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Abstract—As tile linear algebra algorithms continue achieving In addition, a number of vendors provide libraries optindize
high performance on shared-memory multicore architecture, itis  for their own hardware such as Intel MKL, AMD ACML, IBM
a challenging task to make them scalable on distributed-meory ESSL (PESSL), and Cray XT LibSci. All the vendor libraries
multicore cluster machines. The main contribution of this p- . ’ . )
per is the extension to the distributed-memory environmentof include the suproutlngs of LAPACK and Scal APACK.
the previous work done by Hadri et al. on Communication- However, with the increment of the number of cores on
Avoiding QR (CA-QR) factorizations for tall and skinny matr ices each chip, these existing libraries start to see degrading
(initially done on shared-memory multicore systems). The fie performance on multicore (or manycore) architectures. One
granularity of tile algorithms associated with communicaion- important reason is that the libraries use the fork-joinrapph

avoiding techniqugs for the QR.factorization presents a hig for parallelism to implement their routines. The join ogiera
degree of parallelism where multiple tasks can be concurrety p p ) J

executed, computation and communication largely overlappd, WOrks as a barrier and increases the task graph’s critical
and computation steps fully pipelined. A decentralized dyamic path length substantially. Assuming a fixed number of tasks,
scheduler has then been integrated as a runtime system toincreasing the length of the critical path can serioushgetff
efficiently schedule tasks across the distributed resourse Our the program performance. For instance, the subroutine Rr Q

experimental results performed on two clusters (with dualeore NP . .
and 8-core nodes, respectively) and a Cray XT5 system with factorization in LAPACK uses a block algorithm. Given an

12-core nodes show that the tile CA-QR factorization is abléo ™ X n matrix A that is partitioned as follows:

outperform the de facto ScaLAPACK library by up to 4 times A A
for tall and skinny matrices, and has good scalability on up ¢ A= 1:5,1:b 1:b,b+1,n
3,072 cores. Apt1:mas Abtiim,b+1n
|. INTRODUCTION where b is the block size, the block algorithm 1) first fac-

ﬂm:zes the left column panel;.,, 1.4; 2) applies the panel
actorization result to the top row pandl;.; y+1,,; 3) then

F]o the trailing submatrix ofdy 1., p+1.n. All the three steps
are executed in a fork-join manner for which the length of
gpe critical path is increased. The same set of steps will be
pplied recursively to the submatrix ofyyi.m s+1.n UNtil

The method of least squares has been used in many scien
fields such as mathematics, physics, statistics, and edoso
where applications of data fitting, regression analysig al
production function modeling happen frequently. The peabl
is to find the solution of an overdetermined system of line

equationsAz = b with more equations than unknowns. Th . . )
he submatrix merely consists of a single column panel. The

shape of the matrix is tall and skinny. The modern classica o )
method to solve such a system is based upon QR factorizatl %aLAPACK QR factorization subroutine uses the same block

by first computingA = QR followed by solving the upper- agRofnthtm _astl__AI?,?CK.fln thlihpapler, Wti use the term “block
triangular systenRz = Q*b for z. QR factorization” to refer to this algorithm.

Various numerical libraries have supplied the QR facteriz% D_“”F‘g the last Sﬁvﬂ_al yearls vl\;e han? beer; Workmré; on
tion subroutine. LAPACK([1] provides a collection of linear esrl]g[nlntg newV\EJarba I'e mi.\hart?hge ra so ﬁv\\:\?re ]?r mlima' 0
algebra software for shared-memory systems. ScalAPA lectures. Yve befieve that Iné new soltware for muiaco

2], [3] includes a subset of LAPACK subroutines that iélrchitectures should have the following characteristiicse-

redesigned for distributed-memory message-passingmystegrain tasks for a higher degree of parallelism, asynchrenou
execution to eliminate synchronization points, and goadllo
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Their work was inspired by the tile QR factorization (avail-

Ll fte2) 1,3 (1.4 |15 able in PLASMA) and a communication-avoiding technique
v ¥ v v v (known as CAQR) that was introduced by Demmgél [8]. Their
A |22 2,3 | 2,4 | 2,5 original idea was to increase the degree of parallelism in

v -- -- s a shared-memory context. However, this algorithm has not

been explored on distributed-memory systems. We invastiga

2
v
3,1 3,2 0 7 ’ . ..

7 o ] S S and extend the algorithm to modern large-scale distributed
v v v v memory machines and demonstrate its high efficiency and
4l | 4e2) 14,3 |44 | 4.5 scalability. We call the distributed-version algorithmisid
Vv v ¥ v tributed tile communication-avoiding QR factorization.”
5,1 |5,2 5,3| |s,4| |s,5 In this paper, we also analyze the tile CA-QR factorization

in terms of operation count, number of messages, and commu-
Fig. 1. Tile QR factorization on a square matrix wiihx 5 tiles. Each tile hication volume. We then compare the .algorithm to previous
is df s:izeb x b and corresponds to a fine grain task. The arc§ show the déﬂprk such as LAPACK, ScalAPACK, tile QR (PLASMA)’
dependencies between the tasks. TSQR and CAQRIIB]. The tile CA-QR factorization has an
operation count that could be comparable to that of LAPACK

) ) ) and ScalLAPACK by choosing appropriate parameters. The
an updating-based algorithm that operates on matricesdstogommunication volume it performs is optimal (up to a factor
in a tile data layout [5],L[6]. A tile is & x b square submatrix ¢ two) and is better than that of ScaLAPACK, CAQR, and
and is stored in memory contiguously. In this paper, we U§R QR. It also has much less number of messages than tile
the term “tile QR factorization” to refer to the updatingsed QR.

