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~ Abstract— Previous studies have reported that common dense and World Community Grid (WCQG) As of September 2009,
linear algebra operations do not achieve speed up by using 18, BOINC had 566,000 active computers (hosts) worldwide
multiple geographical sites of a computational grid. Because such for an average total processing power2of Pflop/§. Further-

operations are the building blocks of most scientific applications, following th ting trend id fi
conventional supercomputers are still strongly predominant in MOr€, Tollowing the supercomputing trénds, grid computing

high-performance computing and the use of grids for speeding up infrastructures have successfully exploited the emerbangl-
large-scale scientific problems is limited to applications exhibiting ware technologies. The Folding@Home project [7] — which
parallelism at a higher level. We have identified two performance aims at understanding protein folding, misfolding, ancted
bottlenecks in the distributed memory algorithms implemented in diseases — achieves9 Pflop/s thanks to grid exploiting spe-

ScalLAPACK, a state-of-the-art dense linear algebra library. Firg, -~ . . .
because ScaLAPACK assumes a homogeneous communicatiorfia/iZed hardware such as graphics processing units (GPUs)

network, the implementations of ScaLAPACK algorithms lack Mmulticore chips and IBM Cell processors.
locality in their communication pattern. Second, the number However, conventional supercomputers are strongly pre-
of messages sent in the ScaLAPACK algorithms is significantly qominant in high-performance computing (HPC) because dif-

greater than other algorithms that trade flops for communication. S . .
in this paper, we present a new approach for computing a QR ferent limiting factors prevent the use of grids for solving

factorization — one of the main dense linear algebra kernels — of 1arge-scale scientific problems. First of all, security uiee
tall and skinny matrices in a grid computing environment that ments for grids are not completely met in spite of the
overcomes these two bottlenecks. Our contribution is to articul& important efforts in that direction [25]. Second, contrdoy
a recently proposed algorithm (Communication Avoiding QR) their original purpose (the terngrid itself is a metaphor

with a topology-aware middleware (QCG-OMPI) in order to . :
confine intensive communications (ScaLAPACK calls) within the for making computer power as easy to access as an electric

different geographical sites. An experimental study conducted POWer grid [18]), grids have not been historically very user
on the Grid’5000 platform shows that the resulting performance friendly. Third, not all the grid infrastructures are dinséamed
increases linearly with the number of geographical sites on large- for HPC, which is only one of the aims of grid computing.
scale proble’ms (and is in particular consistently higher than Eyven recent commercial offerings such as Amazon Elastic
SCaLAPACK'S). Compute Cloud (EC3)are not considered mature yet for HPC
because of under-calibrated components [38]. Furthermore
|. INTRODUCTION other aspects are still the focus of intensive researchh suc

Grid computing [18] as a utility has reached the mainstreafi; o V'€ discovery [11_]’ ss:h.e.dullng [elc. ,
Many large-scale scientific problems have been succegsfull But, above all, the major limiting factor to a wider usage of

solved thanks to the use of computational grids (or, Sing_rids by computational scientists to solve large-scal®leras

ply, grids). These problems cover a wide range of scientifiié the fact that common dense linear algebra op_erations to no
disciplines including biology (protein folding [28]), mieihe achieve performance speed up by using multiple geograph-
(cure muscular dystrophy [9]), financial modeling, earthig ical sites of a computational grid, as reported in previous

simulation, and climate/weather modeling. Such scientifgiudies [30], [31]'_ Bta_qause t_hos.e operati.ons are the .bgildi
breakthroughs have relied on the tremendous processingrpoWOCkS of most smenﬂﬂg appllcqtlons, the immense pracgss
ower delivered by grids vanishes. Unless the application

provided by grid infrastructures. For example, the Beryelé3 . ) )
Open Infrastructure for Network Computing (BOINC) [3]presents parallellsm at a higher level (most_ of the applica-
gathers the processing power of personal computers plcti)vicjl?nS running on BOINC_ are actualpmbarrassingly pgrgllel

by people volunteering all over the world. This processin'g" loosely coupled), its performance becomes limited by
power is then made available to researchers through ditferd'® Processing power of a single geographical site of the

projects such as Climateprediction.net [2], Rosetta@ hiddie
Lhttp:/Avww.worldcommunitygrid.org
1This work was partly supported by the EC FP7 (grant # FP6-280%5 2ht t p: // boi ncst at s. cont
033883), and NSF-CCF (grant #881520). Shttp://aws.amazon.com/ec2/



grid infrastructure, ruining the ambition to compete againMPICH-G2 [26], PACX-MPI [20] or GridMPt. MPI has
conventional supercomputers. In this paper, we presenb@&come thale factolanguage for programming parallel appli-
new approach for factorizing a dense matrix — one of theations on distributed memory architectures such as chiste
most important operations in dense linear algebra — in a gidogrammers have gained experience using this programming
computing environment that overcomes these two bottleneckaradigm throughout the past decade; scientific librarsas h
Our approach consists of articulating a recently proposéden developed and optimized using MPI. As a consequence,
algorithm (Communication Avoiding algorithm [15]) withit is natural to consider it as a first-choice candidate for
a topology-aware middleware (QCG-OMPI[13]) in order t@rogramming parallel applications on the grid in order to
confine intensive communications (ScaLAPACK calls) withitbenefit from this experience and to be able to port existing
the different geographical sites. applications for the grid. The GrADSproject had the pur-

