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Abstract This paper presents the power profile of two
high performance dense linear algebra libraries i.e., LA-
PACK and PLASMA. The former is based on block al-
gorithms that use the fork-join paradigm to achieve
parallel performance. The latter uses fine-grained task
parallelism that recasts the computation to operate on
submatrices called tiles. In this way tile algorithms are
formed. We show results from the power profiling of
the most common routines, which permits us to clearly
identify the different phases of the computations. This
allows us to isolate the bottlenecks in terms of energy
efficiency. Our results show that PLASMA surpasses
LAPACK not only in terms of performance but also in
terms of energy efficiency.

Keywords Power Profile · Energy Efficiency · Dense
Linear Algebra · Tile Algorithms · Multicore Architec-
tures

1 Introduction

After the processor industry underwent the transition
from sequential to multicore processors [19] the dense
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linear algebra software transitioned from block algo-
rithms of LAPACK [2] to the tile algorithms of PLASMA [21].
The former stresses an efficient use of deep memory
hierarchies while the latter focuses on introducing a
sufficient amount of parallelism to keep all the newly
introduced cores busy. The shift to multicore designs
at the hardware level was primarily driven by the pro-
hibitive power consumption and the corresponding power
dissipation needs of the ever increasing clock frequen-
cies of superscalar processors. On the other hand, the
tile algorithms were introduced to keep the new pro-
cessor cores busy at all times in pursuit of sustained
performance levels. The obvious question of energy
efficiency at the software level was never adequately
answered until now.

Our focus is on two main classes of numerical lin-
ear algebra algorithms: one-sided and two-sided fac-
torizations. The former class includes Cholesky, QR,
and LU factorizations which are the most computa-
tionally intensive step in solving various linear sys-
tems of equations. The latter class includes tridiago-
nal (TRD) and bidiagonal (BRD) reductions which con-
sume the most amount of computation time in solving
the symmetric eigenvalue problem and in obtaining
the singular value decomposition of a matrix, respec-
tively [12,20]. With the experiments reported here we
are able to conclude that PLASMA is not only a high
performance library for dense linear algebra but it also
is more energy efficient than LAPACK.

The remainder of this document is organized as
follows. Section 2 gives an overview of related work
in this area. Section 3 recalls the block algorithms as
they are implemented in LAPACK [2]. Section 4 ex-
plains the tile algorithms and their implementation in
PLASMA [21]. Section 5 describes the power profiling
tool called PowerPack [11] and the experimental plat-
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form. Section 6 outlines the power consumption of the
different block and tile algorithms. Finally, Section 7
summarizes the results of this paper and presents the
ongoing work.

2 Related Work

Dynamic Voltage and Frequency Scaling (DVFS) is a
commonly used technique with which it is possible to
achieve reduction of energy consumption [10,14]. One
example is the use of DVFS to reduce the energy usage
of MPI applications by determining different phases
for the application [10]. The authors utilized a brute-
force approach to determine the optimal energy and
performance settings for each phase and then executed
the application according to the new settings. In partic-
ular, the NAS BT benchmark is divided into two phases
that are executed at multiple gear points (voltage and
frequency level). The BT is executed at gears 1 and 2
giving an energy saving of 10% with a time penalty of
5%.

A system called Jitter [14] was introduced with the
goal of exploiting the MPI wait time for load-imbalanced
applications. The frequency and voltage of nodes with
less computational time were reduced to save over-
all energy while other compute-intensive nodes com-
pleted.

The scaling of the voltages and frequencies was used
to reduce overall energy consumption by targeting the
processors that are not on the critical path of the calcu-
lation [9,8]. This approach is oriented towards saving
power without incurring performance penalties. The
experiments yielded very promising results. Namely,
for matrices extracted from real applications, the ob-
served savings in power were close to the optimal val-
ues. This lended credibility to the authors’ recursive
strategies and their usefulness in saving power.

A different example of power-aware computing is
exploitation of mixed-precision iterative refinement [6].
By taking advantage of numerical properties of the in-
put data it is possible to lower the working precision
of the calculation and thus reap benefits of shorter exe-
cution time and lower power requirements, which to-
gether result in lower energy consumption [3].