QR factorization. o The distributed tile CA-QR factorization partitions a ma-
Unlike the block QR factorization that operates on panelgivs rows into D blocks of rows (i.e.,D domains). Then

the tile QR factorization operates on much smaller tiles\gee 5, 5 distributed-memory system with compute nodes, it

more fine-grained). Given a matrik consisting ofm, X 7, continues to partition theD domains into P subsets (one
tiles, matrixA can be expressed as follows: subset per node) using a 1D block distribution, whBre> P.

Ajn A oo Ay, Each node runs a single MPI process and is responsible for
Asqr Ao ... Ay, computing a numbeg of domains. For each column panel (of

: : _ : ) a tile width), the factorization algorithm performs indedent

' ' ’ ' QR factorizations in each domain by different processes in
Ampt Amp2 oo Amyny, parallel. Then, each domain updates its trailing submatrix
where 4; ; is a square tile of sizé x b. In the first iteration, concurrently. The third and final step, the local R factoosrfr
the tile QR factorization computes the QR factorizationtfier each domain are reduced by different processes to the final R
Aj 1. The factorization output ofi; ; is then used to updatefactor and the corresponding block-rows are again updated.
the set of tiles om4; ;’s right hand side in an embarrassingly The reduction operation among the domains adopts a
parallel fashion, that is{A;2,...,A1,,}. As soon as the binary-tree to attain the finaR factor. Due to the complex
update on any tiled; ; is finished, the update on tilé, ; can binary-tree reduction residing on the critical path of thene
read the modified; ; and proceed. In other words, wheneveputation’s task graph, we extended our dynamic scheduling
a tile-update on the-th row completes, its below tile onruntime system[[9] to support distributed tile CA-QR more
the (i + 1)-th row can start ifA;;1,; also completes. After efficiently. We added new features such as look-ahead depth
updating the tiles on the last,-th row, tile QR applies the and three levels of task priority to the runtime system. A
same steps to the trailing submatti.,,, 2., recursively. collection of trace analysis show that the new scheduling
Figurel1 illustrates the data dependency relationshipsdset runtime system has been improved significantly.
tasks during the first iteration given @ x 5 tiled matrix. This paper evaluates the efficiency of distributed tile CR-Q
Each tile located at [i, j] corresponds to a task that readsbs comparing it to vendor optimized ScaLAPACK libraries.
couple of inputs and modifies A[i, j]. For instance, tile A[2We conducted both strong-scalability and weak-scalgbilit
4] corresponds to a task that reads the output of two taskgperiments on two clusters and a Cray XT5 system consisting
located at [1, 4] and [2, 1] and then modifies A[2, 4]. Irof hundreds of thousands of 12-core nodes. The experimental
the tile QR factorization, the tasks within each row can besults show that our program is able to outperform ScalA-
executed in embarrassingly parallel. However, the seiplenPACK by up to 4 times, and exhibits good scalability from 1
dependency between tasks along a column clearly makes tihe3,072 cores (3,072 cores is the largest experiment we have
algorithm inefficient, especially for tall and skinny mags. attempted).

Hadri et al. presented a strategy to compute the QR fac-This paper includes the following new and original work:
torization on shared-memory multicore machines for tall ar(1) A major extension and improvement from shared-memory
skinny matrices[[[7]. Their approach considerably increassystems to distributed-memory systems. (2) First to amalyz
the number of parallel tasks located in the same colunmthe algorithm with respect to operation count, number of-mes

A:



sages, and communication volume. (3) An extended runtimeSuppose amn x n matrix A consists ofn, x n, tiles (m >
system to enable an efficient implementation of the distedu »), and b is the tile size for whichm, = 5t andn, = %.
algorithm. (4) First to demonstrate good scalability of th&ile CA-QR partitions the matrix'sn rows into D blocks:
algorithm on modern large-scale distributed-memory sgste A = [A;; Ay;...; Ap], whereA; is of dimension x n and
using up to 3,072 cores. is called “Domain;.” Note that matrix A is stored i x b tiles.
The rest of the paper is organized as follows. Sedfidbn The tiled matrix A that is divided intd horizontal domains
introduces the related work. Sectiohs] Ill ahdl IV describgan be expressed as follows:
the tile CA-QR factorization algorithm and the analysis of

. - . . . A A A1 p

the algorithm, respectively. Sectiéd V provides an ovewie b 2 b

of the dynamic scheduling runtime system and explains our -

extensions. SectioR VI presents the performance evahiatio Ampy  Amp, o Amy

on three distributed-memory systems. Sedfion VII sumneariz

our work. A AmeJrl.,l Ame+1,2 s Ame+1,nb
Il. RELATED WORK Azmy, | Azmy Az

D > D D "
In the mid 70s, Morven Gentleman introduced for sparse
matrices|[[10] the approach of splitting a matrix into sulmnat

ces allowing the reduction to be done independently and+ecu An;b,l A”'w
sively for the submatrices. Then, Pothen and Raghavan [11[]] ) _ ) )
developed the idea of parallelizing the factorization ofaa@ Where 4; ; is a tile of sizeb x b. In the first step, all the
by implementing distributed orthogonal factorizationsngs domains start to execute the tile QR factorization on the firs
Householder and Givens algorithms. Their approach dividegnel and the associated updates concurrently as showg.in Fi
the columns intoP subcolumns (wheré® is the number of [@. There is no data dependency or communication between
processors) and performs factorizations locally from whie  different domains. That is, each domain is independent of
final triangular factors are merged. the other domains. After the QR factorization of the first
Based on Pothen and Raghavan’s work, Demmel ef a|_r§nel Within.each domain is finished, each domaigets a
proposed a class of QR factorizations with the parallel parfex b UPPer triangular factof; IocatAed a1y gy - FOT
factorization, called Communication-Avoiding QR (CAQR)instance,R; is located atd, ; and R; is located atA%HJ.