In this study, we focus on the QR factorization [21] of gose of simplifying distributed, heterogeneous compugng
tall and skinny (TS) dense matrix into an orthogonal matrisnaking grid application development as well as performance
@ and an upper triangular matri® and we discuss how tuning for real applications an everyday practice. Amorigeot
our approach generalizes to all one-sided factorizati@®R, ( accomplishments, large matrices could be factorized thank
LU and Cholesky) of a general dense matrix (Section IV)o the use of a grid whereas it was impossible to process
Furthermore, we focus on the computation of the triangultttem on a single cluster because of memory constraints [31],
factor R and do not explicitly form the orthogonal matrix. [37]. The resource allocation (number of clustes;) was
However, we show that the performance behavior would l&itomatically chosen in order to maximize the performance.
similar if we compute() or not. However, for matrices that could fit in the (distributed) mem

The paper is organized as follows. We present the relatety of the nodes of a cluster, the experiments (conductelal wit
work and define the scope of our paper in Section II. 15caLAPACK) showed that the use of a single cluster was
Section I, we present the implementation of a QR factopeptimal [31]. In other words, using multiple geographicés
ization of TS matrices that confines intensive communicatioled to a slow down of the factorization. Indeed, the overhead
within the different geographical sites. Section IV dises due to the high cost of inter-cluster communications was not
a performance model that allows us to understand the bak#&lanced by the benefits of a higher processing power.
trends observed in our experimental study (Section V). WeFor the same reason, the EC2 cloud has recently been
conclude and present the future work in Section VI. shown to be inadequate for dense linear algebra [30]. In this
latter study, the authors address the question whethed clou
computing can reach the Top30Q.e., the ranked list of the
fastest computing systems in the world. Based on expersnent

We present here the related work. We first describe previotsnducted with the parallel LU factorization [21] implenteh
experimental studies of the behavior of dense linear atgebin the HP Linpack Benchmark [16], not only did they observe
operations in a grid computing environment (Section II-Aa slow down when using multiple clusters, but they also
We then succinctly present the operation we focus on #hmowed that the financial cost (in dollars) of performance
this paper, the QR factorization, as it is implemented ifnumber of floating-point operations per second, in Gflop/s)
Scal APACK, a state-of-the-art dense linear algebra libramcreases exponentially with the number of computing cores
for distributed memory machines (Section 1I-B). We conéinuused, much in contrast to existing scalable HPC systems such
with the introduction of a recently proposed algorithm tngd as supercomputers.
flops for communication (Section 1I-C). To take advantage The HeteroScaLAPACK projettims at developing a par-
in a grid computing environment of the limited amount oéllel dense linear algebra package for heterogeneousecehi
communication induced by such an algorithm, we need tares on top of ScaLAPACK. This approach is orthogonal (and
articulate it with the topology of the grid. We present ircomplementary) to ours since it focuses on the heterogeneit
Section 1I-D a middleware enabling this articulation by (ipf the processors [34], whereas we presently aim at mapping
retrieving the system topology to the application and evign (the implementation of the algorithm to the heterogeneity of
allowing the application to reserve suitable resourcesh@un the network (topology) through QCG-OMPI. In our present
articulation of the algorithms with the topology is critida work, we do not consider the heterogeneity of the processors
an environment built on top of heterogeneous networks sudhother fundamental difference with HeteroScaLAPACK is
as a grid. We conclude this review by discussing the scopetb&t we are using TSQR, an algorithm that is not available in
this paper (Section II-E). ScalLAPACK.

Il. BACKGROUND

B. ScaLAPACK'’s QR factorization

The QR factorization of arl/ x N real matrix A has the

Thel idga of performing dense linear alggbra operatior_13 fBtm A = QR, whereQ is an M x M real orthogonal matrix
the grid is not new; however, success stories are rare in the
related bibliography. Libraries that have an MPI [17] ifaee :gtfif)t1//VVVVVVS-9r'de'-fOFQH_ vl Grid Aoslication Develommé
: P oftware Support for High-Level Grid Application Developmiédt t p:
for handl_lng the communication Iayer3 such _as_ScaLAPAC www. hi persof t . ri ce. edul gr ads/
or HP Linpack, can be run on a grid by linking them to spp:/mww.top500.0rg

a grid-enabled implementation of the MPI standard such ashttp://hcl . ucd.i e/ proj ect/ Het er oScaL APACK

