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Abstract— Previous studies have reported that common dense
linear algebra operations do not achieve speed up by using
multiple geographical sites of a computational grid. Because such
operations are the building blocks of most scientific applications,
conventional supercomputers are still strongly predominant in
high-performance computing and the use of grids for speeding up
large-scale scientific problems is limited to applications exhibiting
parallelism at a higher level. We have identified two performance
bottlenecks in the distributed memory algorithms implemented in
ScaLAPACK, a state-of-the-art dense linear algebra library. First,
because ScaLAPACK assumes a homogeneous communication
network, the implementations of ScaLAPACK algorithms lack
locality in their communication pattern. Second, the number
of messages sent in the ScaLAPACK algorithms is significantly
greater than other algorithms that trade flops for communication.
In this paper, we present a new approach for computing a QR
factorization – one of the main dense linear algebra kernels – of
tall and skinny matrices in a grid computing environment that
overcomes these two bottlenecks. Our contribution is to articulate
a recently proposed algorithm (Communication Avoiding QR)
with a topology-aware middleware (QCG-OMPI) in order to
confine intensive communications (ScaLAPACK calls) within the
different geographical sites. An experimental study conducted
on the Grid’5000 platform shows that the resulting performance
increases linearly with the number of geographical sites on large-
scale problems (and is in particular consistently higher than
ScaLAPACK’s).

I. I NTRODUCTION

Grid computing [18] as a utility has reached the mainstream.
Many large-scale scientific problems have been successfully
solved thanks to the use of computational grids (or, sim-
ply, grids). These problems cover a wide range of scientific
disciplines including biology (protein folding [28]), medicine
(cure muscular dystrophy [9]), financial modeling, earthquake
simulation, and climate/weather modeling. Such scientific
breakthroughs have relied on the tremendous processing power
provided by grid infrastructures. For example, the Berkeley
Open Infrastructure for Network Computing (BOINC) [3]
gathers the processing power of personal computers provided
by people volunteering all over the world. This processing
power is then made available to researchers through different
projects such as Climateprediction.net [2], Rosetta@home[14]

1This work was partly supported by the EC FP7 (grant # FP6-2005-IST-5
033883), and NSF-CCF (grant #881520).

and World Community Grid (WCG)1. As of September 2009,
18, BOINC had 566,000 active computers (hosts) worldwide
for an average total processing power of2.4 Pflop/s2. Further-
more, following the supercomputing trends, grid computing
infrastructures have successfully exploited the emerginghard-
ware technologies. The Folding@Home project [7] – which
aims at understanding protein folding, misfolding, and related
diseases – achieves7.9 Pflop/s thanks to grid exploiting spe-
cialized hardware such as graphics processing units (GPUs),
multicore chips and IBM Cell processors.

However, conventional supercomputers are strongly pre-
dominant in high-performance computing (HPC) because dif-
ferent limiting factors prevent the use of grids for solving
large-scale scientific problems. First of all, security require-
ments for grids are not completely met in spite of the
important efforts in that direction [25]. Second, contraryto
their original purpose (the termgrid itself is a metaphor
for making computer power as easy to access as an electric
power grid [18]), grids have not been historically very user-
friendly. Third, not all the grid infrastructures are dimensioned
for HPC, which is only one of the aims of grid computing.
Even recent commercial offerings such as Amazon Elastic
Compute Cloud (EC2)3 are not considered mature yet for HPC
because of under-calibrated components [38]. Furthermore,
other aspects are still the focus of intensive research, such
as service discovery [11], scheduling [4],etc.

But, above all, the major limiting factor to a wider usage of
grids by computational scientists to solve large-scale problems
is the fact that common dense linear algebra operations do not
achieve performance speed up by using multiple geograph-
ical sites of a computational grid, as reported in previous
studies [30], [31]. Because those operations are the building
blocks of most scientific applications, the immense processing
power delivered by grids vanishes. Unless the application
presents parallelism at a higher level (most of the applica-
tions running on BOINC are actuallyembarrassingly parallel,
i.e., loosely coupled), its performance becomes limited by
the processing power of a single geographical site of the

1http://www.worldcommunitygrid.org
2http://boincstats.com/
3http://aws.amazon.com/ec2/
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grid infrastructure, ruining the ambition to compete against
conventional supercomputers. In this paper, we present a
new approach for factorizing a dense matrix – one of the
most important operations in dense linear algebra – in a grid
computing environment that overcomes these two bottlenecks.
Our approach consists of articulating a recently proposed
algorithm (Communication Avoiding algorithm [15]) with
a topology-aware middleware (QCG-OMPI[13]) in order to
confine intensive communications (ScaLAPACK calls) within
the different geographical sites.

In this study, we focus on the QR factorization [21] of a
tall and skinny (TS) dense matrix into an orthogonal matrix
Q and an upper triangular matrixR and we discuss how
our approach generalizes to all one-sided factorizations (QR,
LU and Cholesky) of a general dense matrix (Section IV).
Furthermore, we focus on the computation of the triangular
factor R and do not explicitly form the orthogonal matrixQ.
However, we show that the performance behavior would be
similar if we computeQ or not.

The paper is organized as follows. We present the related
work and define the scope of our paper in Section II. In
Section III, we present the implementation of a QR factor-
ization of TS matrices that confines intensive communications
within the different geographical sites. Section IV discusses
a performance model that allows us to understand the basic
trends observed in our experimental study (Section V). We
conclude and present the future work in Section VI.