The approach consists of performing the panel factorimatijyote that all theRz;'s belong to the first block-column for
on several columns thanks to a new algorithm called TSQRe first iteration. Next, the tile CA-QR factorization pemns
(Tall Skinny QR). The panels are divided into block-rowsdang reduction among all thé&;’s, wherei € {1,...,D}. The
they are factorized independently and then merged by usiggtput of the reduction is the final factor dt, ; assuming
either a binary or general reduction tree. An estimate of the — QR and R is stored in tiles. Then the final; ; will
performance for CAQR has been provided by the authors. pe applied to the top block-rof; », ..., A ,,, } to compute
Assuming that the QR factorization of a tall and skinnyR, , ... R, ,,}. The next iteration of the factorization can
matrix can be represented as a reduction, Langol [12] ie initiated on As.,,, 2., While the previous iteration is
plemented a methodology to perform the reduction by usirgll in progress as long as the dependencies are satisfied.
user-defined MPI operation and MMeduce. Moreover, in The factorization iterations are therefore pipelined whian
the context of grid computing, by identifying bottlenecks i potentially hide the light points of synchronizations reqd
ScalAPACK, Agullo et al. [[1B] developed an approach t@uring the reduction step.
computing the QR factorization by articulating the CAQR Before describing the distributed tile CA-QR factorizatjo
factorization with a topology-aware middleware in order tque briefly overview the six kernel subroutines used by the
confine intensive communications. Contrary to all the wesi factorization. For more details of these kernels, pleafs te
work on QR, they build trees that are adapted for a particulgection 3 of the Hadri et al. papér [7].
grid environment. The first four kernel subroutines are invoked locally within
a domain.

o dgeqgrt: R[kK], V[kK], T[k,k] «+ dgeqrt(A[k,K])
Essentially the tile CA-QR factorization is an integration  dgeqrt computes the QR factorization of a tile A[kk]
(or mixed version) of the CAQR factorization and the tile  and generates three outputs: an upper triangular tile

QR factorization. The basic idea is to store a matrix in  R[k,k], a unit lower triangular tile V[k,k] containing the
a tile data layout and divide the matrix into a number of Householder reflectors, and an upper triangular tile T[k,kK]

domains (i.e., blocks of rows). Each domain performs a local for storing the accumulated transformations.

QR factorization independently. After finishing the locaRQ « dt sqrt: R[kK], V[i,K], T[i,k] «+ dtsgrt(R[k,k], A[i,k])
factorization, each domain participates in a global reiduct After dgeqrt is called, dtsqrt stacks tile R[k,k] on top
to compute the finaR factor. of tile A[i,k] and computes an updated QR factorization.

A'mb,nb

Ill. TiLE CA-QR FACTORIZATION



The subroutine updates the tile R[k,k] and generates a tiéstributed Tile CA-QR Factorization: Given P processes
V[i,k] and an upper triangular tile T[i,k]. V[i,k] and T[i,k on a distributed-memory system, we distribute a matriX’s
store the Householder reflectors and the accumulatddmains across different processes by 1-D block distdbuti
transformations, respectively. Each proces$; owns a numben% of domains fromD o, to

o dor mgr : R[k,j] « dormgr(V[k,K], T[k,K], A[K,j]) D%(i+1)71. Although D is a parameter used at the afgorithm
dormqr applies dgeqrt's output (i.e., V[k,K], T[k,Kk]) tolevel, we assumé > P so that a process owns at least one
tile Alk,j] located on the right hand side of A[k,k] anddomain. A process may consist of one or more threads running
computes the R factor R[k,]]. on multiple cores. The algorithm of the distributed tile QR

o dtsssnyr: R[k,j], Afi,j] < dtsssmqr(V[i,k], T[i,k], factorization is shown as follows:

Rk, Afi.j]) . — . _

dtsssmar applies dtsqrt's output (i.e., V[i k], T[ik]) @ Algorithm 3 Distributed Tile_CAQR Algorithm
stacked R[k,j] and A[i,j], and then updates the R factor S'S”'b“ted—T"e—CAQR(A’ mp, M, O, P)

. - . r < Z& fnumber of rows per process*/
R[k’l] and A[I’l]’ respectwely. nd < = [*number of domains per process*/

The Domai n_Ti | e_QR algorithm applies the above four ds « ‘7 /*domain size*/

: : : : for each tile column k— 0to n;, — 1 do
kernel subroutines to factorize a domain of size nrowscols root < |k/ds] ["get the index of the current oot domain®/

tiles starting from the position A[l, J]. For instance, Higcan [*process Py, rank €an factorize its owmd domains in paralle*/
be viewed as a single domain that applies this algorithmeNot  for each domain k- 0to nd — 1 do

that here 1, J are indexed frofh it (d + my_rank x nd + 1) > root then
! I+ my_rank X nr+1i X ds