A. Dense linear algebra on the grid



and R is anM x N real upper triangular matrix. Providetlis factorization of a domain is the operation performed on the
nonsingular, this factorization is essentially uniquettis, it leaves of the binary tree associated to the reduction. T yi
is unique if we impose the diagonal entriesfto be positive. operation then used in this allreduce operation is as fallow
There is a variety of algorithms to obtain a QR factorizatioffom two input triangular matrice®; and R., stack R; on
from a given matrix, the most well-known arguably being thop of R, to form [R;; R.], perform the QR factorization of
Gram-Schmidt algorithm. Dense linear algebra librariegeha[R;; Rs], the outputR is given by the R-factor ofR;; Rs].
been traditionally focusing on algorithms based on unitagne can show that this binary operation is associative alsis
transformations (Givens rotations or Householder reflesli commutative if one imposes each computed R-factor to have
because they are unconditionally backward stable [21]e&v nonnegative diagonal entries. As for any reduce operattin,
rotations are advantageous when zeroing out a few elemestiape of the optimal tree depends on the dimension of the
of a matrix whereas Householder transformations are advalata and the underlying hardware. CAQR with a binary tree
tageous when zeroing out a vector of a matrix. Therefore, foas been studied in the parallel distributed context [1%] an
dense matrices, we consider the QR factorization algorith@AQR with a flat tree has been implemented in the context
based on Householder reflections. The algorithm consistsadfout-of-core QR factorization [23]. CAQR with a flat tree
applying successive elementary Householder transfoomati delivers wide parallelism and, for this reason, has beed use
of the form H = I — rvv” wherel is the identity matrixy  in the multicore context [10], [27], [33].
is a column reflector and is a scaling factor [21]. Previous implementations of CAQR have used either a flat
To achieve high performance on modern computers witfee or a binary tree. One key originality of our present work
different levels of cache, the application of the Houseépldlies in the fact that our reduction tree is neither binary fitr
reflections isblocked[36]. In ScaLAPACK [8],b elementary It is tuned for the targeted computational grid, as illustdain
Householder matrices are accumulated withpaael(a block- Fig. 1(b). First we reduce with a binary tree on each cluster.
column) V' consisting ofb reflectors. The consecutive applicaThen we reduce with a second binary tree the result of each
tions of these reflectors { H,...Hy) is then constructed all cluster at the grid level. The binary tree used by ScaLAPACK
at once using the matrix equalitf; H>...H, = I — VTV? PDGEQR?2 (Fig. 1(a)) minimizes the sum of the inter-cluster
(T is ab x b upper triangular matrix). However, this blockingmessages and the intra-cluster messages. Our tree is e@sign
incurs an additional computational overhead. The overhegdminimize the total number of inter-cluster messages.
is negligible when there is a large number of columns to We now give a brief history of related algorithmic work
be updated but is significant when there are only a few contrast to the reference work of Demmel et al. [15]. The
columns to be updated. Default values in the ScaLAPACKarallelization of the Givens rotations based and Housrol
PDGEQREF subroutine are NB=64 and NX=128, where NB igflections based QR factorization algorithms is a weltistd
the block sizeb, and NX is the cross-over point; blockingarea in Numerical Linear Algebra. The development of the
is not to be used if there is less than NX columns are tgdgorithms has followed architectural trends. In the |8&0s
be updated. PDGEQRF uses PDGEQR?2 to perform the panedarly 1980s [24], [29], [35], the research was focusing
factorizations. Due to the panel factorization, the aljoni on algorithms based on Givens rotations. The focus was on
in ScaLAPACK requires one allreduce operation for eadaktracting as much parallelism as possible. We can interpre
column. In other words, ScaLAPACK uses at leaslog,(P) these sequences of algorithms as scalar implementatiarg us

messages to factor alf-by—NV matrix. a flat tree of the algorithm in Demmel et al. [15]. In the
o o o late 1980s, the research shifted gears and presentedtaigsri
C. Communication Avoiding QR (CAQR) factorization based on Householder reflections [32], [12]. The motivation

In this paper we propose an implementation of the so-calleghs to use vector computer capabilities. We can interpret
“Communication Avoiding QR” (CAQR) algorithm originally all these algorithms as vector implementations using a flat
proposed by Demmel et al. [15]. CAQR belongs to the classwée and/or a binary tree of the algorithm in Demmel et
the (factor panel) / (update trailing matrixdlgorithms. For all al. [15]. All these algorithms require a number of messages
algorithms in this class, the update phase is entirely @idthy greater tham:, the number of columns of the initial matrix
the panel factorization step and is easily parallelizableere- A, as in ScaLAPACK. The algorithm in Demmel et al. [15]
fore, we only discuss the panel factorization step. The Iparie a generalization with multiple blocks of columns with a
factorization in CAQR is based on the “Tall and Skinny QRhontrivial reduction operation, which enables one to diide
factorization algorithm (TSQR) [15]. In contrast to the BA&a  number of messages of these previous algorithms by the block
PACK panel factorization algorithm (subroutine PDGEQR2}ize,b. Demmel et al. proved that TSQR and CAQR algorithms
which requires one allreduce operation per column, TSQRduce a minimum amount of communication (under certain
requires one allreduce operation percolumns whereb is  conditions, see Section 17 of [15] for more details) and are
an arbitrary block size. The number of communications rumerically as stable as the Householder QR factorization.
therefore divided by. The volume of communication stays

