
Faster, Cheaper, Better – a Hybridization

Methodology to Develop Linear Algebra Software

for GPUs

Emmanuel Agullo
∗

Cédric Augonnet
∗

Jack Dongarra
†

Hatem Ltaief
†

Raymond Namyst
∗

Samuel Thibault
∗

Stanimire Tomov
†‡ §

13
th

September, 2010

In this chapter, we present a hybridization methodology for the develop-
ment of linear algebra software for GPUs. The methodology is successfully
used in MAGMA – a new generation of linear algebra libraries, similar in
functionality to LAPACK, but extended for hybrid, GPU-based systems.
Algorithms of interest are split into computational tasks. The tasks’ execu-
tion is scheduled over the computational components of a hybrid system of
multicore CPUs with GPU accelerators using StarPU – a runtime system for
accelerator-based multicore architectures. StarPU enables to express paral-
lelism through sequential-like code and schedules the different tasks over the
hybrid processing units. The productivity becomes then fast and cheap as
the development is high level, using existing software infrastructure. More-
over, the resulting hybrid algorithms are better performance-wise than cor-
responding homogeneous algorithms designed exclusively for either GPUs or
homogeneous multicore CPUs.

∗INRIA, LaBRI, University of Bordeaux, France
†Innovative Computing Laboratory, University of Tennessee, Knoxville TN 37996
‡Authors are listed in alphabetical order.
§Preprint submitted to GPU-GEMs.

1

1 Introduction, Problem Statement, and Context

The large scale enabling of GPU-based architectures for high performance
computational science depends on the successful development of fundamen-
tal numerical libraries. Major issues in terms of developing new algorithms,
programmability, reliability, and user productivity must be addressed on
these systems. At the same time, it becomes paramount to efficiently sched-
ule algorithms over heterogeneous platforms to take advantage to the fullest
extent from the computational power of their hybrid components. This
chapter describes a methodology on how to develop these algorithms and
libraries in the area of linear algebra (LA). The impact of developing and
making LA libraries available is far reaching because many science and en-
gineering applications depend on them; these applications will not perform
well unless the linear algebra libraries perform well.

The hybridization methodology is twofold. First, we design highly efficient
algorithms optimized to run on a single GPU and its CPU host. This ap-
proach has been successfully used in the Matrix Algebra on GPU and Mul-
ticore Architectures (MAGMA) project [1] and the libraries stemming from
it. MAGMA is designed to be similar to the popular LAPACK library in
functionality, data storage and interface, to allow scientists to effortlessly
port any LAPACK-relying software components to take advantage of new
hybrid architectures. Second, we use the hybrid algorithms and kernels from
the first approach as building blocks of higher-level algorithms designed for
hybrid systems of multicore CPUs with multi-GPU accelerators. We use
the StarPU [2] runtime system to schedule those tasks on the computa-
tional units. StarPU enables to express parallelism through sequential-like
code and schedules the different tasks over the hybrid processing units. We
illustrate this approach with the Cholesky factorization, a fundamental and
representative LA algorithm.

2 Core Method

Our goal is to run numerical algorithms as fast as possible on complex archi-
tectures composed of multicore CPUs with GPU accelerators in a portable
way. The proposed method is in three steps. The first step consists of writ-
ing the numerical algorithm at a high-level of abstraction as a sequence of
multiple tasks of fine granularity; a task can be executed on a CPU core,

2

on a GPU or on both resources simultaneously (hybrid task). The second
step consists of providing high performance kernels with two interfaces, CPU
and GPU, implementing each task. These kernels may already be available
(such as vendor kernels) or may need to be designed (when highly optimized
vendor kernels are not available). The final step requires to integrate the
high-level algorithm along with the kernel in a runtime system. The runtime
system is then in charge of scheduling the different tasks onto the process-
ing units without violating the dependences of the high-level algorithm while
ensuring data availability and coherency.

We illustrate our method with the Cholesky factorization of dense matrices.
This algorithm can be decomposed into fine granularity BLAS calls. We
use CPU BLAS kernels from Intel MKL [3] and GPU BLAS kernels from
the MAGMA library. We schedule the operations using the StarPU runtime
system that exploits all computational CPU and GPU resources in a portable
way on complex heterogeneous machines, hiding the low-level complexity.

