencil2D

The Scalable HeterOgeneous Computing (SHOC) [4]
benchmark suite provides a set of testcases for our hetero-
geneous performance tools. SHOC benchmarks are written in
both CUDA and OpenCL, and they target both single-node
and multi-node execution. We have tested our tools on the
majority of the SHOC programs. Here we present results from
the Stencil2D application which compute a two-dimensional
nine-point stencil calculation on multiple GPUs using MPI.

An event queue method with library wrapping and
PAPI/CUPTI was used on the CUDA version of Stencil2D
for VampirTrace measurement. Two nodes of the Keeneland
system were use to capture execution traces. We ran two MPI
processes on each node with one GPU per process. Figure 12
shows the timeline of a portion of the Stencil2D execution,
with CPU-GPU memory transfers and CPU-CPU communi-
cation clearly represented. The CPU and GPU counters were
accessed at each event and recorded in the trace, allowing
rates to be determined for L1_shared_bank_conflict,
threads_per_kernel and threads_per_block, as
shown for Process 0, CUDA[0] in the figure.

We also ran the OpenCL version of Stencil2D on eight
nodes of the Keeneland cluster using 24 MPI processes,
each attached to a single GPU device. Figure 12 shows the
StencilKernel execution time profile across the 24 GPUs,
as captured and presented by TAU. Unlike some other SHOC
benchmarks, Stencil2D is not embarrassingly parallel so it
must distribute the work across each GPU device as evenly
as possible. The figure shows a reasonable load balance for
the test problem. In this measurement, TAU applied OpenCL’s
support for events.

VI. RELATED WORK

While the interest in heterogeneous parallel computing is
growing, we are not aware of other published work on scalable
heterogeneous performance tools. That said, there have been
significant efforts by the GPU manufacturers to develop tools
for GPU debugging and performance analysis.

The NVIDIA Visual Profiler [21] is a cross-platform perfor-
mance profiling tool for developers optimizing CUDA C/C++
and OpenCL applications on Linux, Mac OS X, and Win-
dows. It allows visual analysis of results to identify potential
performance issues, compare results across multiple sessions,
and GPU hardware performance metrics to understand opti-
mizations. For Windows, the NVIDIA Parallel Nsight [22]
tool provides additional performance profiling and analysis
capabilities integrated into Microsoft Visual Studio. Similarly,
the AMD GPU PerfStudio 2 [23] tool offers profiling and
tracing features to identify performance and algorithm issues.
All API calls can be measured for each application thread.

These tools are powerful, but also proprietary and targeted
for the most part to graphics development and single GPU
environments. They do not directly provide interfaces that can
be leveraged by intra-node/inter-node parallel tools to capture
integrated performance views.

VII. CONCLUSION AND FUTURE WORK

Understanding the performance of scalable heterogeneous
parallel systems and applications will depend on addressing
new challenges of instrumentation, measurement, and analysis
of heterogeneous components, and integrating performance
perspectives in a unified manner. The research presented here
demonstrates support for GPU performance measurement with
CUDA and OpenCL in three well-known performance tools
PAPI, VampirTrance, and the TAU Performance System. The
development work is being released simultaenously with each
tool with the submission of this paper and the availability of
CUPTI in CUDA 4.0.

The paper introduces computation and measurement models
in order to ground the discussion on tool implementation. The
measurement techniques supported by the tools are intended
to be practical solutions for these approaches with respect to
present technology. The integration with PAPI, VampirTrace,
and TAU also means that the heterogeneous measurement will
scale to large heterogeneous systems. However, this does not
mean the solutions are complete or optimal. For instance,
CUPTI currently supports callbacks for CUDA runtime and
driver APIs, but not kernels. This limits the ability to time
CUDA kernels in an asynchronous manner.

Also, it is certainly the case that heterogeneous architecture
and software advances will deliver new modes of operation
that measurement techniques must address. NVIDIA’s CUDA
4.0 release will allow implicit memory transfers to take place
when data is not resident, sharing of GPUs across multiple
threads, and use of all GPUs in the system concurrently
from a single host thread. Next-generation GPU devices will
additionally have more complex modes of execution that
developers will likely want to track. This may require kernel
code instrumentation kernel code to observe performance.

In the future, we plan to increase the collaboration between
the teams to deliver more seamless support across the tools.
CUDA 4.0 will be the first release of CUPTI and we hope
this will create opportunities for user engagment. As men-
tioned, this is will spur measurement enhancement. There are

Fig. 12. Left: Vampir trace display of Stencil2D execution on 4 MPI processes with 4 GPUs. Time synchronized GPU counter rates convey important
performance characteristics of the kernel execution. Right: TAU profile of the OpenCL version of the Stencil2D application run on the Keeneland platform
with 24 MPI processes and GPUs. The kernel execution times are generally well-balanced across the GPUs.

also plans for improving CUPTI in future releases. Another
area of interest is automatic instrumentation capabilities for
synchronous and event queue methods. We plan to work with
instrumentation technology from TAU for this purpose.

