
A Scalable High Performant Cholesky
Factorization for Multicore with GPU

Accelerators

H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra ?

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville

{ltaief, tomov, rnath1, du, dongarra}@eecs.utk.edu

Abstract. We present a Cholesky factorization for multicore with GPU
accelerators systems. The challenges in developing scalable high perfor-
mance algorithms for these emerging systems stem from their heterogene-
ity, massive parallelism, and the huge gap between the GPUs’ compute
power vs the CPU-GPU communication speed. We show an approach
that is largely based on software infrastructures that have already been
developed for homogeneous multicores and hybrid GPU-based comput-
ing. This results in a scalable hybrid Cholesky factorization of unprece-
dented performance. In particular, using NVIDIA’s Tesla S1070 (4 C1060
GPUs, each with 30 cores @1.44 GHz) connected to two dual-core AMD
Opteron @1.8GHz processors, we reach up to 1.163 TFlop/s in single
and up to 275 GFlop/s in double precision arithmetic. Compared with
the performance of the embarrassingly parallel xGEMM over four GPUs,
where no communication between GPUs are involved, our algorithm still
runs at 73% and 84% for single and double precision arithmetic respec-
tively.

1 Introduction

When processor clock speeds flatlined in 2004, after more than fifteen years of
exponential increases, the era of routine and near automatic performance im-
provements that the HPC application community had previously enjoyed came
to an abrupt end. CPU designs moved to multicores and are currently going
through a renaissance due to the need for new approaches to manage the expo-
nentially increasing (a) appetite for power of conventional system designs, and
(b) gap between compute and communication speeds.

Compute Unified Device Architecture (CUDA) [1] based multicore platforms
stand out among a confluence of trends because of their low power consumption
and, at the same time, high compute power and bandwidth. Indeed, as power
consumption is typically proportional to the cube of the frequency, accelerators
using GPUs have a clear advantage against current homogeneous multicores,
? Research reported here was partially supported by the National Science Foundation,

NVIDIA, and Microsoft Research.



as their compute power is derived from many cores that are of low frequency.
Initial GPU experiences across academia, industry, and national research labo-
ratories have provided a long list of success stories for specific applications and
algorithms, often reporting speedups on the order of 10 to 100× compared to
current x86-based homogeneous multicore systems [2]. The area of dense linear
algebra (DLA) is no exception as evident from previous work on a single core
with a single GPU accelerator [3, 4], as well as BLAS for GPUs (see the CUBLAS
library [5]). Despite the current success stories involving hybrid GPU-based sys-
tems, the large scale enabling of those architectures for computational science
would still depend on the successful development of fundamental numerical li-
braries for using the CPU-GPU in a hybrid manner. Major issues in terms of
developing new algorithms, programmability, reliability, and user productivity
have to be addressed. Our work is a contribution to the development of these
libraries in the area of dense linear algebra and will be included in the Matrix Al-
gebra for GPU and Multicore Architectures (MAGMA) Library [9]. Designed to
be similar to LAPACK in functionality, data storage, and interface, the MAGMA
library will allow scientists to effortlessly port their LAPACK-relying software
components and to take advantage of the new hybrid architectures.

The challenges in developing scalable high performance algorithms for multi-
core with GPU accelerators systems stem from their heterogeneity, massive par-
allelism, and the huge gap between the GPUs’ compute power vs the CPU-GPU
communication speed. We show an approach that is largely based on software in-
frastructures that have already been developed – namely, the Parallel Linear Al-
gebra for Scalable Multicore Architectures (PLASMA) [6] and MAGMA libraries.
On one hand, the tile algorithm concepts from PLASMA allow the computation
to be split into tiles along with a scheduling mechanism to efficiently balance
the work-load between GPUs. On the other hand, MAGMA kernels are used to
efficiently handle heterogeneity and parallelism on a single tile. Thus, the new
algorithm features two levels of nested parallelism. A coarse-grained parallelism
is provided by splitting the computation into tiles for concurrent execution be-
tween GPUs (following PLASMA’s framework). A fine-grained parallelism is
further provided by splitting the work-load within a tile for high efficiency com-
puting on GPUs but also, in certain cases, to benefit from hybrid computations
by using both GPUs and CPUs (following MAGMA’s framework). Furthermore,
to address the challenges related to the huge gap between the GPUs’ compute
power vs the CPU-GPU communication speed, we developed a mechanism to
minimize the communications overhead by trading off the amount of memory
allocated on GPUs. This is crucial for obtaining high performance and scalability
on multicore with GPU accelerators systems. Indeed, although the computing
power of order 1 TFlop/s is concentrated in the GPUs, communications between
them are still performed using the CPUs as a gateway, which only offers a shared
connection on the order of 1 GB/s. As a result, by reusing the core concepts of
our existing software infrastructures along with data persistence optimizations,
the new hybrid Cholesky factorization not only achieves unprecedented high
performance but also, scales while the number of GPUs increases.