3 Algorithms, Implementations, and Evaluations

3.1 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition) of an n × n real
symmetric positive definite matrix A has the form A = LLT , where L is
an n× n real lower triangular matrix with positive diagonal elements. This
factorization is mainly used as a first step for the numerical solution of lin-
ear equations Ax = b, where A is a symmetric, positive definite matrix.
Such systems arise often in physics applications, where A is positive defi-
nite due to the nature of the modeled physical phenomenon. The reference
implementation of the Cholesky factorization for machines with hierarchical
levels of memory is part of the LAPACK library. It consists of a succession
of panel (or block column) factorizations followed by updates of the trail-
ing submatrix. The algorithm can easily be parallelized using a fork-join
approach since each update – consisting of a matrix-matrix multiplication
– can be performed in parallel (fork) but that a synchronization is needed
before performing the next panel factorization (join). A variant of this algo-
rithm is well suited for being executed onto a single GPU. We will present
it in Section 3.2. In the multi-GPU case, the number of synchronizations of
this algorithm would be a prohibitive bottleneck for performance. Instead,
the panel factorization and the update of the trailing submatrix are broken

3

1 for (k = 0 ; k < Nt ; k++)
2 A[k] [k] = po t r f (A[k] [k])
3 for (m = k+1; m < Nt ; m++)
4 A[m] [k] = trsm (A[k] [k] ,A[m] [k])
5 for (m = k+1; m < Nt ; m++)
6 for (n = k+1; n < m; n++)
7 A[m] [n] = gemm(A[m] [k] ,A[n] [k] ,A[m] [n])
8 A[m] [m] = syrk (A[m] [k] ,A[m] [m])

Figure 1: Tile Cholesky decomposition of a matrix A composed of Nt × Nt tiles.

into smaller tasks that operate on square submatrices of fine granularity, so
called tiles. The corresponding algorithm, initially developed for multicore
architectures [4, 5], is called tile Cholesky factorization. It consists of the
three nested loops of Figure 1 relying on four BLAS and LAPACK kernels.
Since the single-GPU hybrid algorithms we present can be used as kernels
for the tasks of multi-GPU algorithms, hybridization is twofold: at the task
level and between tasks.

3.2 Kernels for single CPU cores and single GPUs

Once the algorithm has been split into smaller tasks, high performance CPU
or GPU kernels implementing each task need to be provided. If both the
CPU and GPU implementations of a kernel are provided, the runtime will
furthermore have the opportunity to schedule the task on either hardware.
These kernels may already be available (such as vendor kernels) or may need
to be designed (when highly optimized vendor kernels are not available). In
the case of the tile Cholesky factorization, the four kernels needed are the
LAPACK and BLAS routines: spotrf, sgemm, strsm and ssyrk. Since the
corresponding highly tuned implementations are already provided by the
CPU vendor within the Intel MKL 10.1 library, we directly use the corre-
sponding sequential routines from that library. For GPUs, NVIDIA provides
high performance implementations of the sgemm and strsm and ssyrk rou-
tines within the CUBLAS library. In different cases, depending on hardware
and problem sizes, we use these kernels either from CUBLAS or MAGMA
BLAS. The LAPACK spotrf routine is not provided by NVIDIA. We use
the highly tuned version that we developed and made freely available in the
MAGMA [1] library. In the rest of this section, we present the underlying
algorithm as roadmap to design high performance hybrid algorithms for a
single CPU core enhanced by a GPU.

4

1 for (j = 0 ; j < ∗n ; j += nb) {
2 jb = min (nb , ∗n−j) ;
3 cublasSsyrk (’ l ’ , ’ n ’ , jb , j , −1, da (j , 0) ,∗ lda , 1 , da (j , j) ,∗ lda) ;
4 cudaMemcpy2DAsync (work , jb∗ s izeof (f loat) , da (j , j) , ∗ lda∗ s izeof (f loat) ,
5 s izeof (f loat)∗ jb , jb , cudaMemcpyDeviceToHost , stream [1]) ;
6 i f (j + jb < ∗n)
7 cublasSgemm(’n ’ , ’ t ’ , ∗n−j−jb , jb , j , −1, da (j+jb , 0) , ∗ lda , da (j , 0) ,
8 ∗ lda , 1 , da (j+jb , j) , ∗ lda) ;
9 cudaStreamSynchronize (stream [1]) ;