II. BACKGROUND

We present here the related work. We first describe previous
experimental studies of the behavior of dense linear algebra
operations in a grid computing environment (Section II-A).
We then succinctly present the operation we focus on in
this paper, the QR factorization, as it is implemented in
ScaLAPACK, a state-of-the-art dense linear algebra library
for distributed memory machines (Section II-B). We continue
with the introduction of a recently proposed algorithm trading
flops for communication (Section II-C). To take advantage
in a grid computing environment of the limited amount of
communication induced by such an algorithm, we need to
articulate it with the topology of the grid. We present in
Section II-D a middleware enabling this articulation by (i)
retrieving the system topology to the application and even (ii)
allowing the application to reserve suitable resources. Such an
articulation of the algorithms with the topology is critical in
an environment built on top of heterogeneous networks such
as a grid. We conclude this review by discussing the scope of
this paper (Section II-E).

A. Dense linear algebra on the grid

The idea of performing dense linear algebra operations on
the grid is not new; however, success stories are rare in the
related bibliography. Libraries that have an MPI [17] interface
for handling the communication layer, such as ScaLAPACK
or HP Linpack, can be run on a grid by linking them to
a grid-enabled implementation of the MPI standard such as

MPICH-G2 [26], PACX-MPI [20] or GridMPI4. MPI has
become thede factolanguage for programming parallel appli-
cations on distributed memory architectures such as clusters.
Programmers have gained experience using this programming
paradigm throughout the past decade; scientific libraries have
been developed and optimized using MPI. As a consequence,
it is natural to consider it as a first-choice candidate for
programming parallel applications on the grid in order to
benefit from this experience and to be able to port existing
applications for the grid. The GrADS5 project had the pur-
pose of simplifying distributed, heterogeneous computingand
making grid application development as well as performance
tuning for real applications an everyday practice. Among other
accomplishments, large matrices could be factorized thanks
to the use of a grid whereas it was impossible to process
them on a single cluster because of memory constraints [31],
[37]. The resource allocation (number of clusters,etc.) was
automatically chosen in order to maximize the performance.
However, for matrices that could fit in the (distributed) mem-
ory of the nodes of a cluster, the experiments (conducted with
ScaLAPACK) showed that the use of a single cluster was
optimal [31]. In other words, using multiple geographical sites
led to a slow down of the factorization. Indeed, the overhead
due to the high cost of inter-cluster communications was not
balanced by the benefits of a higher processing power.

For the same reason, the EC2 cloud has recently been
shown to be inadequate for dense linear algebra [30]. In this
latter study, the authors address the question whether cloud
computing can reach the Top5006, i.e., the ranked list of the
fastest computing systems in the world. Based on experiments
conducted with the parallel LU factorization [21] implemented
in the HP Linpack Benchmark [16], not only did they observe
a slow down when using multiple clusters, but they also
showed that the financial cost (in dollars) of performance
(number of floating-point operations per second, in Gflop/s)
increases exponentially with the number of computing cores
used, much in contrast to existing scalable HPC systems such
as supercomputers.

The HeteroScaLAPACK project7 aims at developing a par-
allel dense linear algebra package for heterogeneous architec-
tures on top of ScaLAPACK. This approach is orthogonal (and
complementary) to ours since it focuses on the heterogeneity
of the processors [34], whereas we presently aim at mapping
the implementation of the algorithm to the heterogeneity of
the network (topology) through QCG-OMPI. In our present
work, we do not consider the heterogeneity of the processors.
Another fundamental difference with HeteroScaLAPACK is
that we are using TSQR, an algorithm that is not available in
ScaLAPACK.

B. ScaLAPACK’s QR factorization

The QR factorization of anM × N real matrixA has the
form A = QR, whereQ is anM ×M real orthogonal matrix

4http://www.gridmpi.org
5Software Support for High-Level Grid Application Development http:

//www.hipersoft.rice.edu/grads/
6http://www.top500.org
7http://hcl.ucd.ie/project/HeteroScaLAPACK
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and R is anM×N real upper triangular matrix. ProvidedA is
nonsingular, this factorization is essentially unique, that is, it
is unique if we impose the diagonal entries ofR to be positive.
There is a variety of algorithms to obtain a QR factorization
from a given matrix, the most well-known arguably being the
Gram-Schmidt algorithm. Dense linear algebra libraries have
been traditionally focusing on algorithms based on unitary
transformations (Givens rotations or Householder reflections)
because they are unconditionally backward stable [21]. Givens
rotations are advantageous when zeroing out a few elements
of a matrix whereas Householder transformations are advan-
tageous when zeroing out a vector of a matrix. Therefore, for
dense matrices, we consider the QR factorization algorithm
based on Householder reflections. The algorithm consists of
applying successive elementary Householder transformations
of the formH = I − τvvT whereI is the identity matrix,v
is a column reflector andτ is a scaling factor [21].

To achieve high performance on modern computers with
different levels of cache, the application of the Householder
reflections isblocked[36]. In ScaLAPACK [8], b elementary
Householder matrices are accumulated within apanel(a block-
column)V consisting ofb reflectors. The consecutive applica-
tions of theseb reflectors (H1H2...Hb) is then constructed all
at once using the matrix equalityH1H2...Hb = I − V TV T

(T is a b× b upper triangular matrix). However, this blocking
incurs an additional computational overhead. The overhead
is negligible when there is a large number of columns to
be updated but is significant when there are only a few
columns to be updated. Default values in the ScaLAPACK
PDGEQRF subroutine are NB=64 and NX=128, where NB is
the block size,b, and NX is the cross-over point; blocking
is not to be used if there is less than NX columns are to
be updated. PDGEQRF uses PDGEQR2 to perform the panel
factorizations. Due to the panel factorization, the algorithm
in ScaLAPACK requires one allreduce operation for each
column. In other words, ScaLAPACK uses at leastN log

2
(P )

messages to factor anM -by–N matrix.