The paper is organized as follows. Section 2 introduces the principles of the
new technique, which permits the overall algorithm to scale on multiple GPUs.
It also gives implementation details about various Cholesky versions using dif-
ferent levels of optimizations. Section 3 presents the performance results of those
different versions. Section 4 describes the on-going work in this area and finally,
Section 5 summarizes this work.

2 Cholesky Factorization on Multicore+MultiGPUs

In this section, we describe our new technique to efficiently perform the Cholesky
factorization on a multicore system enhanced with multiple GPUs.

2.1 Principles and Methodology

This section represents our main twofold contribution.
First, the idea is to extend the runtime environment (RTE) of PLASMA,

namely the static scheduler [7], to additionally handle computation on GPUs.
Instead of assigning tasks to a single CPU, the static scheduler is now able to
assign tasks to a CPU+GPU couple. Each CPU host is dedicated to a particular
GPU device to offload back and forth data. PLASMA’s RTE ensures depen-
dencies are satisfied before a host can actually trigger the computation on its
corresponding device. Moreover, there are four kernels to compute the Cholesky
factorization and they need to be redefined (from PLASMA). Three of them –
xTRSM, xSYRK and xGEMM – can be efficiently executed on the GPU using
CUBLAS or the MAGMA BLAS libraries. In particular, we developed and used
optimized xTRSM and xSYRK (currently included in MAGMA BLAS). But
most importantly, the novelty here is to replace the xPOTRF LAPACK kernel
by the corresponding hybrid kernel from MAGMA. High performance on this
kernel is achieved by allowing both host and device to factorize the diagonal tile
together in a hybrid manner. This is paramount to improve the kernel because
the diagonal tiles are located in the critical path of the algorithm.

Second, we developed a data persistence strategy that optimizes the number
of transfers between the CPU hosts and GPU devices, and vice versa. Indeed, the
host is still the only gateway to any transfers occurring between devices which
appears to be a definite bottleneck if communications are not handled cautiously.
To bypass this issue, the static scheduler gives us the opportunity to precisely
keep track of the location of any particular data tile during runtime. One of the
major benefits of such a scheduler is that each processing CPU+GPU couple
knows ahead of time its workload and can determine where a data tile resides.
Therefore, many assumptions can be taken before the actual computation in
order to limit the amount of data transfers to be performed.

The next sections present incremental implementations of the new tile Cholesky
factorization on multicore with GPU accelerators systems. The last implemen-
tation is the most optimized version containing both contributions explained
above.



2.2 Implementations Details

We describe four different implementations of the tile Cholesky factorization
designed for hybrid systems. Each version introduces a new level of optimizations
and simultaneously includes the previous ones. Each GPU device is dedicated to
a particular CPU host, and this principle holds for all versions described below.

2.3 Memory optimal

This version of the tile Cholesky factorization is very basic in the sense that the
static scheduler from PLASMA is reused out of the box. The scheduler gives the
green light to execute a particular task after all required dependencies have been
satisfied. Then, three steps occur in this following order. First, the core working
on that task triggers the computation on its corresponding GPU by offloading
the necessary data. Second, the GPU performs the current computation. Third,
the specific core requests the freshly computed data back from the GPU. Those
three steps are repeated for all kernels except for the diagonal factorization
kernel, i.e., xPOTRF, where no data transfers are needed since the computation
is only done by the host. This version only requires, at most, the size of three
data tiles to be allocated on the GPU (due to the xGEMM kernel). However, the
amount of communication involved is tremendous as for each kernel call (except
xPOTRF) , two data transfers are needed (steps one and three).