10 s p o t r f (”Lower” , &jb , work , &jb , i n f o) ;
11 i f (∗ i n f o != 0)
12 ∗ i n f o = ∗ i n f o + j , break ;
13 cudaMemcpy2DAsync (da (j , j) , ∗ lda∗ s izeof (f loat) , work , jb∗ s izeof (f loat) ,
14 s izeof (f loat)∗ jb , jb , cudaMemcpyHostToDevice , stream [0]) ;
15 i f (j + jb < ∗n)
16 cublasStrsm (’ r ’ , ’ l ’ , ’ t ’ , ’n ’ , ∗n−j−jb , jb , 1 , da (j , j) , ∗ lda ,
17 da (j+jb , j) , ∗ lda) ;
18 }

Figure 2: Hybrid Cholesky factorization for single CPU-GPU pair (spotrf).

Hybrid Cholesky Factorization for a single GPU Figure 2 gives
the hybrid Cholesky factorization implementation for a single GPU. Here
da points to the input matrix that is on the GPU memory, work is a work-
space array on the CPU memory, and nb is the blocking size. This algorithm
assumes the input matrix is stored in the leading n-by-n lower triangular
part of da, which is overwritten on exit by the result. The rest of the
matrix is not referenced. Compared to the LAPACK reference algorithm,
the only difference is that the hybrid one has three extra lines – 4, 9, and
13. These extra lines implement our intent in the hybrid code to have the
jb-by-jb diagonal block starting at da(j,j) factored on the CPU, instead of
on the GPU. Therefore, at line 4 we send the block to the CPU, at line 9
we synchronize to insure that the data has arrived, factor it next on the
CPU using call to LAPACK at line 10, and send the result back to the
GPU at line 13. Note that the computation at line 7 is independent of
the factorization of the diagonal block, allowing us to do these two tasks in
parallel on the CPU and on the GPU. This is implemented by “scheduling”
first the sgemm (line 7) on the GPU; this is an asynchronous call, hence
the CPU continues immediately with the spotrf (line 10) while the GPU is
running the sgemm.

To summarize, the following is achieved with this algorithm:
• The LAPACK Cholesky factorization is split into tasks;
• Large, highly data parallel tasks, suitable for efficient GPU computing,

are statically “scheduled” for execution on the GPU;
• Small, inherently sequential spotrf tasks (line 10), not suitable for

efficient GPU computing, are executed on the CPU using LAPACK;

5

• Small CPU tasks (line 10) are overlapped by large GPU tasks (line 7);
• Communications are asynchronous to overlap them with computation;
• Communications are in a surface-to-volume ratio with computations –

sending nb2 elements at iteration j is tied to O(nb× j2) flops, j ≥ nb.

3.3 Running on multiple GPUs using StarPU

Accelerator-based platforms, such as multicore architectures enhanced by
GPU accelerators, are complex to program. Not only an algorithm needs to
be split into smaller tasks to enable the concurrent use of all the computa-
tional units, but the data coherency must be ensured between the memories
of the different units. This complexity may be delegated to a runtime sys-
tem, StarPU. This methodology allows the programmer to focus on what to
do (e.g., choosing a scheduling strategy) while the runtime system takes care
of how to do it efficiently (e.g., ensuring data transfers and coherency). The
monitoring of the system by the runtime furthermore allows the design of
efficient, adaptative strategies. Because low-level technical issues are not the
preoccupation of the programmer anymore, the productivity is very high.

Once the algorithm has been conceptually split into tasks, the program may
be written as a succession of task insertions. A task being a function work-
ing on a data, those two notions are central to StarPU. First, all data are
first registered into StarPU. Once a data is registered, the application does
not access it anymore through its memory address but through a StarPU
abstraction, the handle. The handle does not change during the whole exe-
cution. If the runtime decides to schedule a task onto a unit that does not
have a valid copy of a data, it will take care of the data movement. The
pointer to the data will be internally updated but the handle exposed to
the application will remain unchanged. StarPU transparently guarantees
that when a task needs to access a piece of data, it will be given a pointer
to a valid data replicate. Second, assuming that an implementation of the
computational kernels is provided for each device (CPU core and GPU), a
multi-version kernel, the codelet, is defined on top of them. In the end, a task
can be defined independently of the device as a codelet working on handles.
The tasks are then executed according to a scheduling strategy that can be
either selected among pre-existing policies, or specifically designed for the
task. We now show in details how to program the tile Cholesky factorization
on top of StarPU.