/*[1,K] is the top left corner of domaini*/
Algorithm 1 Domain Tile_QR Algorithm Domain_Tile_QR(A, I, k, (my_rank+1)<nr-l, n;-k)
Domain Tile_QR(A, I, J, nrows, ncols) en(??grlf
R[LJ], VII,31, T[1,J] < dgeqrt(A[l,J]) ; g
for j «+ J+1to J+ncols-1 /*along I-th row*/ do [*binary-tree merge*/

; ; LB < my_rank x nd, UB + LB+nd-1
AlLj] + dormar(V[1.J], T[1.3], A[Li]) for me 110 [loga(D - root)] do
end for 2

m—1
for i« I+1 to I+nrows-1 /*along J-th column*Ho dl < root, d2« dl +2

- ; : hile d2<D d
RI13], VIi,J), Ti,3] « dtsqrt(AllJ, Ali.J) " v OL d2¢ [LB, UB] then
end for ! '

for i «— I+1 to I+nrows-1 /*trailing submatrix update*do enc(j:(?;‘ltmue
for j <« J+1to J+ncols-1do

. i ) ) . L P1 <+ di1/nd, P2+ d2/nd
dRy,j], Ali,j] «—dtsssmqr(V[i,J], T[i,J], R[Ljl, Al,j]) i1  dl x ds. i2 < d2 x ds
end for ’

end for Processes P1, P2 exchange A[il, k-1], Afi2, k...np-1]
Merge_DomaingR, A, i1, i2, k, ny-k)
dl +=2™m, d2 +=2™

. . . end while
The remaining two kernel subroutines are used in the . 4or

reduction step that involves merging a collection of dorsain end for

o dttart: R[iy,K],V[iz2,K]Tliz,Kl«dttgrt(R[i;,K], Rliz,K])
This is the “merge” operation. dttqrt stacks one domain’s Figure [2 illustrates the operations @i stri buted_
factor R[ij,k] on top of another domain’s R[k] and Tile_CAQR. It shows a matrix of12 x 3 tiles that is
computes an updated R[K]. It also generates an upperdistributed across four domains. Each domain is stored and
triangular tile V[ix,k] and an upper triangular tile Bfk]. computed by one process and has a submatriX of3 tiles.

o dttssngr: Afiy,j], Ali2,j] < dttssmqr(V[b,Kk], Tliz,k], The figure shows the corresponding operations in the first

Ali1,jl, Ali2,j]) iteration. That is, each domain invok&mai n_Ti |l e_ (R

After dttgrt is called, dttssmqr applies the output of dttqin parallel followed by a binary-tree merge between the first
to update A[i,j] and Afi2,j] ( € [k + 1,n)) that are panels of each domain. The second iteration would be the same
located on the right hand side of Rk] and R[b,k], as the first iteration except for working on a trailing subrxat

respectively. of size11 x 2 tiles.
The Mer ge_Donai ns algorithm merges two R factors IV. ALGORITHM ANALYSIS
from a pair of domains and updates two trailing rows on their |, i section, we present the total number of operations
right hand sides. (for both sequential and parallel versions), the number of
i : i messages and communication volume for the tile CA-QR
Algorithm 2 Merge Domains Algorithm factorization. We also compare the metrics to those ofedlat
Merge Domains(R, A, i1, i2, k, ncols) QR factorizations
/*merge two R factors from two domains*/ '
R[i1,k], V[i2,K], T[i2,K] <+ dttqrt(R[i1,k], R[i2,K]) A. Operation Count
[*update the coupled il-th and i2-th rows*/ .
for j < k+1 to k+ncols-1do We use aggregate analysis to calculate the number of
g\[fil,j], Ali2j] < ditssmar(V[i2,k], T[i2,K], AliL,j], Ali2,j]) operations for each kernel. Note that each kernel takespas in
enda for

tiles of sizeb x b.




\ L] Q< | , ‘?ﬂ are of size x (n;, — k + 1) tiles.

| Dy Domain T# QR } ‘ H 4} .
‘ 1 | J 1 ‘ ‘ .0 3 2 C my mp
T - A | u Tatsssmar = (46 + sb )Z[(3 — kmod =) (ny — k) +
D1 Domain_Tile_QR! { q)l k=1
| [ ] i | D— k-1 Nk
- Eind 5 w5 =| ( /D )y (e = k)]
D, Domain_Tile_QR T | ¢2 — 3,2 i — @
ullinn 1] ] f\ it ggm=g)
1] L] R L ]
| Dy | | Dmn:\in Tic QR ‘ ¢37
| | | | [T [] _ dttgrt is the merge operation and do?&3 floating opera-
(a) (b) ) (a) (e) tions. At iterationk, the binary tree ha® — k + 1 leaf nodes
and D — k internal nodes.
Ny
Fig. 2. The operations of distributed tile CA-QR. (a) Matéxis divided Tsrgre = Z(D - k)gbf’ - %bf’nb(z D —ny)

into four domains horizontally. (b) We now appBonai n_Tile_QR to
each domain in parallel. (c) Each domain computed an R fdotated in
the first column. We merg& and Ry, Rz and Rs. (d) We mergeRo and dttssmar does; (46°+ sb?) floating point operations. Every
Ry and get the final factory. (e) At the beginning of the second iteration,merge operation dttgrt is followed by a numbey — & of
domain Dy has2 x 2 tiles and the other three domains ha¥vex 2 tiles. dttssmqr operations.
Similarly, we continue to apply (b), (c), (d) to the four newndains in the