2.4 Data Persistence Optimizations

In this implementation, the amount of communications is significantly decreased
by trading off the amount of memory allocated on GPUs. To understand how
this works, it is important to mention that each data tile located on the left
side of the current panel being factorized corresponds to the final output, i.e.,
they are not transient data tiles. And this is obviously due to the nature of
the left-looking Cholesky factorization. Therefore, the idea is to keep in GPU’s
memory any data tile loaded for a specific kernel while processing the panel,
in order to be eventually reused by the same GPU for subsequent kernels. Af-
ter applying all operations on a specific data tile located on the panel, each
GPU device uploads back to its CPU host the final data tile to ensure data
consistency between hosts/devices for the next operations. As a matter of fact,
another progress table has been implemented to determine whether a particu-
lar data tile is already present in the device’s memory or actually needs to be
uploaded from host’s memory. This technique requires, at most, the amount of
half the matrix to be stored in GPU’s memory. Besides optimizing the num-
ber of data transfers between hosts and devices, we also try to introduce asyn-
chronous communications to overlap communications by computations (using
the cudaMemcpy2DAsync function and pinned CPU memory allocation).



2.5 Hybrid xPOTRF Kernel

The implementation of this version is straightforward. The xPOTRF kernel has
been replaced by the hybrid xPOTRF MAGMA kernel, where both host and
device compute the factorization of the diagonal tile.

2.6 xSYRK and xTRSM Kernel Optimizations

This version integrates new implementations of the BLAS xSYRK and xTRSM
routines, which are highly optimized for GPU computing as explained below.
xSYRK: A block index reordering technique is used to initiate and limit the
computation only to blocks that are on the diagonal or in the lower (corre-
spondingly upper) triangular part of the matrix (since the resulting matrix is
symmetric). Thus, no redundant computations are performed for blocks off of
the diagonal. Only the threads that would compute diagonal blocks are let to
compute redundantly half of the block in a data parallel fashion in order to avoid
expensive conditional statements that would have been necessary otherwise.
xTRSM: Similarly to [3, 8], we explicitly invert blocks of size 32 × 32 on the
diagonal of the matrix and use them in blocked xTRSM algorithms. The inverses
are computed simultaneously, using one GPU kernel, so that the critical path
of the blocked xTRSM can be greatly reduced by doing it in parallel (as a
matrix-matrix multiplication). We have implemented multiple kernels but this
performed best for the tile sizes used in the Cholesky factorization (see Section
3.2) and our particular hardware configuration.

3 Experimental Results

3.1 Environment Setup

The experiments have been performed on a dual-socket dual-core host machine
based on an AMD Opteron processor operating at 1.8 GHz. The NVIDIA S1070
graphical card is composed of four GPUs C1060 with two PCI Express connec-
tors driving two GPUs each. Each GPU has 1.5 GB GDDR-3 of memory and
30 processing cores each, operating at 1.44 GHz. Each processing core has eight
SIMD functional units and each functional unit can issue three floating point
operations per cycle (1 mul-add + 1 mul = 3 flops). The single precision theo-
retical peak performance of the S1070 card is then 30× 8× 3× 1.44× 4 = 4.14
Tflop/s. However, only two flops per cycle can be used for general purpose com-
putations in our dense linear algebra algorithm (1 mul-add per cycle). So, in our
case, the single precision peak performance drops to 2/3× 4.14 = 2.76 Tflop/s.
The double precision peak is computed similarly with the only difference be-
ing that there is only one SIMD functional unit per core, i.e., the peak will be
30× 1× 2× 1.44× 4 = 345 Gflop/s. The host machine is running Linux 2.6.18
and provides GCC Compilers 4.1.2 together with the CUDA 2.3 library. All the
experiments presented below focus on asymptotic performance and have been
conducted on the maximum amount of cores and GPUs available on the machine,
i.e., four cores and four GPUs.