6

1 f loat ∗ t i l e [mt] [nt] ; // Actua l memory p o i n t e r s
2 s ta rpu data hand le t i l e h a nd l e [mt] [nt] ; // StarPU a b s t r a c t i o n
3
4 for (n = 0 ; n < nt ; n++) // l oop on c o l s
5 for (m = 0 ; m < mt ; m++) // l oop on rows
6 s t a r pu ma t r i x da t a r e g i s t e r (& t i l e h a nd l e [m] [n] , 0 ,
7 &t i l e [m] [n] , M, M, N, s izeof (f loat)) ;

Figure 3: Registration of the tiles as handles of matrix data type.

Initialization. When initializing StarPU with starpu_init, StarPU auto-
matically detects the topology of the machine and launches one thread per
processing unit to execute the tasks.

Data registration. Each tile is registered into StarPU to be associated to
a handle. As shown in Figure 3, the tile_handle[m][n] StarPU abstraction
is obtained from each actual memory pointer, tile[m][n]. Several data
types are pre-defined for the handles. Here, tiles are registered as matrices
since a submatrix is itself a matrix.

Codelets definition. As shown at lines 38-42 for the sgemm_codelet
in Figure 4, a codelet is a structure that describes a multi-versioned ker-
nel (sgemm here). It contains pointers to the functions that implement
the kernel on the different types of units: lines 1-14 for the CPU and 16-
30 for the GPU. The prototype of these functions is fixed: an array of
pointers to the data interfaces that describe the local data replicates, fol-
lowed by a pointer to some user-provided argument for the codelet. The
STARPU_MATRIX_GET_PTR is a helper function that takes a data interface
in the matrix format and returns the address of the local copy. Function
starpu_unpack_cl_args is also a helper function that retrieves the argu-
ments stacked in the cl_arg pointer by the application. Those arguments
are passed when the tasks are inserted.

Tasks insertion. In StarPU, a task consists of a codelet working on a
list of handles. The access mode (e.g., read-write) of each handle is also
required so that the runtime can compute the dependences between tasks.
A task may also take values as arguments (passed through pointers). A
task is inserted with the starpu_insert_Task function. 1 Lines 33-41 in
Figure 5 shows how the sgemm task is inserted. The first argument is the
codelet, sgemm_codelet. The following arguments are either values (key-
word VALUE) or handles (when an access mode is specified). For instance,
a value is specified at line 34, corresponding to the content of the notrans

1Other interfaces not discussed here are available.

7

1 void sgemm cpu func (void ∗desc r [] , void ∗ c l a r g) {
2 int transA , transB , M, N, K, LDA, LDB, LDC;
3 f loat alpha , beta , ∗A, ∗B, ∗C;
4
5 A = STARPU MATRIX GET PTR(desc r [0]) ;
6 B = STARPU MATRIX GET PTR(desc r [1]) ;
7 C = STARPU MATRIX GET PTR(desc r [2]) ;
8
9 s t a rpu unpack c l a r g s (c l a r g , &transA , &transB , &M,

10 &N, &K, &alpha , &LDA, &LDB, &beta , &LDC) ;
11
12 sgemm(CblasColMajor , transA , transB , M, N, K,
13 alpha , A, LDA, B, LDB, beta , C, LDC) ;
14 }
15
16 void sgemm cuda func (void ∗desc r [] , void ∗ c l a r g) {
17 int transA , transB , M, N, K, LDA, LDB, LDC;
18 f loat alpha , beta , ∗A, ∗B, ∗C;
19
20 A = STARPU MATRIX GET PTR(desc r [0]) ;
21 B = STARPU MATRIX GET PTR(desc r [1]) ;
22 C = STARPU MATRIX GET PTR(desc r [2]) ;
23
24 s t a rpu unpack c l a r g s (c l a r g , &transA , &transB , &M,
25 &N, &K, &alpha , &LDA, &LDB, &beta , &LDC) ;
26
27 cublasSgemm(magma const [transA] [0] , magma const [transB] [0] ,
28 M, N, K, alpha , A, LDA, B, LDB, beta , C, LDC) ;
29 cudaThreadSynchronize () ;
30 }
31
32 struct s t a rpu pe r fmode l t cl sgemm model = {
33 . type = STARPU HISTORY BASED,
34 . symbol = ”sgemm”
35 } ;
36
37 s t a rpu code l e t sgemm codelet = {
38 . where = STARPU CPU|STARPU CUDA, // who may e x e cu t e ?
39 . cpu func = sgemm cpu func , // CPU imp lementa t ion
40 . cuda func = sgemm cuda func , // CUDA imp lementa t ion
41 . nbu f f e r s = 3 , // number o f hand l e s a c c e s s e d by t h e t a s k
42 . model = &cl sgemm model // per formance model (o p t i o n a l)
43 } ;