C. Communication Avoiding QR (CAQR) factorization

In this paper we propose an implementation of the so-called
“Communication Avoiding QR” (CAQR) algorithm originally
proposed by Demmel et al. [15]. CAQR belongs to the class of
the (factor panel) / (update trailing matrix)algorithms. For all
algorithms in this class, the update phase is entirely dictated by
the panel factorization step and is easily parallelizable.There-
fore, we only discuss the panel factorization step. The panel
factorization in CAQR is based on the “Tall and Skinny QR”
factorization algorithm (TSQR) [15]. In contrast to the ScaLA-
PACK panel factorization algorithm (subroutine PDGEQR2),
which requires one allreduce operation per column, TSQR
requires one allreduce operation perb columns whereb is
an arbitrary block size. The number of communications is
therefore divided byb. The volume of communication stays
the same. The number of operations on the critical path is
increased in TSQR by an additionalO(log

2
(P )N3) term.

TSQR effectively trades communication for flops.
TSQR is a single complex allreduce operation [15]. The

TS matrix is split in P block-rows, calleddomains; the

factorization of a domain is the operation performed on the
leaves of the binary tree associated to the reduction. The binary
operation then used in this allreduce operation is as follows:
from two input triangular matricesR1 and R2, stackR1 on
top of R2 to form [R1;R2], perform the QR factorization of
[R1;R2], the outputR is given by the R-factor of[R1;R2].
One can show that this binary operation is associative. It isalso
commutative if one imposes each computed R-factor to have
nonnegative diagonal entries. As for any reduce operation,the
shape of the optimal tree depends on the dimension of the
data and the underlying hardware. CAQR with a binary tree
has been studied in the parallel distributed context [15] and
CAQR with a flat tree has been implemented in the context
of out-of-core QR factorization [23]. CAQR with a flat tree
delivers wide parallelism and, for this reason, has been used
in the multicore context [10], [27], [33].

Previous implementations of CAQR have used either a flat
tree or a binary tree. One key originality of our present work
lies in the fact that our reduction tree is neither binary norflat.
It is tuned for the targeted computational grid, as illustrated in
Fig. 1(b). First we reduce with a binary tree on each cluster.
Then we reduce with a second binary tree the result of each
cluster at the grid level. The binary tree used by ScaLAPACK
PDGEQR2 (Fig. 1(a)) minimizes the sum of the inter-cluster
messages and the intra-cluster messages. Our tree is designed
to minimize the total number of inter-cluster messages.

We now give a brief history of related algorithmic work
in contrast to the reference work of Demmel et al. [15]. The
parallelization of the Givens rotations based and Householder
reflections based QR factorization algorithms is a well-studied
area in Numerical Linear Algebra. The development of the
algorithms has followed architectural trends. In the late 1970s
/ early 1980s [24], [29], [35], the research was focusing
on algorithms based on Givens rotations. The focus was on
extracting as much parallelism as possible. We can interpret
these sequences of algorithms as scalar implementations using
a flat tree of the algorithm in Demmel et al. [15]. In the
late 1980s, the research shifted gears and presented algorithms
based on Householder reflections [32], [12]. The motivation
was to use vector computer capabilities. We can interpret
all these algorithms as vector implementations using a flat
tree and/or a binary tree of the algorithm in Demmel et
al. [15]. All these algorithms require a number of messages
greater thann, the number of columns of the initial matrix
A, as in ScaLAPACK. The algorithm in Demmel et al. [15]
is a generalization with multiple blocks of columns with a
nontrivial reduction operation, which enables one to divide the
number of messages of these previous algorithms by the block
size,b. Demmel et al. proved that TSQR and CAQR algorithms
induce a minimum amount of communication (under certain
conditions, see Section 17 of [15] for more details) and are
numerically as stable as the Householder QR factorization.

D. Topology-aware MPI middleware for the grid: QCG-OMPI

Programming efficient applications for grids built by feder-
ating clusters is challenging, mostly because of the difference
of performance between the various networks the application
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(a) Illustration of the ScaLAPACK panel factorization routine on aM -
by-3 matrix. It involves one reduction per column for the normalization
and one reduction per column for the update. (No update for thelast
column.) The reduction tree used by ScaLAPACK is a binary tree. In this
example, we have 25 inter-cluster messages (10 for all columns but the
last, 5 for the last). A tuned reduction tree would have given10 inter-
cluster messages (4 per column but the last, 2 for the last). We note that
if process ranks are randomly distributed, the figure can be worse.

(b) Illustration of the TSQR panel factorization routine ona M -by-
3 matrix. It involves only one reduction tree. Moreover the reduction
tree is tuned for the grid architecture. We only have two inter-cluster
messages. This number (two) is independent of the number of columns.
This number is obviously optimal. One can not expect less than two inter-
cluster communications when data is spread on the three clusters.

Fig. 1. Illustration of the ScaLAPACK and TSQR panel factorization routines on aM -by-3 matrix.

has to use. As seen in the table of Figure 2(a) we can observe
two orders of magnitude between inter and intra-cluster latency
on a dedicated, nation-wide network, and the difference can
reach three or four orders of magnitude on an international,
shared network such as the Internet. As a consequence, the
application must be adapted to the intrinsically hierarchical
topology of the grid. In other words, the communication
and computation patterns of the application must match the
physical topology of the hardware resources it is executed on.

ScaLAPACK, and many of the linear algebra libraries for
scientific computing, are programmed in MPI. MPI is fit for
homogeneous supercomputers: processes are mostly indistin-
guishable one from another, and the standard does not specify
anything about process / node placement.