. The number of operations on the critical path is
:2;:;23 in TSQR by an :dditioné}(logz(P)N?’) ter?n. D. Topology-aware MPI middleware for the grid: QCG-OMPI
TSQR effectively trades communication for flops. Programming efficient applications for grids built by feder

TSOR is a single complex allreduce operation [15]. Thating clusters is challenging, mostly because of the diffee

TS matrix is split in P block-rows, calleddomains the of performance between the various networks the applicatio
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(a) lllustration of the ScaLAPACK panel factorization rimg on aM- (b) lllustration of the TSQR panel factorization routine eni/-by-
by-3 matrix. It involves one reduction per column for the norzetion 3 matrix. It involves only one reduction tree. Moreover thelugtion
and one reduction per column for the update. (No update forlake tree is tuned for the grid architecture. We only have two riataster
column.) The reduction tree used by ScaLAPACK is a binary. tire¢his messages. This number (two) is independent of the number ofmoslu
example, we have 25 inter-cluster messages (10 for all columnghb This number is obviously optimal. One can not expect less thaririter-
last, 5 for the last). A tuned reduction tree would have gil€ninter- cluster communications when data is spread on the three iduste

cluster messages (4 per column but the last, 2 for the last). déethat
if process ranks are randomly distributed, the figure can beevo

Fig. 1. lllustration of the ScaLAPACK and TSQR panel factation routines on a/-by-3 matrix.

has to use. As seen in the table of Figure 2(a) we can obsebetween groups of processes, such as latency and bandwidth.
two orders of magnitude between inter and intra-clustenief As a consequence, the application will always be executed on
on a dedicated, nation-wide network, and the difference can appropriate resource topology.
reach three or four orders of magnitude on an international,The QosCosGrid system features QCG-OMPI, an MPI
shared network such as the Internet. As a consequence, ithplementation based on OpenMPI [19] and targeted to com-
application must be adapted to the intrinsically hierarahi putational grids. Besides grid-specific communicationuess
topology of the grid. In other words, the communicatiothat enable communicating throughout the grid described
and computation patterns of the application must match the[13], QCG-OMPI has the possibility to retrieve topology
physical topology of the hardware resources it is executed énformation provided to the scheduler in the JobProfile at ru
ScalLAPACK, and many of the linear algebra libraries foiime. We explain in Section Ill how we have implemented and
scientific computing, are programmed in MPI. MPI is fit forticulated TSQR with QCG-OMPI in order to take advantage
homogeneous supercomputers: processes are mostly rindistf the topology.
guishable one from another, and the standard does not gpecif
anything about process / node placement. E. Scope

As a consequence, to efficiently program a parallel appli- The QR factorization of TS matrices is directly used as a
cation on top of a non-uniform network, typically on top okernel in several important applications of linear algelsiar
a hierarchical network like a grid, MPI must be extended t@stance, block-iterative methods need to regularly perfo
help programmers adapt the communications of the apmitatithis operation in order to obtain an orthogonal basis for
to the machine. MPICH-G2 [26] introduced the concept of set of vectors. TSQR can also be used to perform the
colors to describe the available topology to the applicatiganel factorization of an algorithm handling general neasi
at runtime. Colors can be used directly by MPI routines ifCAQR). This present study can be viewed as a first step
order to build topology-aware communicators (the abstact towards the factorization of general matrices on the grid.
in MPI that is used to group processors together). Howeler, t  Grids aggregate computing power from any kind of re-
application is fully responsible to adapt itself to the tm@y source. However, in some typical grid projects, such as Supe
that is discovered at runtime. link@Technion, the Lattice project, EdGES, and the Condor
The QosCosGrid system offers a resource-aware grid mep@ol at Univ. of Wisconsin-Madison, a significant part of the
scheduler that gives the possibility to allocate resoutbes power comes from a few institutions featuring environments
match requirements expressed in a companion file called thith a cluster-like setup. In this first work, we focus our
application’s JobProfile that describe the future communicastudy on clusters of clusters, to enable evaluation in aestab
tions of the application [6]. ThelobProfile defines process and reproducible environment. Porting the work to a general
groups and requirements on the hardware specificationseof tfesktop grid remains a future work.
resources that have to be allocated for these processes sudfinally, we emphasize that the objective of this paper is
as amount of memory, CPU speed, and network propertiesshow that we can achieve a performance speed up over the



Latency (ms) Orsay | Toulouse | Bordeaux | Sophia
Orsay 0.07 7.97 6.98 6.12
Toulouse 0.03 9.03 8.18
Bordeaux 0.05 7.18
Sophia 0.06
Throughput (Mb/s) | Orsay | Toulouse | Bordeaux | Sophia
Orsay 890 78 90 102
Toulouse 890 77 90
Bordeaux 890 83
Sophia 890

(b) Grid’5000: a nation-wide experimen-
tal testbed.