The selection of the most efficient algorithm and its
implementation is determined by first specifying a cri-
terion – preferably a quantitative one. The Gflop/s per
Watt is one such metric, but alternatives are also being
considered [4]. We partially side step this issue here by
studying temporal energy and power characteristics of
various linear algebra algorithms rather then reducing
them to a single power-aware metric.

3 Block Algorithms

This section recalls the notion of block algorithms in
LAPACK [2] and describes, in particular, the one-sided
factorizations (QR, LU, and Cholesky) and the two-
sided transformations (TRD and BRD).

3.1 Description of the Block Algorithms

LAPACK implements block algorithms to solve linear
systems of equations as well as eigenvalue problems
and singular value decompositions. Block algorithms
are characterized by two successive phases: panel fac-
torization and update of the trailing submatrix. During
the panel factorization, the transformations are only
applied within the panel. The panel factorization is very
rich in Level 2 BLAS operations because the transfor-
mations are singly applied. Once accumulated within
the panel, those transformations are applied to the rest
of the matrix (the trailing submatrix) in a blocking man-
ner leading to Level 3 BLAS operations. While the up-
date of the trailing submatrix is compute-bound and
very efficient, the panel factorization is memory-bound
and may appear to be a bottleneck for some numerical
linear algebra algorithms, especially for the two-sided
factorizations. Last but not least, the parallelism within
LAPACK occurs only at the level of the BLAS routines,
which follows the expensive fork-join model. Basically,
all processing units need to synchronize before and af-
ter each call to BLAS kernels.

3.2 LAPACK One-Sided Factorizations

The one-sided factorizations i.e., QR, LU, and Cholesky
are the first step toward solving linear systems of equa-
tions. While the Cholesky factorization is used for sym-
metric matrices, QR and LU solve linear systems of
equations, where the matrices are non-symmetric and
general. A three panel-update sequence is illustrated in
Figure 1. The transformations from the panel are ap-
plied to the left of the matrix and the factorization pro-
ceeds until the two final factors are computed. Since
the matrix has to be (among other things) symmetric
for the Cholesky factorization, only the upper or the
lower part of the matrix needs to be referenced. It is
noteworthy that the computation of the panel is self-
contained in the sense that it does not involve data lo-
cated outside of the specified panel region.
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Fig. 1 Panel-update sequences for the LAPACK one-sided fac-
torizations.

3.3 LAPACK Two-Sided Transformations

The BRD and TRD are the two-sided algorithms stud-
ied in this paper. As opposed to one-sided factoriza-
tions (i.e., QR, LU, and Cholesky), the computed trans-
formations are applied from the left as well as from
the right side of the matrix. Figure 2 shows a three
Panel-Update sequence until the matrix is reduced to
the appropriate form. In the TRD case, since the ma-
trix is symmetric, only the lower/upper part of the
matrix is referenced. Additionally, the accumulation
of the left and right transformations during the panel
computation requires loading into memory the whole
unreduced part of the matrix (i.e., the trailing subma-
trix) at each single reduction step, as opposed to the
one-sided factorizations, where only the data located
in the current panel is accessed. In fact, the panel fac-
torization is clearly the bottleneck phase for the two-
sided algorithms.

Moreover, this successive sequence of panel-update
in LAPACK has shown strong limitations on multicore
architectures. Indeed, the LAPACK framework is not
capable of performing any lookahead computations,
where the panel or update tasks from multiple steps
could significantly overlap. Although, in practice, looka-
head techniques would be algorithmically possible only
for one-sided factorizations. For two-sided transforma-
tions, the one-stage approach (reduction to the final
corresponding condensed form without intermediary
step) necessitates the panel computational step to be
atomic because, as mentioned above, it requires access
to the entire trailing submatrix using expensive Level
2 BLAS operations (memory-bound).

The next section describes the concept of tile al-
gorithms and explains how these new algorithms are
able to supersede the standard one-sided and two-sided
block algorithms.

4 Tile Algorithms

This section recalls the general principles of tile algo-
rithms and describes how the block algorithms had to
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Fig. 2 Panel-update sequences for the LAPACK two-sided
transformations.

be redesigned to effectively exploit parallelism from
multicore architectures.