trailing submatrix. b

k=1

1
Tuttssmgr = Z(D — k) (ny — k)§(41)3 + sb)
k=1
. . . . . 3 2 S D Np
dgeqrt does2b? floating point operations. For each iteration = 20°n;(1+ @)(5 - F)
k, dgeqrt is invokedD — n’jb‘/lD times. There are,, iterations,
thus The total number of operations of the sequential tile CA-QR
is the sum of the above six equations:
ny
ngeqrt Z(D — k _;) X 2b3 Ttile-caq’r - ngeq'r“t + Tdor"mq'r + Tdtsq'rt
k=1 mb/ +Tdtsss7nq7“ + Tdttq'r‘t + Tdttssmqr'
3 3,mp — 1 my mpmny — 1 2 S n Db
= - —-—_— = — ~ 2n°(14+ — - =+ —
WD —b(CR) 2 = = ) it gm =g+ 5

Compared to the operation count of the standard LAPACK
dormgr does3b? floating point operations. At iteratioh, QR factorization, that iSTapack = 2n*(m — %),

. k—1 . .

there existD ~ /D domains each of yvhlch has a numbeh”e_caqr w4 ) (m -2 B L 3Db—n s

ny, — k + 1 of tile columns. Every domain applies dormar to-——= = DT p— = (Ut )0t p)-
apack 3

all the tiles on its top row except for the first one.

Based upon the above equation, we can make the following

np

Taormar = Z(D _ k-1 Yy — k) x 3% ~ 348 D2 observations: .
Pt my/D 2 o Ifm>>nandb > s, e ~ 14 . Note thats:
apac -
is the domain size and typically a Iange number.
101.3 . . . . . |f D — Ttile-caqT — § 1+ i)
dtsqrt does°b° floating point operations. At iteratioh, . Moy 7 5( 15/

there existD — 77157113 domains and one of them is the root « If we choose domain sizéz: > 10 andg > 5, the
domain. The root domain has: — (k mod ")+ 1 tile rows operation count of tile CA-QR is comparable to that of
while the other domains havé tile rows. LAPACK.

We also use the same method as usediby.cqqr 1O
k1 m,. 1063 Compute the number of operations for the parallel tile CA-

p

mpy mpy
Tarsare = Z(H —kmod —=~ + (D — -~ 1)=5)=5~ QR. Instead of counting all th& domains, we only count
k=1 5 the number of% domains located within a process to com-
. m,
~  (2mpnp — np(np + min(ny, Hb)))gbs pute Tygegres Taormars Tatsqres ANATaessemqr. Moreover, the

process can participate in at most a numbetogf D) dttgrt
andlog(D)(n, — k) dttssmqr operations at each iteratibn

dtsssmaqrdoesib3+ sb? floating point operations, wheeds ~ Therefore,
a parameter used to implement dtsssmdg.the inner tile size
which divides the tile sizé. At iterationk, there areD — =1 20 (m—5)(1+ 5)
P

H H H D T, ar. tile-caqr —
domains. The root domain conastsﬁ — (kmod ) +1 par. tilecad

tile rows andn;, — k + 1 tile columns. The remaining domains

2 S
b(1+4+ —)log D.
+n (+4b)og



TABLE |
COMPARISON OFTILE CA-QRWITH RELATED ALGORITHMS

Operation Count (Sequential) Operation Count (Parallel) # Message§ Communication Volume
LAPACK 2n*(m — 2) - - -
2(im—n
Scal APACK 2n2(m — 2) nilmey) 3nlog P (n? + bn) log P
2 _n P
CAQR 2n*(m — 2) w 3% Jog P (n*+ 2)log P
TSQR 2n2(m — 2) 2nZm - 2 4 2pflog P log P 2 jog P
- n s 2n%(m—%)(1+5%) n M r M
Tile QR 2n*(m — 2)(1+ %) ) g (2)2Lem n2lem
Tile CA-QR || 2n%(m— 2 +20)(1+ 5) | 223048 | 214 2)log D | (2)*log P n?log P
B. Number of Messages algorithms by-7. Note thats is an inner tile size which divides

We compute for the process that has the maximum numbie tile sizeb and is typicaII_y a small number. For the operation
of messages. We know that communication only occurs durifgunt of the parallel algorithms, from the least to the most a
the binary tree merge where the dttqrt and dttssmqr opeatic>CaLAPACK, CAQR, tile QR, tile CA-QR, and TSQR.
are involved. Each dttqrt is followed bfn, — k) dttssmqr ~ LAPACK is a library used for s_harg-memory systems and
operations and both dttqrt and dttssmqr require two messags does not have any communication. Although TSQR has
exchanges to stack two tiles. Give processes, for eachthe minimum number of messages, it uses a much larger tile

iteration k, a process is involved in at mostg, P merge Siz€ such thab = n given anm x n matrix. CAQR also
stages, thus, has a smaller number of messages than tile CA-QR, but the

- algorithm typically uses the fork-join approach and is not
_ suited for dynamic scheduling (e.g., the whole step of panel
;bgg(P)(nb kt1)x2 factorization must be completed before the step of trailing
2 matrix update can start). Differently, tile CA-QR provides
~ log,(P)n? = logQ(P)Z—Q. more fine grain tasks operating on tiles and is able to be
executed in a fully asynchronous manner where computation
and communication can be overlapped greatly. At first glance
Similar to computing the number of messages, we computenight appear that the binary tree merge in tile CA-QR is
for the process that has the maximum number of words coalso a barrier, but it does not necessarily lead to idle CPU
municated with other processes. Since each message contéine since the amount of fine grain tasks on each process (i.e.
a tile of b2 words, the existing tasks before the merge and the newly generated
dtt ssngr tasks) can keep the process’s cores busy and hide
the merge-related communication. On the other hand, in the
D. Comparison with Related Algorithms case of a 1-D block row layout, the communication volume of