(a) Communications performance on Grid’5000

Fig. 2. Grid’5000 communication characteristics.

grid with common dense linear algebra operations. To ilfdet identifiers from the system (using a specific MPI attribute)
our claim, we compare our approach against a state-of-tlemd then creates one MPI communicator per group, using
art library for distributed memory architectures, ScaLAPA the MPI_Commsplit routine. Once this is done, the TSQR
In order to highlight the differences, we chose to base oalgorithm has knowledge of the topology that allows it toggtda

approach on ScaLAPACK (see Section IlI). to the physical setup of the grid.
The choice to introduce a requirement of similar computing
1. QCG-TSQR: ARTICULATION OF TSQRWITH power between the groups however introduces constraints on
QCG-OMPI the reservation mechanism. For example, in some experiment

We explain in this section how we articulate the TSQRliscussed later (Section V), only half the cores of some of
algorithm with QCG-OMPI in order to confine intensivethe machines were allocated in order to fit this requirement.
communications within the different geographical sites d@fnother possibility would have been to handle load balagcin
the computational grid. The first difference from the TSQRssues at the algorithmic level (and not at the middleware
algorithm as presented in Section II-C is that a domain ligvel) in order to relieve this constraint on the JobProfitel a
processed by a call to ScaLAPACK (but not LAPACK aghus increase the number of physical setups that would match
in [15]). By doing so, we may attribute a domain to a group afur needs. In the particular case of TSQR, this is a natural
processes (instead of a single process) jointly perforntimg extension; we would only have to adapt the number of rows
factorization. The particular case of one domain per pmceaitributed to each domain as a function of the processingpow
corresponds to the original TSQR (calls to LAPACK). At theledicated to a domain. This alternative approach is future
other end of the spectrum, we may associate one domain perk.
geographical site of the computational grid. The choicehef t
number of domains impacts performance, as we will illustrat
in Section V-C. In all cases, we call our algorithm TSQR (or
QCG-TSQR), since it is a single reduce operation based on dn Tables | and Il, we give the amount of communication
binary tree, similarly to the algorithm presented in Sactie and computation required for ScaLAPACK QR2 and TSQR
C. in two different scenarios: first, when only the R-factor is

As explained in Section II-D, the first task of developingequested (Table I) and, second, when both the R-factor and
a QCG-OMPI application consists of defining the kind ofhe Q-factor are requested (Table II). In this model, we agsu
topologies expected by the application in a JobProfile. That a binary tree is used for the reductions and a homegeneou
get enough flexibility, we request that processes are sjpibt i network. We recall that the input matrig is A/-by-N and
groups of equivalent computing power, with good networthat P is the number of domains. The number of FLOPS is
connectivity inside each group (low latency, high bandhjdt the number of FLOPS on the critical path per domain.
and we accept a lower network connectivity between the Assuming a homogeneous network, (the modelization of
groups. This corresponds to the classical cluster of dlsistéetereogeneous network in the same manner is straightfor-
approach, with a constraint on the relative size of the ehgst ward,) the total time of the factorization is then approx-
to facilitate load balancing. imated by the formula: time = (§ x (# msg) + « *

The meta-scheduler will allocate resources in the physicdlol. data exchangedhi + « (# FLOPS), where « is the
grid that matches these requirements. To enable us to ctenplaverse of the bandwidthj the latency, andy the inverse
an exhaustive study on the different kind of topologies we caf the floating point rate of a domain. Although this model
get, we also introduced more constraints in the reservatimnsimplistic, it enables us to forecast the basic trendgeNo
mechanism, depending on the experiment we ran. For edhht in the case of TS matrices, we hale > N. First we
experiment, the set of machines that are allocated to the jolbserve that the time to compute both theaind theR factors
are passed to the MPI middleware, which exposes those groigpgxactly twice the time for computing® only. Moreover,
using two-dimensional arrays of group identifiers (the grouurther theoretical and experimental analysis of the atlgor
identifiers are defined in the JobProfile by the develope(see [15]) reveal that the structure of the computation & th
After the initialization, the application retrieves thegmoup same in both cases and the time to ob@iis twice the time

IV. PERFORMANCE MODEL



# msg vol. data exchanged # FLOPs
ScaLAPACK QR2 || 2NTog,(P) | log,(P)(N?/2) (2MN? —2/3N3)/P
TSQR log, (P) log,(P)(N?/2) | (2MN? —2/3N3)/P + 2/3log,(P)N3
TABLE |

COMMUNICATION AND COMPUTATION BREAKDOWN WHEN ONLY THE R-FACTOR IS NEEDED

to obtain R. This leads to Trend 1. For brevity, we mainly V. EXPERIMENTAL STUDY
focus our study on the computation &f only.