ACKNOWLEDGMENT

The research work reported here was supported by the
National Science Foundation (Grant #: OCI-0722072), the
Department of Energy (Grant #s: DE-SC0005360, DE-
SC0001777, DE-FG02-09ER25873), and an NVIDIA Profes-
sor Partner award (UO, Malony), a CUDA Research Center
(TU Dresden), and a CUDA Center of Excellence (UTK,
Innovative Computing Laboratory).

REFERENCES

[1] Performance Application Programming Interface (PAPI). [Online].
Available: http://icl.cs.utk.edu/papi/

[2] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, “The Vampir Performance Analy-
sis Tool-Set,” in Tools for High Performance Computing, M. Resch,
R. Keller, V. Himmler, B. Krammer, and A. Schulz, Eds. Springer
Verlag, Jul. 2008, pp. 139–155.

[3] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[4] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K. Spaf-
ford, V. Tipparaju, and J. Vetter, “The Scalable HeterOgeneous Com-
puting (SHOC) BenchmarkSuite,” in Third Workshop on General-
PurposeComputation on Graphics Processors (GPGPU 2010), Mar.
2010.

[5] (2011, Jan.) CUBLAS Library (CUDA Toolkit 3.2). NVIDIA. [Online].
Available: http://developer.nvidia.com/object/cuda 3 2 downloads.html

[6] Matrix Algebra on GPU and Multicore Architectures (MAGMA).
[Online]. Available: http://icl.cs.utk.edu/magma/

[7] D. B. Kirk and W. mei W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, 2010.

[8] NVIDIA. (2011) CUDA Zone. CUPTI documentation will be
provided with the CUDA 4.0 release. [Online]. Available: http:
//www.nvidia.com/object/cuda home new.html

[9] K. O. W. Group. (2010, Sep.) The OpenCL specification. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[10] R. Dietrich, T. Ilsche, and G. Juckeland, “Non-intrusive Performance
Analysis of Parallel Hardware Accelerated Applications on Hybrid
Architectures,” in First International Workshop on Parallel Software
Tools and Tool Infrastructures (PSTI 2010). Los Alamitos, CA, USA:
IEEE Computer Society, 2010, pp. 135–143.

[11] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable
Programming Interface for Performance Evaluation on Modern Proces-
sors,” International Journal of High-Performance Computing Applica-
tions, vol. Vol. 14, No. 3, pp. 189–204, 2000.

[12] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Perfor-
mance Data with PAPI-C,” Tools for High Performance Computing 2009,
pp. 157–173, 2009.

[13] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel, “Developing Scalable Applications with Vampir,
VampirServer and VampirTrace,” in Parallel Computing: Architectures,
Algorithms and Applications, ser. Advances in Parallel Computing,
C. Bischof, M. Bücker, P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr,
and F. Peters, Eds., vol. 15. IOS Press, 2008, pp. 637–644. [Online].
Available: http://www.booksonline.iospress.nl/Content/View.aspx?piid=
8455

[14] H. Brunst, D. Hackenberg, G. Juckeland, and H. Rohling, “Com-
prehensive Performance Tracking with Vampir 7,” in Tools for High
Performance Computing 2009, M. S. Müller, M. M. Resch, A. Schulz,
and W. E. Nagel, Eds. Springer Berlin Heidelberg, 2010, pp. 17–29.

[15] (2011, Mar.) Score-P – HPC Profiling and Event Tracing Infrastructure.
[Online]. Available: http://www.vi-hps.org/projects/score-p

[16] S. Mayanglambam, A. Malony, and M.Sottile, “Performance Mea-
surement of Applications with GPU Acceleration using CUDA,” in
International Conference on Parallel Computing (PARCO 2009), Sep.
2009.

[17] A. Malony, S. Mayanglambam, S. Biersdorff, and W. Spear, “An
Experimental Approach to Performance Measurement of Heterogeneous
Parallel Applications using CUDA,” in International Conference on
Supercomputing (ICS 2010), Jun. 2010.

[18] (2011, Jan.) CUDA Toolkit 3.2. [Online]. Available: http://www.nvidia.
com/object/cuda develop.html

[19] Keeneland: National Institute for Experimental Computing. [Online].
Available: http://keeneland.gatech.edu/

[20] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear
algebra for hybrid GPU accelerated manycore systems,” Parallel
Computing, vol. 36, pp. 232–240, Jun. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2009.12.005

[21] (2011) Visual Profiler. NVIDIA. [Online]. Available: http://developer.
nvidia.com/object/visual-profiler.html

[22] (2011) Parallel Isight. NVIDIA. [Online]. Available: http://developer.
nvidia.com/object/nsight.html

[23] (2011) GPU PerfSudio 2. AMD. [Online]. Available: http://developer.
amd.com/gpu/PerfStudio/