We compare tile CA-QR with LAPACK, ScalLAPACK, %2 logP _has been proven to t_)g optimal_for QR factorization
CAQR, TSQR, and tile QR factorizations for tall and skinnfonsidering the length of a critical path is at least P [8].
matrices. The numbers for CAQR and TSQR are provided by
Demmel’s paper ]8]. As for ScaLAPACK and CAQR, we let
P, > P, assuming a very tall and skinny matrix input. We build upon our previous work of Task-based Basic

We have implemented the tile QR factorization ohinear Algebra Subroutines (TBLAS) dynamic runtime system
distributed-memory systems in our previous work [9]. WE9], [14] to realize tile CA-QR on distributed-memory syste.
briefly introduce it here. The distributed tile QR factotipa This section first overviews the TBLAS runtime system, then
maps tiles to aP, x P. process grid using the 2-D blockdescribes how we extend TBLAS to support tile CA-QR
cyclic data distribution.? = P, x P, is the total number efficiently.
of processes. A tile indexed by [i, j] will be allocated to the Given a matrixA of m; x n, tiles and a multicore cluster
processP[i mod P,.,j mod P.] so that each process storegonsisting of N nodes each with" cores, we launch on each
a set of tiles and computes the tasks that modify the tiles. Wede N; a processP;, respectively. The rows of matrid
skip the calculation of the number of messages and words foe preallocated t@vV nodes by 1D block distribution. That
tile QR and give the result in Tablé I. is, P; (onnodeN;) stores a submatrix of A frong527)-th to

As shown in Tabléll, the first two columns present the nuni<~ (i + 1) — 1)-th tile-rows. Note that by default TBLAS uses
ber of floating point operations for sequential algorithms a a general 2D block cyclic data distribution. But the 1D data
parallel algorithms, respectively. For the sequentiabatgms, distribution which is a special case of 2D data distributi®n
tile QR and tile CA-QR have more operations than the otharore suitable for tall and skinny matrices.

Messagepar. tile-caqr =

C. Communication Volume

Wordpar. tile-caqr — 10g2 (P)TL2

V. THE DISTRIBUTED FRAMEWORK



A. TBLAS Runtime System

iterations (i.e., from i-th and i+1-th panels) are conndcte

Every process runs an instance of the TBLAS runtinfey tasks computing the global binary-tree reduction across
system in parallel, which are started bpi r un. As shown domains. The merge tasks must be executed earlier in order
of threads: task-generation thread, computing thread, a#@main, the panel factorization tasks should also be egdcut
communication thread. Given a node withcores, we launch as early as possible because many trailing-matrix updaks ta
T computing threads ori" different cores, as well as a@'€ awaiting a smgle panel-factorization task. 3) Loolahe
task-generation thread and a communication thread on tifothe nextd iterations can help pull tasks not only from the

arbitrary cores. The task-generation thread executes €4l

next iteration but also from the nedtiterations.

QR program and generates tasks to fill in its node’s local taskESsentially we want to make sure the TBLAS runtime
queues. Also, whenever becoming idle, a computing thre8¥Stem executes the tasks on the critical path as early as
picks up a ready task from the ready task queue and compLR9§5'b|e- We modified the runtime system in the following
it. After finishing a task, the computing thread scans th&ays:

task queues to resolve data dependency and finds the finished We added the lookahead feature to the runtime system.

task’s children and starts them. The communication thread i
responsible for sending and receiving data between a parent
task and its children to meet the data dependency demands.
An advantage of the tile CA-QR factorization is that we do
not need a dedicated core to perform MPI communications
because of the high parallelism degree and the minimized
communication cost of the algorithm. .

B. Extensions

Our first implementation of tile CA-QR with the original
TBLAS runtime system did not yield good performance au-
tomatically. By profiling the execution using the Intel teac
analyzer and collector [15], we found that each core’s campu
ing time is only half of the wall-clock execution time, which
implies there is nearly 50% idle time on each core.

Figure[4 a) shows an example trace of the first version of tile
CA-QR running on 16 dual-core nodes. The colored regions
represent the computation time, and the gaps represertlthe i
time during the execution. By analyzing the trace, we found
a few reasons for the poor performance. 1) In the program’s
corresponding task graph, between domains, tasks from two

The lookahead deptld is a parameter to the runtime
system and has been tuned to provide the best per-
formance. A depth ofl means that before the current
iteration’s submatrix update is completed, the néxt
panels belonging to the nextiterations can be factorized
immediately after the panels are updated.

We assign priorities to different tasks. The binary-tree
merge tasks have the highest priority. At iteratign
the tasks located between the i-th column and (i+d)-th
column have the 2nd highest priority given a lookahead
depth ofd. The remaining tasks have a regular priority.
We also added message priorities to the communication
subsystem of the runtime system. The output of a high
priority task will be assigned a high priority accordingly
and sent out by the communication thread earlier than
the other messages. Similarly, the receiver will process
the high priority message earlier too.