Trend 1: The time to compute bot§ and R is about twice )
We present an experimental study of the performance of

the time for computing’? only. the QR factorization of TS matrices in a grid computing
One of the building blocks of the ScaLAPACK PDGEQR_%nvironment. We conducted our experiments on Grid’5000.

|mplemen.tat|(_)n and of our T.SQR algorlthm s the domamql is platform is a dedicated, reconfigurable and contrtdlab
QR factorization of a TS matrix. The domain can be pfocesssg erimental grid of 13 clusters distributed over 9 citigs i
by a core, a node or a group Of. nqdes. we can not expeshnce. Each cluster is itself composed of 58 to 342 nodes.
performance from our parallel distributed algorithms to b?he clusters are inter-connected through dedicated blbek fi

better than the one of its domanial kernels. This leads It'q ‘1 :
total, Grid’5000 roughly gathers 000 CPU cores featurin
Trend 2. In practice, the performance of the QR facmrimti%ultiple architecturesg e s g

of TS matrices obtained from LAPACK/ScaLAPACK on a

domain (core, nod_e, small number of nodes) is a small fmc“?our clusters based on relatively homogeneous dual-psoces
of the peak. { is likely to be small.) nodes, ranging from AMD Opteron 246 (2 GHz/1MB L2
Trend 2: The performance of the factorization of TS Magache) for the slowest ones to AMD Opteron 2218 (2.6
trices is limited by the domanial performance of the QRSHz/2MB L2 cache) for the fastest ones, which leads to the-
factorization of TS matrices. oretical peaks ranging from.0 to 10.4 Gflop/s per processor.
We see that the number of operations is proportionalto These four clusters are the 93-node cluster in Bordeaux, the
while all the communication terms (latency and bandwidtf§12-node cluster in Orsay, a 80-node cluster in Toulouse,
are independent of\/. Therefore whenM increases, the and a 56-node cluster in Sophia-Antipolis. Because these
communication time stays constant whereas the domarhlsters are located in different cities, we will indistityc
computation time increases. use the termgluster and geographical site(or site) in the

Trend 3: The performance of the factorization of TS mafollowing. Nodes are interconnected with a Gigabit Etherne
trices increases witd/ until the parallel system reaches itsSWwitch; on each node, the network controller is shared by

computational peak, and the performance climbs to a plate?®th processors. On each cluster, we reserved a subset of 32
where it does not progress anymore. dual—processor nOdeS, |eading to a theoretical peakl@fO

to 665.6 Gflop/s per node. Our algorithm being synchronous,
to evaluate the proportion of theoretical peak achievednin a

increases, the latency term is hidden by the computaticlm.'[e|h(aterogeneous environment, we consider the efficiencya)f th
This leads to better performance. We also note that inmgasiSIOV\;ﬁSt cot_mplo nentk a? a bas_z _for the Izvatij; t'gf?' '/I'he;\efore,
N enables better performance of the domanial kernel sincén? eoretical peak of our grid Is equal 200 OpIS.

can use Level 3 BLAS when the number of columns is great(éansequence of the constraints on the topology expressed by
than, perhaps}00. This is Trend 4 our implementation in QCG-OMPI (see Section II-D) is that

L _in some experiments, machines with dual 2-cores processors
Trgnd 4: The performance of the factorization of TS matriyare booked with the ability to use 2 cores (over 4) only.
ces increases With/. The performance of the inter and intra-cluster communi-
Finally, we see that the latency term2og, (P) for TSQR  cations is shown in Table 2(a). Within a cluster, nodes are
while it is 2N log,(P) for ScaLAPACK QR2. On the other connected with a GigaEthernet network. Clusters are iaterc
hand, the FLOPs term has a non parallelizable additiongcted with10 Gb/s dark fibers. The intra-cluster throughput is
2/31log,(P)N?® term for the TSQR algorithm. We see thatonsistently equal t890 Mb/s but varies fron61 to 860 Mb/s
TSQR effectively trades messages for flops. We expect TS@Rtween clusters. Inter-cluster latency is roughly gretitan
to be faster than ScaLAPACK QR2 fa¥ in the mid-range intra-cluster latency by two orders of magnitude. Betwaen t
(perhaps between five and a few hundreds). For laf§er processors of a same node, OpenMPI uses a driver optimized
TSQR will become slower because of the additional flopfer shared-memory architectures, leading td7aus latency
This is Trend 5. (We note that for larg¥, one should stop and a5 Gb/s throughput.
using TSQR and switch to CAQR.) One major feature of the Grid5000 project is the ability of
Trend 5: The performance of TSQR is better than ScalLAthe user to boot her own environment (including the opegatin
PACK for N in the mid range. WherN gets too large, the system, distribution, libraries, etc.) on all the compgtirodes
performance of TSQR deteriorates and ScaLAPACK becomiesoked for her job. All the nodes were booted under Linux
better. 2.6.30. The tests and benchmarks were compiled with GCC