As a consequence, to efficiently program a parallel appli-
cation on top of a non-uniform network, typically on top of
a hierarchical network like a grid, MPI must be extended to
help programmers adapt the communications of the application
to the machine. MPICH-G2 [26] introduced the concept of
colors to describe the available topology to the application
at runtime. Colors can be used directly by MPI routines in
order to build topology-aware communicators (the abstraction
in MPI that is used to group processors together). However, the
application is fully responsible to adapt itself to the topology
that is discovered at runtime.

The QosCosGrid system offers a resource-aware grid meta-
scheduler that gives the possibility to allocate resourcesthat
match requirements expressed in a companion file called the
application’sJobProfile that describe the future communica-
tions of the application [6]. TheJobProfile defines process
groups and requirements on the hardware specifications of the
resources that have to be allocated for these processes such
as amount of memory, CPU speed, and network properties

between groups of processes, such as latency and bandwidth.
As a consequence, the application will always be executed on
an appropriate resource topology.

The QosCosGrid system features QCG-OMPI, an MPI
implementation based on OpenMPI [19] and targeted to com-
putational grids. Besides grid-specific communication features
that enable communicating throughout the grid described
in [13], QCG-OMPI has the possibility to retrieve topology
information provided to the scheduler in the JobProfile at run-
time. We explain in Section III how we have implemented and
articulated TSQR with QCG-OMPI in order to take advantage
of the topology.

E. Scope

The QR factorization of TS matrices is directly used as a
kernel in several important applications of linear algebra. For
instance, block-iterative methods need to regularly perform
this operation in order to obtain an orthogonal basis for
a set of vectors. TSQR can also be used to perform the
panel factorization of an algorithm handling general matrices
(CAQR). This present study can be viewed as a first step
towards the factorization of general matrices on the grid.

Grids aggregate computing power from any kind of re-
source. However, in some typical grid projects, such as Super-
link@Technion, the Lattice project, EdGES, and the Condor
pool at Univ. of Wisconsin-Madison, a significant part of the
power comes from a few institutions featuring environments
with a cluster-like setup. In this first work, we focus our
study on clusters of clusters, to enable evaluation in a stable
and reproducible environment. Porting the work to a general
desktop grid remains a future work.

Finally, we emphasize that the objective of this paper is
to show that we can achieve a performance speed up over the
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Latency (ms) Orsay Toulouse Bordeaux Sophia
Orsay 0.07 7.97 6.98 6.12
Toulouse 0.03 9.03 8.18
Bordeaux 0.05 7.18
Sophia 0.06

Throughput (Mb/s) Orsay Toulouse Bordeaux Sophia
Orsay 890 78 90 102
Toulouse 890 77 90
Bordeaux 890 83
Sophia 890

(a) Communications performance on Grid’5000

Orsay

Bordeaux

Toulouse

Sophia-
Antipolis

(b) Grid’5000: a nation-wide experimen-
tal testbed.

Fig. 2. Grid’5000 communication characteristics.

grid with common dense linear algebra operations. To illustrate
our claim, we compare our approach against a state-of-the-
art library for distributed memory architectures, ScaLAPACK.
In order to highlight the differences, we chose to base our
approach on ScaLAPACK (see Section III).

III. QCG-TSQR: ARTICULATION OF TSQRWITH

QCG-OMPI

We explain in this section how we articulate the TSQR
algorithm with QCG-OMPI in order to confine intensive
communications within the different geographical sites of
the computational grid. The first difference from the TSQR
algorithm as presented in Section II-C is that a domain is
processed by a call to ScaLAPACK (but not LAPACK as
in [15]). By doing so, we may attribute a domain to a group of
processes (instead of a single process) jointly performingits
factorization. The particular case of one domain per process
corresponds to the original TSQR (calls to LAPACK). At the
other end of the spectrum, we may associate one domain per
geographical site of the computational grid. The choice of the
number of domains impacts performance, as we will illustrate
in Section V-C. In all cases, we call our algorithm TSQR (or
QCG-TSQR), since it is a single reduce operation based on a
binary tree, similarly to the algorithm presented in Section II-
C.

As explained in Section II-D, the first task of developing
a QCG-OMPI application consists of defining the kind of
topologies expected by the application in a JobProfile. To
get enough flexibility, we request that processes are split into
groups of equivalent computing power, with good network
connectivity inside each group (low latency, high bandwidth)
and we accept a lower network connectivity between the
groups. This corresponds to the classical cluster of clusters
approach, with a constraint on the relative size of the clusters
to facilitate load balancing.

The meta-scheduler will allocate resources in the physical
grid that matches these requirements. To enable us to complete
an exhaustive study on the different kind of topologies we can
get, we also introduced more constraints in the reservation
mechanism, depending on the experiment we ran. For each
experiment, the set of machines that are allocated to the job
are passed to the MPI middleware, which exposes those groups
using two-dimensional arrays of group identifiers (the group
identifiers are defined in the JobProfile by the developer).
After the initialization, the application retrieves thesegroup

identifiers from the system (using a specific MPI attribute)
and then creates one MPI communicator per group, using
the MPI Commsplit routine. Once this is done, the TSQR
algorithm has knowledge of the topology that allows it to adapt
to the physical setup of the grid.