3.2 Tuning

The performance of the new factorization strongly depends on tunable execu-
tion parameters, most notably various block sizes for the two levels of nested
parallelism in the algorithm, i.e., the outer and inner block sizes. These param-
eters are usually computed from an auto-tuning procedure (e.g., established at
installation time) but for now, manual tuning based on empirical data is used
to determine their “optimal” values. The selection of the tile size (the outer
blocking size) is determined by the performance of xGEMM. The goal is to de-
termine from which tile size the performance of xGEMM on a single GPU starts
to asymptotically flatten. Several values in that region were tested to finally se-
lect the best performing ones, namely bs = 576 in single and bd = 832 in double
precision arithmetic. The selection of the inner blocking sizes for the splitting
occurring within the hybrid kernels (i.e., MAGMA’s xPOTRF) and the GPU
kernels (i.e., MAGMA BLAS’s xSYRK, xTRSM, xGEMM) is done similarly,
based on empirical data for problem sizes around 500 and 800 for single and
double precision arithmetic, respectively [10].

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000

Gfl
op

/s

Matrix Size

KERNEL OPT

HYBRID COM OPT SYNCH
HYBRID COM OPT ASYNCH

COM OPT

MEM OPT

(a) Single Precision.

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Gfl
op

/s

Matrix Size

KERNEL OPT

HYBRID COM OPT SYNCH
HYBRID COM OPT ASYNCH

COM OPT

MEM OPT

(b) Double Precision.

Fig. 1. Performance comparisons of various implementations.

3.3 Performance Results

Figure 1 shows the incremental performance in single and double precision arith-
metic of the tile hybrid Cholesky factorization using the entire system resources,
i.e. four CPUs and four GPUs. Each curve represents one version of the Cholesky
factorization. The memory optimal version is very expensive due to the high
number of data transfers occurring between hosts and devices. The communi-
cation optimal or data persistence techniques trigger a considerable boost in
the overall performance, especially for single precision arithmetic. The integra-
tion of the hybrid kernel (i.e., MAGMA’s xPOTRF) to accelerate the execu-
tion of tasks located on the critical path improves further the performance. To
our surprise, we did not see any improvements between the synchronous and



the asynchronous version. Most probably this feature is not yet handled effi-
ciently at the level of the driver. Finally, the additional optimizations performed
on the other MAGMA BLAS kernels (i.e., MAGMA BLAS’s xSYRK, xTRSM,
xGEMM) make the Cholesky factorization reach up to 1.163 Tflop/s for single
and 275 Gflop/s for double precision arithmetic. Compared with the perfor-
mance of the embarrassingly parallel xGEMM over four GPUs, i.e. 400×4 = 1.6
Tflop/s for single precision (58% of the theoretical peak of the NVIDIA card)
and 82×4 = 328 Gflop/s for double precision arithmetic (95% of the theoretical
peak of the NVIDIA card), our algorithm runs correspondingly at 73% and 84%.
Figure 2 highlights the scalable speed-up of the tile hybrid Cholesky factoriza-
tion using four CPUs - four GPUs in single and double precision arithmetics.
The performance doubles as the number of CPU-GPU couples doubles.

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000

Gfl
op

/s

Matrix Size

4 CPUs - 4GPUs

3 CPUs - 3GPUs

2 CPUs - 2 GPUs

1CPUs - 1GPUs

(a) Single Precision.

4 CPUs - 4GPUs

3 CPUs - 3GPUs

2 CPUs - 2 GPUs

1CPUs - 1GPUs

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Gfl
op

/s

Matrix Size

(b) Double Precision.

Fig. 2. Speed up of the tile hybrid Cholesky factorization.

4 Related Work

Several authors have presented work on multiGPU algorithms for dense linear
algebra. Volkov and Demmel [3] presented an LU factorization for two GPUs
(NVIDIA GTX 280) running at up to 538 GFlop/s in single precision. The
algorithm uses 1-D block cyclic partitioning of the matrix between the GPUs
and achieves 74% improvement vs using just one GPU. Although extremely
impressive, it is not clear if this approach will scale for more GPUs, especially
by taking into account that the CPU work and the CPU-GPU bandwidth will
not scale (and actually will remain the same with more GPUs added).