A. Experimental environment

For the experiments presented in this study, we chose

The number of operations is proportional A& while the
number of messages is proportionalXo Therefore whenV



# msg vol. data exchanged # FLOPs
ScaLAPACK QR2 || 4NTog,(P) | 2log,(P)(N?/2) (4AMN? —4/3N3)/P
TSQR 2log,(P) 2log,(P)(N?/2) | (4MN? —4/3N3)/P + 4/3log,(P)N3
TABLE Il

COMMUNICATION AND COMPUTATION BREAKDOWN WHEN BOTH THE Q-FACTOR AND THE R-FACTOR ARE NEEDED

4.0.3 (flag -O3) and run in dedicated mode (no other useith the dimensions of the matrix. For matrices of small to
can access the machines). ScaLAPACK 1.8.0 and GotoBLA®derate height {/ < 5,000, 000), the fastest execution is
1.26 libraries were used. Finally we recall that we focushan t consistently the one conducted on a single site. In othedsyor
factorization of TS dense large-scale matrices in real oubfor those matrices, the use of a grid (two or four sites) imsuc
precision, corresponding to up s GB of memory é.g.a a drop in performance, confirming previous studies [31]],[30
33,554,432 x 64 matrix in double precision). [38]. For very tall matrices{/ > 5,000, 000), the proportion

We usetwo processes per node together with the serial veof computation relative to the amount of communication be-
sion of GotoBLAS's DGEMM in all the experimemeported comes high enough so that the use of multiple sites eveptuall
in this study. With DGEMM being the fastest kernel (on togpeeds up the performance (right-most part of the graphs and
of which other BLAS operations are usually built), we obtaifProperty 3). This speed up however hardly surpasses a value
a rough practical performance upper bound for our compat 2.0 while using four sites (Figure 3(b)).
tational grid of abou40 Gflop/s (the ideal case where 256
processors would achieve the performance of DGENL#, C. QCG-TSQR performance

about3.67 Gflop/s each) out of the, 048 Gflop/s theoretical
peak. The performance of TSQR (articulated with QCG-OMPI as

described in Section Ill) depends on the number of domains

used. In Figure 4, we report the TSQR performance for the
B. ScalLAPACK performance
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Fig. 4. TSQR Performance.
Fig. 3. ScalLAPACK performance.
optimum number of domains and we will return later to
SCALAPACK implements block-partitioned algorithms. Itghe effect of the number of domains. In accordance with
performance depends on the partitioning of the matrix infroperty 2, the overall performance is again only a fractibn
blocks. Preliminary experiments (not reported here) stibowehe practical upper bound of our griéid0 Gflop/s). But, com-
that a column-wise 1D-cyclic partition is optimum for propared to ScalLAPACK, this ratio is significantly higher since
cessing TS matrices in our environment. We furthermoredunthe factorization of &8, 388,608 x 512 matrix achieve256
empirically the block size and settled én= 64. Gflop/s (Figure 4(d)). Again, in accordance with properes
Figure 3 reports ScaLAPACK performance. In accordanead 4, the overall performance increases with the dimeasion
with Property 2, the overall performance of the QR fawmf the matrix. Thanks to its better performance (Property 5)
torization of TS matrices is low (consistently lower thad@SQR also achieves a speed up on the grid on matrices of
90 Gflop/s) compared to the practical upper bound of oumoderate size. Indeed, for almost all matrices of moderte t
grid (940 Gflop/s). Even on a single cluster, this ratio is lowgreat height {/ > 500, 000), the fastest execution is the one
since the performance at one site is consistently lower theonducted on all four sites. Furthermore, for very tall ricats
70 Gflop/s out of a practical upper bound 235 Gflop/s. As (M > 5,000,000), TSQR performance scales almost linearly
expected too (properties 3 and 4), the performance incseasdth the number of sites (a speed up of almés$tis obtained



on four sites). This result is the central statement of thisep B el st —— 20 [ TSR ooy ——
H . . . . cal est) e
and validates the thesis that computational grids are a vali — ; 100
. . . © 60 )
infrastructure for solving large-scale problems relyingthe 5 s0 5 22
. . . o 40 ¥o)
QR factorization of TS matrices. ° % ° W
Figure 5 now illustrates the effect of the number of domains % i ! 20 |
per cluster on TSQR performance. Globally, the performance oo 1o teror  1er0s 00000 1er6  1ev07  ievos
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o2 . 4b Sfdlﬁ 32 64 Loz e B b 2o other hand, the matrix is large enough to allow a speed up of
umber of domains umber of domains . . .
(c) N = 64, one cluster. (d) N = 512; 6ne cluster. TSQR over the grid (Figure 4(a) and Property 3 (again)) but

not of ScaLAPACK (Figure 3(a) and Property 5), hence the
superiority of TSQR over ScaLAPACK for that type of matrix.

