
VGrADS: Enabling e-Science Workflows on Grids and
Clouds with Fault Tolerance

Lavanya Ramakrishnan
Indiana University,

Bloomington
laramakr@cs.indiana.edu

Daniel Nurmi
University of California, Santa

Barbara
nurmi@cs.ucsb.edu

Anirban Mandal
Renaissance Computing

Institute
anirban@renci.org

Charles Koelbel
Rice University

chk@cs.rice.edu

Dennis Gannon
Microsoft Research

degannon@microsoft.com

T. Mark Huang
University of Houston

tihuang@tlc2.uh.edu

Yang-Suk Kee
Oracle US Inc.

yang.seok.ki@oracle.com

Graziano Obertelli
University of California, Santa

Barbara
graziano@cs.ucsb.edu

Kiran Thyagaraja
Rice University

kiran@rice.edu

Rich Wolski
University of California, Santa

Barbara
rich@cs.ucsb.edu

Asim YarKhan
University of Tennessee,

Knoxville
yarkhan@cs.utk.edu

Dmitrii Zagorodnov
University of California, Santa

Barbara
dmitrii@cs.ucsb.edu

ABSTRACT
Today’s scientific workflows use distributed heterogeneous resources
through diverse grid and cloud interfaces that are often hard to
program. In addition, especially for time-sensitive critical appli-
cations, predictable quality of service is necessary across these dis-
tributed resources. VGrADS’ virtual grid execution system (vgES)
provides an uniform qualitative resource abstraction over grid and
cloud systems. We apply vgES for scheduling a set of deadline
sensitive weather forecasting workflows. Specifically, this paper re-
ports on our experiences with (1) virtualized reservations for batch-
queue systems, (2) coordinated usage of TeraGrid (batch queue),
Amazon EC2 (cloud), our own clusters (batch queue) and Euca-
lyptus (cloud) resources, and (3) fault tolerance through automated
task replication. The combined effect of these techniques was to
enable a new workflow planning method to balance performance,
reliability and cost considerations. The results point toward im-
proved resource selection and execution management support for a
variety of e-Science applications over grids and cloud systems.

1. INTRODUCTION
The dream of providing on-demand computing resources for heavy

users has been discussed for over a decade under various names:
grid computing [15], utility computing [36], cloud computing [28],
and others. When the Virtual Grid Application Development Soft-
ware (VGrADS) [25, 32, 51] project began in 2003, the state of the
art was a style of grid computing that allowed High Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, and thatcopies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to poston servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC09November 14-20, 2009, Portland, Oregon, USA
Copyright 2009 ACM 978-1-60558-744-8/09/11 ...$10.00.

Computing (HPC) applications to run on distributed clusters, but
only with careful tending. Applications needed low-level program-
ming for managing heterogeneous resources, scheduling of compu-
tation and data movement, fault tolerance, and performance tuning.
VGrADS set out to raise the level of programming for grid appli-
cations.

More recently, the rise of cloud computing has resulted in simi-
lar concerns regarding application management and programming
models for scientific workflows. The cloud computing model pro-
vides on-demand immediate access to virtual machines on a pay-
as-you-go model. Cloud computing has evolved in support of Web
2.0 applications [3] to manage dynamic load. Cloud computing
for scientific applications has certain trade-offs. Clouds provide
immediate guaranteed access to resources and customizable soft-
ware environments through virtual machines that overcome some
of the challenges with current shared batch queue systems. How-
ever, parallel scientific codes often experience a significant perfor-
mance impact. Thus, we need programmatic methods for applica-
tions to study the suitability of different resource environments and
make appropriate resource decisions.

We have made substantial progress in two broad areas of simpli-
fying programming applications on grid and cloud systems :

• We separated application development from resource man-
agement by providing a uniformvirtual grid abstraction atop
widely differing resources.

• We provided tools to efficiently bridge the abstraction gap,
including methods for scheduling, resource management, dis-
tributed launch, and fault tolerance.