The task window size has been tuned to optimize the
program performance. With a small window size, the
runtime system is not able to see tasks in the other
domains and the following iterations so that there is a
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Fig. 3. TBLAS runtime system.

lesser degree of parallelism. But a large window size
will increase the runtime system overhead due to longer
queues and lengthy access time to search for and resolve
data dependencies in the queues.

Figure[4 displays examples of traces for three different
versions of the runtime system. Figlife 4 a) shows the trace of
the original version that has significant idle time. Aftettisey
appropriate task priorities, the performance is improvgd b
27% as shown in b). Figufd 4 c) shows the trace of our final
optimized version after applying all the above modificasion
and tunings. The final version is better than the original one
by 35%. It is easy to see the significantly reduced empty gaps
(i.e., idle time) in the figure.

VI. PERFORMANCEEVALUATION

In this section, we provide strong scalability and weak
scalability performance results on three different disttéd-
memory machines. We also present the crossover point of
distributed tile CA-QR for matrices that are not tall andhski.

We conducted experiments on two clusteai(g and
Newt on at University of Tennessee) and a Cray XT5 system
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(a) The original version (b) An improved version (c) The final version

Fig. 4. Traces for tuning the TBLAS runtime system. The da@iions denote computation time and the empty gaps denatdiide. After applying a
number of modifications, the final version of the TBLAS rungirsystem has much less idle time and is faster than the drigimsion by 35%.

(Jaguar at Oak Ridge National Laboratory) to compare tileumber of cores from 1 to 384, tile CA-QR improves from
CA-QR with the ScaLAPACK library. Whenever possible7.5 to 1700 GFLOPS while ScaLAPACK improves from 5.8
we use a vendor-optimized ScaLAPACK library. Taljlé Ito 947 GFLOPS with a slowdown in the end.

lists the hardware and software resources we used to do our -

experiments. The Grig cluster has two cores per node, the Weak Scalability

Newton cluster has eight cores, and the Cray XT5 system hasor weak scalability experiments, we fix the amount of
12 cores per node. On Newton and the Cray XT5 systegomputation on each core. When we double the number
we use Intel MKL and Cray XT LibSci libraries to conductof cores, we also double the total amount of computation
ScaLAPACK experiments, respectively. accordingly. Weak scalability demonstrates a programiliyab

to solve larger problems with more resources.

In our experiment, each matrix input has a fixed number
For strong scalability experiments, we fix the matrix sizef eight tile-columns but different number of tile-rows. &fh
and increase the number of cores to solve the matrix. Theme double the number of cores, we double the number of tile-
we compare the overall number of GFLOPS (i%%) rows in the input. For instance, the input to the single-core

A. Strong Scalability

between tile CA-QR and ScaLAPACK. experiment haé4 x 8 tiles. And the two-core experiment has
The matrix input to the Newton cluster and Cray XT% matrix input of128 x 8 tiles.
system is 0f512 x 32 tiles with a tuned tile size of = 200. Figure[® shows the performance of the weak scalability

The matrix input to the Grig cluster is a bit smaller (due texperiments on three different systems. Besides tile CA-
its smaller memory), that is;12 x 16 tiles with a tile size QR and ScalLAPACK, we also display the theoretical peak
200. Since the configuration of a process gfdx P. can performance and the serial DGEMM performance times the
affect the performance of ScaLAPACK significantly, we trieshumber of cores for each system. The DGEMM performance
all possible grid configurations and used the best procéds gserves as an upper bound for all of our experiments. Again for
for ScaLAPACK. We also found that running one MPI procesScaLAPACK, we always choose the best process grid and use
per core provides better performance than running one Mk vendor optimized ScaLAPACK library whenever possible.
per node with multithreaded computational kernels foraafd There are two subfigures for each system. The top subfigure
skinny matrices (i.e., up to 27% faster on the clusters astiows the overall number of GFLOPS, and the bottom one
150% faster on the Cray XT5 system). Thus we use one M§Hows the number of GFLOPS per core (i.e., the overall
process per core in our ScaLAPACK experiment. GFLOPS divided by the total number of cores). Ideally the

Figure[® displays the overall performance of tile CA-QRumber of GFLOPS per core is a constant and does not change
and ScaLAPACK on three systems. On the Grig cluster, as Wvem 1 to n cores so that the per-core performance curve is
increase the number of cores from 1 to 64, the performanitat.
of tile CA-QR increases from 4.3 GFLOPS to 206 GFLOPS. In Fig.[8, a) and b) display the overall performance and
By contrast ScaLAPACK increases from 2.4 GFLOPS to 1igr-core performance of tile CA-QR and ScaLAPACK on the
GFLOPS. Grig cluster, respectively. We set the tile size= 200. As

On Newton, between 1 and 128 cores, the performancesbfown in b), the per-core performance of tile CA-QR keeps at
tile CA-QR increases from 7.3 to 620 GFLOPS at which tima rate of 4 GFLOPS that outperforms ScaLAPACK by nearly
the parallel efficiency is 66.4%. Then from 128 cores to 256ur times.
cores, tile CA-QR’s parallel efficiency decreases sliglathd On the Newton cluster, the ScaLAPACK experiment invokes
its overall performance rises to 810 GFLOPS. The perfahe QR factorization subroutine provided by Intel MKL 10.1
mance of ScaLAPACK is less than that of tile CA-QR, whicland sets tile sizé = 200. Figure[6 d) shows that the per-
rises from 7.1 to 423 GFLOPS. core performance of tile CA-QR decreases slowly from 6.9 to

On the Cray XT5 system (Fid.l 5 c), with an increasing.0 GFLOPS from 1 to 256 cores. But ScaLAPACK does not