Figure 4: A codelet implementing sgemm kernel.

8

1 void hybr id cho l e sky (s ta rpu data hand le ∗∗Ahandles ,
2 int M, int N, int Mt, int Nt , int Mb)
3 {
4 int lower = Lower ; int upper = Upper ; int r i gh t = Right ;
5 int notrans = NoTrans ; int con j t r ans = ConjTrans ;
6 int nonunit = NonUnit ; f loat one = 1 .0 f ; f loat mone = −1.0 f ;
7
8 int k , m, n , temp ;
9 for (k = 0 ; k < Nt ; k++)

10 {
11 temp = k == Mt−1 ? M−k∗Mb : Mb ;
12 s t a rpu In s e r t Task (s p o t r f c o d e l e t ,
13 VALUE, &lower , s izeof (int) , VALUE, &temp , s izeof (int) ,
14 INOUT, Ahandles [k] [k] , VALUE, &Mb, s izeof (int) , 0) ;
15
16 for (m = k+1; m < Nt ; m++)
17 {
18 temp = m == Mt−1 ? M−m∗Mb : Mb ;
19 s t a rpu In s e r t Task (s t r sm code l e t ,
20 VALUE, &r ight , s izeof (int) , VALUE, &lower , s izeof (int) ,
21 VALUE, &conjt rans , s izeof (int) , VALUE, &nonunit , s izeof (int) ,
22 VALUE, &temp , s izeof (int) , VALUE, &Mb, s izeof (int) ,
23 VALUE, &one , s izeof (f loat) , INPUT, Ahandles [k] [k] ,
24 VALUE, &Mb, s izeof (int) , INOUT, Ahandles [m] [k] ,
25 VALUE, &Mb, s izeof (int) , 0) ;
26 }
27
28 for (m = k+1; m < Nt ; m++)
29 {
30 temp = m == Mt−1 ? M−m∗Mb : Mb;
31 for (n = k+1; n < m; n++)
32 {
33 s t a rpu In s e r t Task (sgemm codelet ,
34 VALUE, ¬rans , s izeof (notrans) ,
35 VALUE, &conjt rans , s izeof (con j t r ans) ,
36 VALUE, &temp , s izeof (int) , VALUE, &Mb, s izeof (int) ,
37 VALUE, &Mb, s izeof (int) , VALUE, &mone , s izeof (f loat) ,
38 INPUT, Ahandles [m] [k] , VALUE, &Mb, s izeof (int) ,
39 INPUT, Ahandles [n] [k] , VALUE, &Mb, s izeof (int) ,
40 VALUE, &one , s izeof (one) , INOUT, Ahandles [m] [n] ,
41 VALUE, &Mb, s izeof (int) , 0) ;
42 }
43
44 s t a rpu In s e r t Task (s s y rk code l e t ,
45 VALUE, &lower , s izeof (int) , VALUE, ¬rans , s izeof (int) ,
46 VALUE, &temp , s izeof (int) , VALUE, &Mb, s izeof (int) ,
47 VALUE, &mone , s izeof (f loat) , INPUT, Ahandles [m] [k] ,
48 VALUE, &Mb, s izeof (int) , VALUE, &one , s izeof (f loat) ,
49 INOUT, Ahandles [m] [m] , VALUE, &Mb, s izeof (int) , 0) ;
50 }
51 }
52
53 s t a r p u t a s k w a i t f o r a l l () ;
54 }

Figure 5: Actual implementation of the tile Cholesky hybrid algorithm with StarPU

9

variable. On the right of line 40, the handle of the tile (m,n) is passed in read-
write mode (key-word INOUT). Figure 5 is a complete implementation of the
tile Cholesky algorithm from Figure 1, showing the ease of programmability.