The choice to introduce a requirement of similar computing
power between the groups however introduces constraints on
the reservation mechanism. For example, in some experiments
discussed later (Section V), only half the cores of some of
the machines were allocated in order to fit this requirement.
Another possibility would have been to handle load balancing
issues at the algorithmic level (and not at the middleware
level) in order to relieve this constraint on the JobProfile and
thus increase the number of physical setups that would match
our needs. In the particular case of TSQR, this is a natural
extension; we would only have to adapt the number of rows
attributed to each domain as a function of the processing power
dedicated to a domain. This alternative approach is future
work.

IV. PERFORMANCE MODEL

In Tables I and II, we give the amount of communication
and computation required for ScaLAPACK QR2 and TSQR
in two different scenarios: first, when only the R-factor is
requested (Table I) and, second, when both the R-factor and
the Q-factor are requested (Table II). In this model, we assume
that a binary tree is used for the reductions and a homegeneous
network. We recall that the input matrixA is M–by–N and
that P is the number of domains. The number of FLOPS is
the number of FLOPS on the critical path per domain.

Assuming a homogeneous network, (the modelization of
hetereogeneous network in the same manner is straightfor-
ward,) the total time of the factorization is then approx-
imated by the formula: time = β ∗ (# msg) + α ∗

(vol. data exchanged)+ γ ∗ (# FLOPs), where α is the
inverse of the bandwidth,β the latency, andγ the inverse
of the floating point rate of a domain. Although this model
is simplistic, it enables us to forecast the basic trends. Note
that in the case of TS matrices, we haveM ≫ N . First we
observe that the time to compute both theQ and theR factors
is exactly twice the time for computingR only. Moreover,
further theoretical and experimental analysis of the algorithm
(see [15]) reveal that the structure of the computation is the
same in both cases and the time to obtainQ is twice the time
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# msg vol. data exchanged # FLOPs
ScaLAPACK QR2 2N log2(P ) log2(P )(N2/2) (2MN2 − 2/3N3)/P

TSQR log
2
(P ) log

2
(P )(N2/2) (2MN2 − 2/3N3)/P + 2/3 log

2
(P)N3

TABLE I

COMMUNICATION AND COMPUTATION BREAKDOWN WHEN ONLY THE R-FACTOR IS NEEDED.

to obtain R. This leads to Trend 1. For brevity, we mainly
focus our study on the computation ofR only.

Trend 1: The time to compute bothQ andR is about twice
the time for computingR only.

One of the building blocks of the ScaLAPACK PDGEQR2
implementation and of our TSQR algorithm is the domanial
QR factorization of a TS matrix. The domain can be processed
by a core, a node or a group of nodes. We can not expect
performance from our parallel distributed algorithms to be
better than the one of its domanial kernels. This leads to
Trend 2. In practice, the performance of the QR factorization
of TS matrices obtained from LAPACK/ScaLAPACK on a
domain (core, node, small number of nodes) is a small fraction
of the peak. (γ is likely to be small.)

Trend 2: The performance of the factorization of TS ma-
trices is limited by the domanial performance of the QR
factorization of TS matrices.

We see that the number of operations is proportional toM
while all the communication terms (latency and bandwidth)
are independent ofM . Therefore whenM increases, the
communication time stays constant whereas the domanial
computation time increases.

Trend 3: The performance of the factorization of TS ma-
trices increases withM until the parallel system reaches its
computational peak, and the performance climbs to a plateau
where it does not progress anymore.

The number of operations is proportional toN2 while the
number of messages is proportional toN . Therefore whenN
increases, the latency term is hidden by the computation term.
This leads to better performance. We also note that increasing
N enables better performance of the domanial kernel since it
can use Level 3 BLAS when the number of columns is greater
than, perhaps,100. This is Trend 4.

Trend 4: The performance of the factorization of TS matri-
ces increases withN .

Finally, we see that the latency term is2 log
2
(P ) for TSQR

while it is 2N log
2
(P ) for ScaLAPACK QR2. On the other

hand, the FLOPs term has a non parallelizable additional
2/3 log

2
(P)N3 term for the TSQR algorithm. We see that

TSQR effectively trades messages for flops. We expect TSQR
to be faster than ScaLAPACK QR2 forN in the mid-range
(perhaps between five and a few hundreds). For largerN ,
TSQR will become slower because of the additional flops.
This is Trend 5. (We note that for largeN , one should stop
using TSQR and switch to CAQR.)

Trend 5: The performance of TSQR is better than ScaLA-
PACK for N in the mid range. WhenN gets too large, the
performance of TSQR deteriorates and ScaLAPACK becomes
better.

V. EXPERIMENTAL STUDY

A. Experimental environment

We present an experimental study of the performance of
the QR factorization of TS matrices in a grid computing
environment. We conducted our experiments on Grid’5000.
This platform is a dedicated, reconfigurable and controllable
experimental grid of 13 clusters distributed over 9 cities in
France. Each cluster is itself composed of 58 to 342 nodes.
The clusters are inter-connected through dedicated black fiber.
In total, Grid’5000 roughly gathers5, 000 CPU cores featuring
multiple architectures.

For the experiments presented in this study, we chose
four clusters based on relatively homogeneous dual-processor
nodes, ranging from AMD Opteron 246 (2 GHz/1MB L2
cache) for the slowest ones to AMD Opteron 2218 (2.6
GHz/2MB L2 cache) for the fastest ones, which leads to the-
oretical peaks ranging from8.0 to 10.4 Gflop/s per processor.
These four clusters are the 93-node cluster in Bordeaux, the
312-node cluster in Orsay, a 80-node cluster in Toulouse,
and a 56-node cluster in Sophia-Antipolis. Because these
clusters are located in different cities, we will indistinctly
use the termscluster and geographical site(or site) in the
following. Nodes are interconnected with a Gigabit Ethernet
switch; on each node, the network controller is shared by
both processors. On each cluster, we reserved a subset of 32
dual-processor nodes, leading to a theoretical peak of512.0
to 665.6 Gflop/s per node. Our algorithm being synchronous,
to evaluate the proportion of theoretical peak achieved in an
heterogeneous environment, we consider the efficiency of the
slowest component as a base for the evaluation. Therefore,
the theoretical peak of our grid is equal to2, 048 Gflop/s. A
consequence of the constraints on the topology expressed by
our implementation in QCG-OMPI (see Section II-D) is that
in some experiments, machines with dual 2-cores processors
were booked with the ability to use 2 cores (over 4) only.