TABLE Il
EXPERIMENT RESOURCES

Gi g cluster Newt on cluster Cray XT5
Processor Intel Xeon 3.2GHz Intel Xeon E5530 2.4GHz AMD Opteron 2.6GHz
Cores per processor 1 4 6
Processors per node 2 2 2
Nodes 60 170 18,688
Memory per node 4 GB 16 GB 16 GB
Peak perf. per core 6.4 GFLOPS 9.6 GFLOPS 10.4 GFLOPS
Serial DGEMM nperf. 5.6 GFLOPS 8.96 GFLOPS 9.7 GFLOPS
Network Myrinet Infiniband Cray SeaStar2+
(O Linux 2.6 Scientific Linux 5.3 Compute Node Linux 2.2
Compilers gcc 64bit 3.4.4 Intel compilers 11.0 PGl 9.0.4
MPI lib mpich-mx 1.1 OpenMPI 1.2.8 Cray XT MPT 3.5.1
BLAS/LAPACK lib Goto 1.26 Intel MKL 10.1 Cray XT LibSci 10.4.4
ScaLAPACK lib Netlib ScaLAPACK 1.8 Intel MKL 10.1 Cray XT LibSci 10.4.4
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the factorization. A two-dimensional block cyclic distuifon,

perform as well as tile CA-QR. For instance, the performansémilar to ScaLAPACK, would then be necessary to efficiently
of ScaLAPACK on 256 cores is only 1/6 of that of tile CA-QRhandle general matrix sizes and overcome this bottlenddk. T

On the Cray XT5 system, we use the ScaLAPACK sulwould also require a revision of the algorithm correspoghtjin
routine provided by Cray XT LibSci 10.4.4 and let tile sizelhis is out of the scope of this paper which focuses on how
b = 300. In Fig.[8 e), with an increasing number of coreso factorize tall and skinny matrices in a more efficient way.
from 1 to 3,072, tile CA-QR increases from 7.4 GFLOPS to
17.5 TFLOPS while ScaLAPACK increases from 4.4 GFLOPS
to 4.4 TFLOPS. In f), the per-core performance of tile CA- The QR factorization of tall and skinny matrices has been
QR decreases gradually from 7.4 GFLOPS to 6.3 GFLORSed in many scientific fields that require solving least sgjua
between 1 and 12 cores. The reason for the performance dRégblems. This paper extends an existing algorithm foresihar
is related to the NUMA node architecture and requires d4Rémory architectures and enables it to work efficiently on
optimized memory-affinity setup. Afterward tile CA-QR seal Mmodern large-scale distributed-memory systems. We have im
well from 12 to 3,072 cores. By contrast ScaLAPACK dropBlemented the algorithm with an augmented TBLAS runtime
from 4.4 to 1.4 GFLOPS per core as we increase the numis¥gtem. The distributed tile CA-QR factorization has a high

VII. CONCLUSION AND FUTURE WORK

of cores, which is 1/4 of that of tile CA-QR. degree of parallelism and allows for a fully dynamic exewuiti
_ that can overlap computation and communication greatly. We
C. Crossover Point have presented the algorithm, the analysis of the algorithm

This section discusses how distributed tile CA-QR behav#¢ extension of the runtime system, and the performance
if the matrix is not tall and skinny. In our experiment, a matr €valuation. Our experiments on two multicore clusters and

has a fixed number of 512 tile-rows but an increasing numb2iCray XT5 system demonstrate that the tile CA-QR factor-
of tile-columns. The tile size is set th = 200. Since we ization is scalable on up to 3,072 cores and can outperform
want to view the number of columns as a unique variablthe SCaLAPACK library by up to 4 times for tall and skinny
we choose to use a fixed number of 192 cores. We conduckedtrices.

the experiment on the Cray XT5 system. Note that 192 coresh summary, we make the following contributions: (1) An
correspond to 16 nodes. extension from shared-memory systems to distributed-nmgmo

Figure[T shows the crossover point when a matrix becon@stems; (2) A detailed analysis of the algorithm with respe
wider and wider until it is eventually square. We can see thi& operation count, number of messages, and communication
the performance of tile CA-QR becomes worse than that ¥¢lume; (3) An extended TBLAS runtime system to support
ScalLAPACK after the number of columns is greater than 12N efficient distributed implementation; (4) First demoatson
of the number of rows. This is because the matrix’s 512 til@f the scalability of the algorithm on large scale distrémist
rows have been distributed to 16 processes by the 1D bldfiemory systems. The design principles and implementation
distribution. Every process is allocated with 32 tile-raavel is  techniques of our tile CA-QR approach can also be applied to
only responsible for the computation on its own 32 tile-row&ther parallel software on modern manycore cluster systems
As the algorithm visits and computes the matrix from top left is important for the software to create fine-grain taskayeh
to bottom right, more and more processes on the top beco@@nchronous execution, good data locality, and minimized
idle, which results in a load imbalance and poor performand&®mmunication cost to achieve high performance.

Figure[8 shows an example of the tile CA-QR factorization Our future work includes looking for new methods to
that explains the cause of idle processes. The matrix inpsit fpartition matrices across processes to improve load balanc
8 x 4 tiles and is partitioned across eight processes. We can §fegeneral size matrices, and applying the approach toraplv
from the figure that when the algorithm is working on the thir@ther linear algebra problems on distributed-memory rooitg
tile-column, processeB, and P, become idle until the end of Systems.
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