Finalization. Once all tasks have been submitted, the application can
perform a barrier using the starpu_task_wait_for_all() function (line
53 in Figure 5). When it returns, we can stop maintaining data coherency
and put the tiles back into main memory by unregistering the different data
handles. Calling starpu_shutdown() releases all the resources.

Choice or design of a scheduling strategy. Once the above steps have
been completed, the application is fully defined and can be executed as it is.
However, the choice of a strategy may be critical for performance. StarPU
provides several built-in pre-defined strategies that the user can select dur-
ing the initialization, depending on the specificities and requirements of the
application. When the performance of the kernels is stable enough to be
predictable directly from the previous executions (as it is the case with Tile
Cholesky factorization), one may associate an auto-tuned history-based per-
formance model to a codelet as shown at lines 32-35 and 42 in factorization),
one should associate an auto-tuned history-based performance model to a
codelet as shown on lines 32-35 and 42 in Figure 4. If all codelets are as-
sociated to a performance model, it is then possible to schedule the tasks
according to their expected termination time. The most efficient scheduling
strategy (among those available in StarPU) for the Cholesky factorization
is based on the standard Heterogeneous Earliest Finish Time (HEFT) [6]
scheduling heuristic which aims at minimizing the termination time of the
tasks on heterogeneous platforms. Given the impact of data transfers, es-
pecially when it comes to multiple accelerators, we extended this policy to
take data transfer into account and keep it as low as possible. StarPU also
provides a framework to develop ad hoc scheduling strategies in a high-level
way, but the methodology to write a scheduler in StarPU is out of the scope
of this description.

4 Final Evaluation

4.1 Performance results using single GPU

The performance of the hybrid Cholesky factorization from Figure 2 si-
multaneously running on a NVIDIA GTX 280 GPU and on one core of a

10

dual socket quad-core Intel Xeon running at 2.33 GHz is given in Figure 6.
The factorization runs asymptotically at 300 Gflop/s in single and almost
70 Gflop/s in double precision arithmetic. The performance has been evalu-

0

60

120

180

240

300

1024 2048 3072 4032 5184 6048 7200 8064 8928 10080

Gfl
op

/s

Matrix Size

MAGMA

MKL
LAPACK

(a) Single Precision.

1024 2048 3072 4032 5184 6048 7200 8064 8928 10080

Gfl
op

/s

Matrix Size

MAGMA

MKL

LAPACK

0

10

20

30

40

50

60

70

(b) Double Precision.

Figure 6: Parallel performance of MAGMA’s hybrid Cholesky on GTX 280 vs MKL 10.1
and LAPACK (with multi-threaded BLAS) on Intel Xeon dual socket quad-core 2.33GHz

ated on a number of NVIDIA GPUs, including the newest Fermi C2050. For
example, for matrix size of 9, 984 the hybrid algorithm runs at 631 GFlop/s
on the GTX480 and 507 GFlop/s on the C2050. The double precision per-
formance on the C2050 is 240 GFlop/s for the same matrix size.

4.2 Multi-GPU Overall Performance

We now present performance results for a hybrid system of eight Intel Ne-
halem X5550 CPU cores running at 2.67 GHz enhanced with three NVIDIA
FX5800 GPUs running at 1.30 GHz. The overall performance of the method
depends on the choice of the tile size which trades off parallelism and kernel
performance. For the sake of simplicity, we chose a constant tile size. We
empirically chose it equal to 960, which is well-suited for large matrices.
The corresponding to this tile size matrix-matrix multiplication (sgemm)
performances are respectively 20 Gflop/s per core (obtained with the Intel
MKL 10.1 library) and 333 Gflop/s per GPU (obtained with the MAGMA
0.2 library). A GPU kernel needs a dedicated CPU core to be executed.
Therefore, the node can be viewed as three GPU/CPU pairs and five sup-
plementary available CPUs. If the supplementary CPUs are not used, a
performance upper bound of the node is equal to 1000 Gflop/s; if they are
used, the upper bound becomes equal to 1100 Gflop/s.