Resource procurement and planning interfaces and strategies are
especially critical for time-sensitive applications. Mesoscale me-
terology workflows in the Linked Environments for Atmospheric
Discovery (LEAD) [10] project are examples of such deadline-
sensitive workflows. These workflows are initialized by streaming
sensor data and consist of a number of preprocessing steps that feed
data to a computation-intensive weather model. These workflows

ResourcesH
P
C

Globus EC2 interfaces

Workflow

Planner

Workflow

Engine

Application

Service

Portal

Virtual Grid

Execution System

ResourcesH
P
C

Globus EC2 interfaces

Execution

Manager

Workflow

Engine

Application

Service

Portal

Execution

Manager

resource

planning

resource

binding

query

execution

plan

standard

execution

specific protocol

based execution

UserUser

(b)(a)

Figure 1: Comparison of the LEAD-VGrADS collaboration system with cyberinfrastructure production deployments.

require timely and coordinated access to computation and data dur-
ing workflow execution.

This paper brings together many of the results from the VGrADS
project demonstrating the effectiveness of virtual grids for schedul-
ing LEAD workflows. In the process, it demonstrates a seamless
merging of cloud and HPC resources in service of a scientific ap-
plication. It also applies advanced scheduling techniques for both
performance improvement and fault tolerance in a realistic context.

LEAD has been run as a distributed application since its incep-
tion, but VGrADS methods have opened new capabilities for re-
source management and adaptation in its execution. We present
the motivation for the LEAD application and explain the effect
of VGrADS on workflow scheduling in Section 2. We discuss
VGrADS system components and the execution flow in Section 3.
This describes the virtual grid abstraction, including its unified man-
agement of TeraGrid clusters and Amazon EC2 and Eucalyptus
cloud sites, and our support for fault-tolerant scheduling work-
flows. We detail our experiments in Section 4 that demonstrate
the feasibility of the virtual grid abstraction’s new capabilities for
e-Science [46] workflows such as LEAD and show that the over-
head of the system is low. Finally, in Sections 5 and 6 we discuss
related work and present our conclusions.

2. OVERVIEW
We use the LEAD cyberinfrastructure [10] as a testbed for VGrADS

ideas. It is a modern cyberinfrastructure, with many features —
notably the use of distributed resources for workflow execution
— common to other e-Science domains [46]. In addition, LEAD
workflows are time sensitive making timely resource procurement
crucial. All this makes it an ideal choice to test the VGrADS in-
frastructure. The lessons learned here are more widely applicable
to other e-Science applications and workflows [37].

2.1 LEAD Workflow Example
LEAD users access large-scale data, forecast models, and anal-

ysis and visualization tools for mesoscale meteorology through a
portal interface. Using the portal interface, they compose, launch
and monitorworkflows, each of which consists of a set of tasks that
produce and/or consume data. The need for data to be produced be-

fore it is consumed creates dependencies between the tasks. More-
over, many LEAD experiments requireworkflow sets. Because of
the many parameters in weather models and uncertainty in the in-
put, computing an exact result is often impossible. In these cases
the user must often run the same model many times with different
initial parameters to manage the accuracy of the result. Workflow
planning in LEAD must support scheduling workflow sets with two
characteristics: a deadlineD when all work must be completed,
and a fractionF of workflows which must complete by that dead-
line. The LEAD portal uses a workflow engine to manage the task
dependencies and execution of a workflow. That engine in turn
invokes the corresponding application service that has knowledge
about the application’s configuration and data.

For example, imagine a LEAD experiment to forecast severe
storms. A workflow in this experiment might take as inputs stream-
ing sensor data to be pre-processed and then used to launch an
ensemble of weather models. Based on the application’s require-
ments, the experiment might need to finish within three hours (i.e.,
D = 3) to produce timely forecasts, and require 15 of 20 models to
complete (i.e.,F = 3/4) to have acceptable confidence. It would
be the workflow engine and application services’s job to schedule
the tasks so that those constraints are met.