The performance of the inter and intra-cluster communi-
cations is shown in Table 2(a). Within a cluster, nodes are
connected with a GigaEthernet network. Clusters are intercon-
nected with10 Gb/s dark fibers. The intra-cluster throughput is
consistently equal to890 Mb/s but varies from61 to 860 Mb/s
between clusters. Inter-cluster latency is roughly greater than
intra-cluster latency by two orders of magnitude. Between two
processors of a same node, OpenMPI uses a driver optimized
for shared-memory architectures, leading to a17 µs latency
and a5 Gb/s throughput.

One major feature of the Grid5000 project is the ability of
the user to boot her own environment (including the operating
system, distribution, libraries, etc.) on all the computing nodes
booked for her job. All the nodes were booted under Linux
2.6.30. The tests and benchmarks were compiled with GCC
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# msg vol. data exchanged # FLOPs
ScaLAPACK QR2 4N log2(P ) 2 log2(P )(N2/2) (4MN2 − 4/3N3)/P

TSQR 2 log
2
(P ) 2 log

2
(P )(N2/2) (4MN2 − 4/3N3)/P + 4/3 log

2
(P)N3

TABLE II

COMMUNICATION AND COMPUTATION BREAKDOWN WHEN BOTH THE Q-FACTOR AND THE R-FACTOR ARE NEEDED.

4.0.3 (flag -O3) and run in dedicated mode (no other user
can access the machines). ScaLAPACK 1.8.0 and GotoBLAS
1.26 libraries were used. Finally we recall that we focus on the
factorization of TS dense large-scale matrices in real double
precision, corresponding to up to16 GB of memory (e.g. a
33, 554, 432 × 64 matrix in double precision).

We usetwo processes per node together with the serial ver-
sion of GotoBLAS’s DGEMM in all the experimentsreported
in this study. With DGEMM being the fastest kernel (on top
of which other BLAS operations are usually built), we obtain
a rough practical performance upper bound for our compu-
tational grid of about940 Gflop/s (the ideal case where 256
processors would achieve the performance of DGEMM,i.e.,
about3.67 Gflop/s each) out of the2, 048 Gflop/s theoretical
peak.

B. ScaLAPACK performance
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Fig. 3. ScaLAPACK performance.

SCALAPACK implements block-partitioned algorithms. Its
performance depends on the partitioning of the matrix into
blocks. Preliminary experiments (not reported here) showed
that a column-wise 1D-cyclic partition is optimum for pro-
cessing TS matrices in our environment. We furthermore tuned
empirically the block size and settled onb = 64.

Figure 3 reports ScaLAPACK performance. In accordance
with Property 2, the overall performance of the QR fac-
torization of TS matrices is low (consistently lower than
90 Gflop/s) compared to the practical upper bound of our
grid (940 Gflop/s). Even on a single cluster, this ratio is low
since the performance at one site is consistently lower than
70 Gflop/s out of a practical upper bound of235 Gflop/s. As
expected too (properties 3 and 4), the performance increases

with the dimensions of the matrix. For matrices of small to
moderate height (M ≤ 5, 000, 000), the fastest execution is
consistently the one conducted on a single site. In other words,
for those matrices, the use of a grid (two or four sites) induces
a drop in performance, confirming previous studies [31], [30],
[38]. For very tall matrices (M > 5, 000, 000), the proportion
of computation relative to the amount of communication be-
comes high enough so that the use of multiple sites eventually
speeds up the performance (right-most part of the graphs and
Property 3). This speed up however hardly surpasses a value
of 2.0 while using four sites (Figure 3(b)).

C. QCG-TSQR performance

The performance of TSQR (articulated with QCG-OMPI as
described in Section III) depends on the number of domains
used. In Figure 4, we report the TSQR performance for the
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Fig. 4. TSQR Performance.

optimum number of domains and we will return later to
the effect of the number of domains. In accordance with
Property 2, the overall performance is again only a fractionof
the practical upper bound of our grid (940 Gflop/s). But, com-
pared to ScaLAPACK, this ratio is significantly higher since
the factorization of a8, 388, 608 × 512 matrix achieves256
Gflop/s (Figure 4(d)). Again, in accordance with properties3
and 4, the overall performance increases with the dimensions
of the matrix. Thanks to its better performance (Property 5),
TSQR also achieves a speed up on the grid on matrices of
moderate size. Indeed, for almost all matrices of moderate to
great height (M ≥ 500, 000), the fastest execution is the one
conducted on all four sites. Furthermore, for very tall matrices
(M ≥ 5, 000, 000), TSQR performance scales almost linearly
with the number of sites (a speed up of almost4.0 is obtained
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on four sites). This result is the central statement of this paper
and validates the thesis that computational grids are a valid
infrastructure for solving large-scale problems relying on the
QR factorization of TS matrices.