increases with the number of domains. For very tall matricEQ" Ve tall matrices A = 33,554, 432), the impact of the
(M = 33,554, 432), the impact is limited (but not negligible) number of domains per cluster becomes negligible (Figuske 5(

since there is enough computation to almost mask the eff@d Property 3). But (i) TSQR achieves a speed up of almost
of communications (Property 3). For very skinny matrices! On four sites (Figure 4(a)) whereas (ii) ScaLAPACK does
(N = 64), the optimum number of domains for executinémt achieve yet such an ideal speed up (Figure 3(a)). Finally

TSQR on a single cluster &t (Figure 5(c)), corresponding to on all the range of matrix shapes considered, and for diftere

a configuration with one domain per processor. This optimufiasons, we have seen that TSQR consistently achieves a
selection of the number of domains is translated to exeastic>dnificantly higher performance than ScaLAPACK. For not so

on multiple clusters wheré4 domains per cluster is optimum t@ll and not so skinny matrices (left-most part of Figure)ki(d
too (Figure 5(a)). For the widest matrices studied (= the gap between the performance of TSQR and ScaLAPACK

512), the optimum number of domains for executing TSQggduces (Property 5). ] o

on a single cluster i82 (Figure 5(d)), corresponding to a ©OnN€ may have observed that the time spent in intra-node,
configuration with one domain per node. For those matricdf€n intra-cluster and finally inter-cluster communicasio
trading flops for intra-node communications is not wortHehi P€comes negligible while the dimensions of the matrices
This behavior is again transposable to executions on nteultincrease. For larger matrices (which would not hold in the

sites (Figure 5(b)) where the optimum configuration alse cd€mory of our machines), we may thus even expect that

responds t32 domains per cluster. This observation illustrateSommunications over the grid for ScaLAPACK would become

the fact that one should use CAQR and not TSQR for lar gligible and thus that TSQR and ScaLAPACK would even-
N ually achieve a similar (scalable) performance (PropBjty

Fig. 5. Effect of the number of domains on TSQR performance.

D. QCG-TSQR vs ScaLAPACK VI. CONCLUSION AND PERSPECTIVES

Figure 6 compares TSQR performance (still articulated with This paper has revisited the performance behavior of com-
QCG-OMPI) against ScaLAPACK'’s. We report the maximunrmon dense linear algebra operations in a grid computing
performance out of executions on one, two or four sitesnvironment. Contrary to past studies, we have shown that
For instance, the graph of TSQR in Figure 6(a) is thubey can achieve a performance speed up by using multi-
the convex hull of the three graphs from Figure 4(a). Iple geographical sites of a computational grid. To do so,
accordance with Property 5, TSQR consistently achievesnva have articulated a recently proposed algorithm (CAQR)
higher performance than ScaLAPACK. For matrices of limitediith a topology-aware middleware (QCG-OMPI) in order to
height 4/ = 131,072), TSQR is optimum when executedconfine intensive communications (ScaLAPACK calls) within
on one site (Figure 4(a)). In this case, its superiority ovéhne different geographical sites. Our experimental stadn-
ScalL APACK comes from better performance within a clustelucted on the experimental Grid’5000 platform, focused on
(Figure 5(c)). For matrices with a larger number of rowa particular operation, the QR factorization of TS matrices
(M = 4,194, 304), the impact of the number of domains peiVe showed that its performance increases linearly with the



number of geographical sites on large-scale problems @nd[B] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel

in particular consistently higher than ScaLAPACK’Ss).

We have proved theoretically through our models and e

perimentally that TSQR is a scalable algorithm on the grid.

TSQR is an important algorithm in itself since, given a set
vectors, TSQR is a stable way to generate an orthogonal b

lo

for it. TSQR will come handy as an orthogonalization scheme
for sparse iterative methods (eigensolvers or linear splvellll
TSQR is also the panel factorization of CAQR. A naturgh
question is whether CAQR scales as well on the grid. From

models, there is no doubt that CAQR should scale. How
we will need to perform the experiment to confirm this clai

)

We note that the work and conclusion we have reached here

for TSQR/CAQR can be (trivially) extended to TSLU/CALU

([22]) and Cholesky factorization [5].

(14]

Our approach is based on ScaLAPACK. However, recent
algorithms that better fit emerging architectures wouldehav
certainly improved the performance obtained on each alusjg;
andin finethe global performance. For instance, recursive fac-

torizations have been shown to achieve a higher performal
on distributed memory machines [15]. Other codes ben

from multicore architectures [1].

fei

e

If, as discussed in the introduction, the barriers for conit’]
putational grids to compete against supercomputers are mul
tiple, this study shows that the performance of large-scdks]
dense linear algebra applications can scale with the num?l%ﬁ
of geographical sites. We plan to extend this work to the
QR factorization of general matrices and then to other one-
sided factorizations (Cholesky, LU). Load balancing toetak

into account heterogeneity of clusters is another diract®

investigate. The use of recursive algorithms to achievéérig [20]

performance is to be studied too.
THANKS.
structive suggestions.
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