4.1 Tile Algorithms

The general idea of tile algorithms is to transform the
original matrix to tile data layout (TDL) where each
data tile is contiguous in memory as in Figure 3. This
may demand a complete reshaping of the standard nu-
merical algorithm. The panel factorization as well as
the update of the trailing submatrix are then decom-
posed into several fine-grained tasks, which better fit
the memory of the small core caches. The parallelism

Fig. 3 Translation from LAPACK Layout (column-major) to Tile
Data Layout

is then no longer hidden inside the BLAS routines but
rather is brought to the fore. The whole computation
can then be represented with a directed acyclic graph
(DAG), where nodes are computational tasks and edges
represent the data dependencies among them. Next,
it becomes critical to efficiently schedule the sequen-
tial fine-grained tasks across the processing units. A
dynamic runtime environment system is used to dis-
tribute the tasks as soon as the data dependencies are
satisfied.

4.2 Tile One-Sided Transformations

The block formulation of one-sided factorizations had
to be redesigned accordingly in order to handle the
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computations by tiles. This may engender extra flops,
which are compensated by the increase of the degree
of parallelism [7]. The tile computation of the panel
enhances the data locality and therefore, cuts off the
number of TLB misses seen for the one-sided block
algorithms, due to the large stride access. Tile algo-
rithms [21] have already shown promising results for
the one-sided factorizations, as compared to LAPACK
and vendor libraries on various multicore architectures
and we refer to [1] for a comprehensive performance
comparison.

4.3 Tile Two-Sided Transformations

(a) Right Re-
duction Step 1.

(b) Left Reduc-
tion Step 1.

(c) Right Re-
duction Step 2.

(d) Left Re-
duction Step
2.

Fig. 4 First stage: reduction to band bidiagonal form applied on
a 4x4 tile matrix.

A complete new methodology has to be developed
to drastically decrease the negative impact of the panel
computation of both, TRD and BRD. The standard one-
stage approach for the two-sided block reductions has
been replaced by a two-stage approach. Two-stage ap-
proaches have recently proven to be an interesting so-
lution in achieving high performance in the context of
two-sided reductions [5,13,16,17]. The Figures shown
in this section are related to the BRD case, whose Fig-
ures are similar to the TRD case to some extent. There-
fore, for simplicity, we purposefully omit the extra TRD
figures. The first stage comprises a reduction of the
original matrix to band form. Figure 4 recalls how the
band bidiagonal structure is obtained from a 4-by-4 tile
matrix. The matrix is reduced to band form by inter-
leaving QR (left transformations) and LQ (right trans-
formations) factorizations. The light gray tiles corre-
spond to transient data, which still need to be reduced.
The black and dark gray tiles are being reduced and
the dashed tiles are final data tiles. Four interleaved
QR/LQ factorization steps are needed to achieve the
band bidiagonal form. The overhead of the Level 2 BLAS
operations dramatically decreases and most of the com-
putation is performed in Level 3 BLAS, which makes
this stage run closer to the theoretical peak of the ma-
chine.

(a) Starting point: band
bidiagonal matrix in TDL
format.

(b) First column annihila-
tion spanning across two
tiles.

(c) Bulge creation: starting
to partially chase it. The
new bulges span over four
tiles.

(d) Chasing it with left
and right tile transforma-
tions.

(e) Chasing it further
down.

(f) Reaching the bottom
right corner of the ma-
trix. The left transforma-
tion spans over two tiles
while the right transfor-
mation involves only a
single tile.

(g) Final Tile Matrix after
the first column annihila-
tion: the tile band struc-
ture is restored.

(h) Final Tile Matrix after
the first column annihila-
tion: the tile band struc-
ture is restored.

Fig. 5 Execution breakdown of the bulge chasing procedure
on a band bidiagonal matrix of size N=16 and NB=4 with tile
data layout (TDL) after the first column annihilation (black el-
ements). The bright and pale rectangles show the left and right
transformations, respectively. The dark grey elements represent
the fill-in elements, which eventually need to be chased down to
the bottom right corner of the matrix. The dashed elements are
the final elements of the bidiagonal structure of the matrix.
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Fig. 6 Description of the PowerPack Framework.