Figure 5 now illustrates the effect of the number of domains
per cluster on TSQR performance. Globally, the performance
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Fig. 5. Effect of the number of domains on TSQR performance.

increases with the number of domains. For very tall matrices
(M = 33, 554, 432), the impact is limited (but not negligible)
since there is enough computation to almost mask the effect
of communications (Property 3). For very skinny matrices
(N = 64), the optimum number of domains for executing
TSQR on a single cluster is64 (Figure 5(c)), corresponding to
a configuration with one domain per processor. This optimum
selection of the number of domains is translated to executions
on multiple clusters where64 domains per cluster is optimum
too (Figure 5(a)). For the widest matrices studied (N =
512), the optimum number of domains for executing TSQR
on a single cluster is32 (Figure 5(d)), corresponding to a
configuration with one domain per node. For those matrices,
trading flops for intra-node communications is not worthwhile.
This behavior is again transposable to executions on multiple
sites (Figure 5(b)) where the optimum configuration also cor-
responds to32 domains per cluster. This observation illustrates
the fact that one should use CAQR and not TSQR for large
N .

D. QCG-TSQR vs ScaLAPACK

Figure 6 compares TSQR performance (still articulated with
QCG-OMPI) against ScaLAPACK’s. We report the maximum
performance out of executions on one, two or four sites.
For instance, the graph of TSQR in Figure 6(a) is thus
the convex hull of the three graphs from Figure 4(a). In
accordance with Property 5, TSQR consistently achieves a
higher performance than ScaLAPACK. For matrices of limited
height (M = 131, 072), TSQR is optimum when executed
on one site (Figure 4(a)). In this case, its superiority over
ScaLAPACK comes from better performance within a cluster
(Figure 5(c)). For matrices with a larger number of rows
(M = 4, 194, 304), the impact of the number of domains per
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Fig. 6. TSQR vs ScaLAPACK. For each algorithm, the performanceof the
optimum configuration (one, two or four sites) is reported.

cluster is less sensitive (Figure 5(c) and Property 3). On the
other hand, the matrix is large enough to allow a speed up of
TSQR over the grid (Figure 4(a) and Property 3 (again)) but
not of ScaLAPACK (Figure 3(a) and Property 5), hence the
superiority of TSQR over ScaLAPACK for that type of matrix.
For very tall matrices (M = 33, 554, 432), the impact of the
number of domains per cluster becomes negligible (Figure 5(c)
and Property 3). But (i) TSQR achieves a speed up of almost
4.0 on four sites (Figure 4(a)) whereas (ii) ScaLAPACK does
not achieve yet such an ideal speed up (Figure 3(a)). Finally,
on all the range of matrix shapes considered, and for different
reasons, we have seen that TSQR consistently achieves a
significantly higher performance than ScaLAPACK. For not so
tall and not so skinny matrices (left-most part of Figure 6(d)),
the gap between the performance of TSQR and ScaLAPACK
reduces (Property 5).

One may have observed that the time spent in intra-node,
then intra-cluster and finally inter-cluster communications
becomes negligible while the dimensions of the matrices
increase. For larger matrices (which would not hold in the
memory of our machines), we may thus even expect that
communications over the grid for ScaLAPACK would become
negligible and thus that TSQR and ScaLAPACK would even-
tually achieve a similar (scalable) performance (Property5).

VI. CONCLUSION AND PERSPECTIVES

This paper has revisited the performance behavior of com-
mon dense linear algebra operations in a grid computing
environment. Contrary to past studies, we have shown that
they can achieve a performance speed up by using multi-
ple geographical sites of a computational grid. To do so,
we have articulated a recently proposed algorithm (CAQR)
with a topology-aware middleware (QCG-OMPI) in order to
confine intensive communications (ScaLAPACK calls) within
the different geographical sites. Our experimental study,con-
ducted on the experimental Grid’5000 platform, focused on
a particular operation, the QR factorization of TS matrices.
We showed that its performance increases linearly with the
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number of geographical sites on large-scale problems (and is
in particular consistently higher than ScaLAPACK’s).

We have proved theoretically through our models and ex-
perimentally that TSQR is a scalable algorithm on the grid.
TSQR is an important algorithm in itself since, given a set of
vectors, TSQR is a stable way to generate an orthogonal basis
for it. TSQR will come handy as an orthogonalization scheme
for sparse iterative methods (eigensolvers or linear solves).
TSQR is also the panel factorization of CAQR. A natural
question is whether CAQR scales as well on the grid. From
models, there is no doubt that CAQR should scale. However
we will need to perform the experiment to confirm this claim.
We note that the work and conclusion we have reached here
for TSQR/CAQR can be (trivially) extended to TSLU/CALU
([22]) and Cholesky factorization [5].

Our approach is based on ScaLAPACK. However, recent
algorithms that better fit emerging architectures would have
certainly improved the performance obtained on each cluster
andin fine the global performance. For instance, recursive fac-
torizations have been shown to achieve a higher performance
on distributed memory machines [15]. Other codes benefit
from multicore architectures [1].

If, as discussed in the introduction, the barriers for com-
putational grids to compete against supercomputers are mul-
tiple, this study shows that the performance of large-scale
dense linear algebra applications can scale with the number
of geographical sites. We plan to extend this work to the
QR factorization of general matrices and then to other one-
sided factorizations (Cholesky, LU). Load balancing to take
into account heterogeneity of clusters is another direction to
investigate. The use of recursive algorithms to achieve higher
performance is to be studied too.

THANKS. The authors thank Laura Grigori for her con-
structive suggestions.
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[10] Alfredo Buttari, Julien Langou, Jakub Kurzak, and JackDongarra. A
class of parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Computing, 35:38–53, 2009.

[11] E Caron, F Desprez, and C Tedeschi. Efficiency of tree-structured peer-
to-peer service discovery systems. InIPDPS, pages 1–8, 2008.