Using the three GPUs the Cholesky factorization achieves 780 Gflop/s (Fig-

11

ure 7). This corresponds to a perfect speedup equal to 3. The use of the five

Figure 7: Performance scalability of the single precision Cholesky factorization.

supplementary cores allows to achieve 900 Gflop/s. The gap (120 Gflop/s)
is higher than the potential of those five CPU cores since their cumula-
tive sgemm peak is bounded by 100 Gflop/s. Although this result is non-
intuitive, it can be explained as follows. GPUs are very efficient on regu-
lar level-3 BLAS computations such as sgemm (333 Gflop/s) but not that
much on irregular level-2 BLAS kernels such as spotrf (56 Gflop/s). When
both CPUs and GPUs are available, the CPUs can run most of the spotrf
instances so that GPUs execute almost only sgemm operations. StarPU,
being able to detect on the fly that property, schedules 80% of the spotrf on
CPUs and dedicates GPUs for running sgemm whenever it can. Further-
more, the method transparently handles cases where the whole matrix does
not fit in the memory of a GPU (when the matrix is larger than 4 GB, see
Figure 7). Indeed, the runtime system simply moves back and forth parts
of the data from the GPU memory to the CPU main memory, taking care
of its coherency as it would do it between two different GPUs. Having a
strong impact on the overall performance, the amount of data movement is
automatically kept as low as possible according to the data-aware algorithm
mentioned in Section 3.3. Figure 8 shows the impact of the data-aware pol-
icy: for large matrices, the total amount of data transfers is reduced more
than twice, which results in an overall speed improvement of 25%.

12

Figure 8: Impact of the data-aware policy on the amount of data transfers and on perfor-
mance for the single precision Cholesky factorization.

5 Future Directions

The hybridization methodology presented in this chapter in the case of the
Cholesky factorization has been successfully applied to a number of fun-
damental linear algebra algorithms [7, 8] for a single GPU. For the case of
multi-GPUs however, some numerical algorithms (such as two-sided factor-
izations) are more complex to efficiently split into tasks of fine granularity
that can be run concurrently. Therefore, the high-level re-design of numeri-
cal algorithms remains a challenging work for many applications. A similar
methodology can be applied to execute algorithms on clusters of multicore
nodes accelerated with GPUs. However, several major bottlenecks need to
be alleviated to run at scale; this is an intensive research topic [9]. Finally,
when a complex algorithm (such as Communication-Avoiding QR [10]) needs
to be executed on a complex machine (such as an heterogeneous accelerated-
based cluster), scheduling decisions may have a dramatic impact on perfor-
mance. Therefore, new scheduling strategies will have to be designed to
fully benefit from the potential of those future large-scale machines. One of
the key concept will be to keep a strong interaction between the application
and the runtime system in order to provide the opportunity to the scheduler
to take the most appropriate decisions.

13

References

[1] S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA version 0.2 User
Guide. http://icl.cs.utk.edu/magma, November 2009.

[2] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures. Concurrency and Computation: Practice and Experience,
Euro-Par 2009 best papers issue, 2010.

[3] http://software.intel.com/en-us/intel-mkl/.

[4] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. A class of paral-
lel tiled linear algebra algorithms for multicore architectures. Parellel
Comput. Syst. Appl., 35:38–53, 2009.

[5] E. S. Quintana-Ort́ı and R. A. van de Geijn. Updating an LU factor-
ization with pivoting. ACM Trans. Math. Softw., 35(2):11, 2008.

[6] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. Parallel
and Distributed Systems, IEEE Transactions on, 13(3):260–274, 2002.

[7] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. Proc. of IPDPSW’10.

[8] S. Tomov, R. Nath, and J. Dongarra. Accelerating the reduction to
upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid
GPU-based computing. Parallel Computing, In Press, Corrected Proof,
2010.

[9] G. Bosilca, A. Bouteiller, A Danalis, M. Faverge, H. Haidar, T. Her-
ault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek,
A. YarKhan, and J. Dongarra. Distributed-Memory Task Execution
and Dependence Tracking within DAGuE and the DPLASMA Project.
Innovative Computing Laboratory Technical Report.

[10] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. Tile QR Factorization
with Parallel Panel Processing for Multicore Architectures. 24th IEEE
IPDPS, 2010.

14