The second stage further reduces the band matrix
to the corresponding compact form. A challenging bulge
chasing procedure using orthogonal transformations
annihilates the off-diagonal elements column-wise and
hunts down the fill-in elements to the bottom right cor-
ner of the matrix. Figure 5 shows the dimension of its
complexity. The bulge chasing procedure on the tile
matrix creates bulges, which could span over multiple
tiles, and therefore, they are not contiguous in mem-
ory anymore. Special computational kernels obviously
need to be implemented to handle the various cases,
depending on the number of tiles involved in one par-
ticular task. Besides the development of new kernels, a
layer of abstraction is required to map the bulge chas-
ing algorithm running on top of column-major data
layout (CDL) format into tile data layout (TDL) for-
mat. This layer is a crucial component of the two-stage
tile BRD and TRD algorithms as it homogenizes the
layout format across both stages. We refer to [16,17]
for more details on those reductions using a two-stage
approach.

The next Section describes the experimental plat-
forms used to perform the power profiling of block
and tile algorithms.

5 Experimental Settings

LAPACK and PLASMA are numerical dense linear al-
gebra libraries for shared-memory systems. All of our
experiments utilize a single node of an eight-node dis-
tributed multicore system named Dori, which is avail-
able in the Department of Computer Science at Vir-
ginia Tech. Each node of the system consists of two
dual-core AMD Opteron processors 265 (1.8 GHz) and
six 1 GB memory modules per node, each being DDR2
SDRAM clocked at 600 MHz. We used PowerPack [11],
which provides power profiling information for ad-
vanced execution systems, to measure the power con-
sumption of our applications running on the cluster.

The PowerPack framework shown in Figure 6 is a col-
lection of software components, including libraries and
APIs, which enables system component-level power
profiling correlated to application functions. PowerPack
obtains measurements from power meters attached to
the hardware of a system. As multicore systems evolve,
the framework can be used to indicate the application
parameters and the system components that affect the
power consumption on the multicore unit. PowerPack
allows the user to obtain direct measurements of the
major system components’ power consumption, includ-
ing the CPU, memory, hard disk, and motherboard.
This fine-grain measurement allows power consump-
tion to be measured on a per-component basis. The
next Section highlights the power profiling of block
and tile algorithms.

6 Power Profiling

We refrain from publishing a comprehensive set of per-
formance charts for the aforementioned factorizations
as we have done elsewhere [1]. Instead, we focus on
a detailed study of temporal energy and power char-
acteristics. To the best of our knowledge, it is the first
such comprehensive study in the context of dense lin-
ear algebra libraries.

6.1 One-Sided Factorizations

The next six figures present the power consumption
during different factorizations of a matrix size N = 10000
linked with GotoBLAS2 on the test machine Dori (dual-
socket dual-core AMD Opteron), as previously described
in Section 5.

Figures 7, 8, and 9 show power consumption dur-
ing the Cholesky, QR, and LU factorizations, respec-
tively. The beginning and the end of computations are
readily visible in the figures even though the time pe-
riod for performing each of the factorizations is not
marked explicitly on either of the figures. This is be-
cause the CPU power consumption and, consequently,
the overall system consumption increases by nearly
100% during the factorization period. As mentioned
earlier, we would like to deemphasize the raw execu-
tion time (which overall favors the tile approach) and
focus on the comparison between the power profiles
of LAPACK and PLASMA.

One aspect of the power profiles presented in the
figures is the maximum power draw. LAPACK draws
visibly more instantaneous power over the course of a
run. In particular, it is 3.3% for Cholesky, 5.4% for LU,
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(a) LAPACK Cholesky.
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(b) PLASMA Cholesky.

Fig. 7 Power consumption of LAPACK and PLASMA Cholesky on the test system.

and 10.4% for QR factorization, respectively. A simi-
lar comparison for a mean power draw of the main
memory shows a more staggering difference: 21.1% for
Cholesky, 17.3% for LU, and 34.3% for QR. This latter
comparison is more pertinent as the memory is bound
to overtake CPU as the main consumer of energy on a
motherboard [15].