[12] E. Chu and A. George. QR factorization of a dense matrix ona
hypercube multiprocessor.SIAM J. Sci. Stat. Comput., 11(5):990–1028,
1990.

[13] C Coti, T Herault, S Peyronnet, A Rezmerita, and F Cappello. Grid
services for MPI. In ACM/IEEE, editor,Proceedings of the 8th
IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’08), pages 417–424, Lyon, France, May 2008.

[14] R Das, B Qian, S Raman, R Vernon, J Thompson, P Bradley, S Khare,
M D D. Tyka, D Bhat, D Chivian, David E E. K, W H H. Sheffler,
L Malmström, A M M. Wollacott, C Wang, I Andre, and D Baker.
Structure prediction for CASP7 targets using extensive all-atom refine-
ment with rosetta@home.Proteins, 69(S8):118–128, September 2007.

[15] J Demmel, L Grigori, M Hoemmen, and J Langou. Communication-
avoiding parallel and sequential QR factorizations. CoRR,
arXiv.org/abs/0806.2159, 2008.

[16] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK
benchmark: past, present and future.Concurrency and Computation:
Practice and Experience, 15(9):803–820, 2003.

[17] Message Passing Interface Forum. MPI: A message-passinginterface
standard. Technical Report UT-CS-94-230, Department of Computer
Science, University of Tennessee, April 1994.

[18] I Foster and C Kesselman.The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 2 edition, 2003.

[19] E Gabriel, G E. Fagg, G Bosilca, T Angskun, J J. Dongarra,J M.
Squyres, V Sahay, P Kambadur, B Barrett, A Lumsdaine, R H. Castain,
D J. Daniel, R L. Graham, and T S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implementation. In
Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[20] E Gabriel, M M. Resch, T Beisel, and R Keller. Distributed computing
in a heterogeneous computing environment. InProceedings of the 5th
European PVM/MPI Users’ Group Meeting, volume 1497 ofLNCS,
pages 180–187. Springer, 1998.

[21] G. H. Golub and C. F. Van Loan.Matrix Computations. Johns Hopkins
University Press, Baltimore, USA, 2 edition, 1989.

[22] Laura Grigori, James Demmel, and Hua Xiang. Communication avoid-
ing Gaussian elimination. InSC, page 29, 2008.

[23] B. C. Gunter and R. A. van de Geijn. Parallel out-of-corecomputation
and updating of the QR factorization.ACM Trans. on Math. Soft.,
31(1):60–78, March 2005.

[24] D. Heller. A survey of parallel algorithms in numerical linear algebra.
SIAM Rev., (20):740–777, 1978.

[25] Marty Humphrey, Mary Thompson, and Keith Jackson. Security for
grids. IEEE, 3:644 – 652, March 2005.

[26] Nicholas T. Karonis, Brian R. Toonen, and Ian T. Foster.MPICH-G2:
A grid-enabled implementation of the message passing interface. CoRR,
arxiv.org/cs.DC/0206040, 2002.

[27] J. Kurzak and J. J. Dongarra. QR factorization for the CELL processor.
Scientific Programming, Special Issue: High Performance Computing
with the Cell Broadband Engine, 17(1-2):31–42, 2009.

[28] Stefan M. Larson, Christopher D. Snow, Michael Shirts,and Vijay S.
Pande. Folding@home and genome@home: Using distributed comput-
ing to tackle previously intractable problems in computational biology.
(arxiv.org/abs/arxiv:0901.0866), 2009.

[29] R.E. Lord, J.S. Kowalik, and S.P. Kumar. Solving linear algebraic
equations on an MIMD computer.J. ACM, 30(1):103–117, 1983.

[30] Jeff Napper and Paolo Bientinesi. Can cloud computing reach the
Top500? Technical Report AICES-2009-5, Aachen Institute for Com-
putational Engineering Science, RWTH Aachen, February 2009.

[31] A Petitet, S Blackford, J Dongarra, B Ellis, G Fagg, K Roche, and S Vad-
hiyar. Numerical libraries and the grid: The GrADS experiments with
ScaLAPACK. Technical Report UT-CS-01-460, ICL, U. of Tennessee,
April 2001.

[32] A. Pothen and P. Raghavan. Distributed orthogonal factorization: Givens
and Householder algorithms.SIAM Journal on Scientific and Statistical
Computing, 10:1113–1134, 1989.



10

[33] G. Quintana-Ort́ı, E. S. Quintana-Ortı́, E. Chan, F. G. Van Zee, and
R. A. van de Geijn. Scheduling of QR factorization algorithmson SMP
and multi-core architectures. InProceedings of PDP’08, 2008. FLAME
Working Note #24.

[34] R. Reddy and A. Lastovetsky. HeteroMPI + ScaLAPACK: Towards
a ScaLAPACK (Dense Linear Solvers) on heterogeneous networks of
computers. volume 4297, pages 242–253, Bangalore, India, 18-21 Dec
2006 2006. Springer, Springer.

[35] A. Sameh and D. Kuck. On stable parallel linear system solvers. J.
ACM, 25(1):81–91, 1978.

[36] R. Schreiber and C. Van Loan. A storage efficientWY representation
for products of Householder transformations.SIAM J. Sci. Stat. Comput.,
10(1):53–57, 1989.

[37] Sathish S. Vadhiyar and Jack J. Dongarra. Self adaptivity in grid
computing.Concurrency & Computation: Practice & Experience, 2005.

[38] Edward Walker. Benchmarking amazon EC2 for high-performance
scientific computing.USENIX Login, 33(5):18–23, 2008.