Closer in spirit to our work is [11]. The authors present a Cholesky factor-
ization and its performance on a Tesla S1070 (as we do) and a host that is
much more powerful than ours (two Intel Xeon Quad-Core E5440 @2.83 GHz).
It is interesting to compare with this work because the authors, similarly to us,
split the matrix into tiles and schedule the corresponding tasks using a dynamic



scheduling. Certain optimizations techniques are applied but the best perfor-
mance obtained is only close to our memory optimal version, which is running
three times slower compared to our best version. The algorithm presented in here
performs better for a set of reasons, namely the data persistence optimization
techniques along with the efficiency of our static scheduler, the integration of
the hybrid kernel, and the overall optimizations of the other GPU kernels.

5 Summary and Future Work

This paper shows how to redesign the Cholesky factorization to greatly enhance
its performance in the context of multicore with GPU accelerators systems. It
initially achieves up to 20 GFlop/s in single and up to 10 GFlop/s in double pre-
cision arithmetic by using only two dual-core 1.8 GHz AMD Opteron processors.
Adding four GPUs and redesigning the algorithm accelerates the computation
up to 65× and 27× for single and double precision arithmetic respectively. This
acceleration is due to a design that enables efficient cooperation between the four
Opteron cores and the four NVIDIA GPUs (30 cores per GPU, @1.44 GHz per
core). By reusing concepts developed in the PLASMA and MAGMA libraries
along with data persistence techniques, we achieve an astounding performance of
1, 163 TFlop/s in single and 275 GFlop/s in double precision arithmetic. Com-
pared with the performance of the embarrassingly parallel xGEMM over four
GPUs, where no communication between GPUs are involved, our algorithm still
runs at 73% and 84% for single and double precision arithmetic respectively.
Although this paper focused only on the Cholesky factorization, a full high-
performance linear solver is possible [12]. This hybrid algorithm will eventually
be included in the future release of MAGMA. Future work includes the extension
to LU and QR factorizations.

References

1. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide.
http://developer.download.nvidia.com, 2007.

2. NVIDIA CUDA ZONE. http://www.nvidia.com/object/cuda home.html.
3. V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear algebra. In

Proc. of SC ’08, pages 1–11, Piscataway, NJ, USA, 2008.
4. S. Tomov and J. Dongarra. Accelerating the reduction to upper Hessenberg form

through hybrid GPU-based computing. LAPACK Working Note 219, 05/2009.
5. CUDA CUBLAS Library. http://developer.download.nvidia.com.
6. E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou,

H. Ltaief, P. Luszczek, and A. YarKhan. PLASMA version 2.0 user guide.
http://icl.cs.utk.edu/plasma, 2009.

7. J. Kurzak, A. Buttari, and J. J. Dongarra. Solving systems of linear equations on
the CELL processor using Cholesky factorization. IEEE Transactions on Parallel
and Distributed Systems, 19(9):1–11, September 2008.

8. M. Baboulin, J. Dongarra, and S. Tomov. Some issues in dense linear algebra for
multicore and special purpose architectures. LAPACK Working Note 200, 05/2008.



9. S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA version 0.2 User Guide.
http://icl.cs.utk.edu/magma, 11/2009.

10. Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning GEMM for GPUs. In
Proc. of ICCS ’09, pages 884–892, Baton Rouge, LA, 2009.

11. E. Ayguadé, R. Badia, F. Igual, J. Labarta, R. Mayo, and E. Quintana-Ort́ı. An
Extension of the StarSs Programming Model for Platforms with Multiple GPUs.
In Proc. of Euro-Par ’09, pages 851–862, Delft, The Netherlands, 2009.

12. S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense Linear Algebra Solvers for
Multicore with GPU Accelerators. Proceedings of IPDPS 2010, Atlanta, GA, April
2010.