Another feature that might be observed in the fig-
ures is the high variability of power draw for LAPACK’s
QR and LU algorithms, which is not present for the tile
algorithms. By counting the number of variations and
including the information on the size of the matrix, we
can determine that the low points correspond to the
power consumption of the panel computation which
is memory-bound. For such a computation, the main
memory is stressed much more than the processor. The
high points of the power draw correspond to the up-

dates of the trailing submatrix: a compute-bound code.
The processor is busy inside a matrix-matrix multiply
routine and the data is only occasionally fetched from
the main memory thanks to the high data reuse. The
Cholesky factorization does not show this behavior as
it is mostly based on Level 3 BLAS: the panel computa-
tion is negligible. On the contrary, the PLASMA power
profiling curves for one-sided factorizations are very
smooth, which is due to the data locality improvement
from the use of tile algorithms.

6.2 Two-Sided Factorizations

Figures 10 and 11 show power consumption during
the tridiagonal and bidiagonal reductions, respectively.
The observations made for the one-sided factorizations
still hold for the two-sided ones. We can, however, note
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(a) LAPACK QR.
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(b) PLASMA QR.

Fig. 8 Power consumption of LAPACK and PLASMA QR on the test system.

additional phenomena that are specific to the two-sided
codes. The two-sided reductions in PLASMA are by
design conducted in two stages and it clearly shows in
the power profile in the figures. There is a 20% to 30%
drop in power draw by the CPU when going into the
second stage: a testament to the computationally less-
intensive nature of that stage. Correspondingly, the main
memory draws more power in the second stage as this
stage is more demanding in terms of bandwidth. There-
fore, tile algorithms for two-sided reductions allow us
to distinctly split level 3 BLAS operations (high power
consumption due to intense CPU usage) from level 2
BLAS ones (low power consumption due to intense
memory usage).

6.3 Analysis of Results

The results presented in the previous section allow us
to draw a number of interesting conclusions and make
predictions for the linear algebra research in the con-
text of energy-conscious computing. A result that sur-
prised us the most is the fact that optimizing for per-
formance does not necessarily conflict with low energy
consumption. In fact, the PLASMA library is able to
outperform LAPACK in terms time-to-solution while
at the same time draw less power. As a result, energy
consumption win of PLASMA comes from two sources:
reduced time and demand for power. The explanation
of this phenomenon seems to be related to the use of
on-chip resources. For simplicity sake, we can assume
that each core has the computational and memory com-
ponents. The former is responsible for performing the
computations and could be claimed to work at the same
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(a) LAPACK LU.
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(b) PLASMA LU.

Fig. 9 Power consumption of LAPACK and PLASMA LU on the test system.

intensity with both PLASMA and LAPACK. On the
other hand, the memory components seem to be work-
ing in much higher rate for LAPACK as the memory
traffic is much more intensive due to a less efficient
block storage of data. We believe that this extra work
of handling data movement between cache hierarchy
and the main memory contributes to the higher power
draw of the processors when running LAPACK.

7 Summary and Future Work

This paper presented a detailed power profiling of block
algorithms from LAPACK [2] as well as tile algorithms
from PLASMA [21]. This energy efficiency analysis al-
lows us to clearly identify the bottlenecks of the differ-
ent computational steps involved with the block algo-
rithms as well as the major improvements brought by

the tile algorithms (power efficiency and high perfor-
mance computing). Although performed on only four
cores, those preliminary results are very encouraging,
and we expect an even better power consumption for
systems with a larger number of cores, since this is
where PLASMA will benefit the most. In the future, we
plan to use the results to further optimize the power
profile of PLASMA by focusing on the specific energy
requirements of the various factorization algorithms
and their stages. The power profile optimizations we
have in mind would cap the temporal power draw as
well as reduce overall energy consumption. We would
also like to study how these changes, dictated by power
and energy constraints, influence the performance that
was achieved and the total running time of the numer-
ical algorithms from both libraries.
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(a) LAPACK TRD.
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(b) PLASMA TRD.

Fig. 10 Power consumption of LAPACK and PLASMA TRD with a matrix size N = 10000 linked with GotoBLAS2 on the test system.
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