2.2 Virtual Grid Abstraction
Figure 1 shows a simplified view of LEAD cyberinfrastructure,

both with and without VGrADS. Both versions support the same
user interface to construct and submit workflows. However, the
virtual grid abstraction (described in detail in Section 3) enables
a more sophisticated and effective scheduling of the workflow sets
using the virtual grid abstraction. Originally (Figure 1(a)), the ap-
plication services interacted directly with distributed sites using
specific interfaces. This led to ad-hoc resource scheduling deci-
sions distributed across different components. In turn, this made
workflow planning and real-time adaptation extremely challenging,
particularly with respect to performance and reliability variability.
With VGrADS (Figure 1(b)), theVirtual Grid Execution System
(vgES)provides a uniform interface for provisioning, querying, and
controlling the resources. Similar resource abstractions have been
proposed earlier over grid systems [16, 18]. However, vgES has the

Start Deadline D

A

B C

D

J

K

L

E

F HG I

Start Deadline D

Batch Queue

Cloud

A B C D

E F HG

J K L

I

W
A
IT

W
A
IT

W
A
IT

W
A
IT

W
A
IT

W
A
IT

W
A
IT

W
A
IT

W
A
IT

W
A
IT

(a)

Example Workflow Set
need F=2/3

(c)

Coordinated Schedule
With VGrADS

(b)

Uncoordinated Schedule
Without VGrADS

Batch Queue

Cloud

A B C D

E F HG I

W
A
IT

W
A
IT

J K L

W
A
IT E´ F´ G´ H´ I´

E F HG I

Figure 2: Example scheduling of workflows.

ability to harness resources across grid and cloud sites as required
by the application. The resources are annotated with QoS proper-
ties that aid workflow planning. Thus, the standardized interface
enables a multi-phase workflow orchestration pipeline to balance
performance, reliability and cost considerations for a set of work-
flows while being agnostic to specific policies and site implemen-
tations. In particular, it allows coordinating resources across the
components in a workflow set, and managing fault tolerance for the
overall workflow set. It also makes combining disparate resource
types, including batch-queued resources (such as TeraGrid clusters)
and cloud computing installations (such as EC2 and Eucalyptus),
relatively seamless. Our implementation uses the LEAD cyberin-
frastructure components to demonstrate the use of the virtual grid
abstraction, but other scientific workflow systems will interact sim-
ilarly with possibly different policies in resource procurement and
workflow planning.

2.3 Coordinated Scheduling: An Example
We use an example to illustrate the usefulness of coordinated

scheduling across different resource types - grids and clouds. Fig-
ure 2a shows a typical example of three small workflows that must
be mapped onto a resource set consisting of a batch-queue cluster
(which can handle two tasks concurrently) and a cloud resource.
Each of the tasks in the workflows represents a scientific code. We
label each task with a letter (e.g., the first workflow has tasks A,
B, C and D). The graph shows the dependencies between the tasks
(e.g., tasks B and C depend on task A). Figure 2b shows a Gantt
chart (i.e., task mapping onto resources with time) when schedul-
ing the tasks individually on available resources. Scheduling the
tasks individually incurs unpredictable queue waits that cause the
deadline to be missed. In this case, each job in a batch queue sys-
tem incurs an overhead in terms of queue wait time. Similarly, the
startup time for virtual machines in cloud systems imposes an ini-
tial overhead. This example mirrors current day practice in systems
such as LEAD, before the advent of VGrADS.

The qualitative resource abstractions in VGrADS provide the
ability to aggregate resources from disparate sources and under
different policies. For example, batch queue resources, cloud re-
sources, and resources available through offline agreements such
as advanced reservations can be queried and used with a single in-
terface. Thus, by using VGrADS to “reserve” a resource for the
entire workflow (Figure 2c), we can avoid those delays. The new
schedule meets the deadline even with higher initial wait times (re-
flecting requests for longer time slots). Moreover, the global view
of the computation and the virtual grid allows the scheduler to use

schedule

re
s
o

u
rc

e
 f

in
d

&
 b

in
d

Phase 1,2, 3 Phase 2, 3 Phase 4

BQP

G
T

4
,

P
e

rs
o

n
a

l
P

B
S

VARQ

ResourcesH
P
C

Globus EC2 interfaces

q
u

e
ry

 b
a

tc
h

q
u

e
u

e
 t

im
e

s

v
ir

tu
a

l
re

s
.

s
u

b
m

it
 j
o

b

s
e

tu
p

 v
ir

tu
a

l
m

a
c
h

in
e

s

Figure 3: Interaction of system components for resource pro-
curement and planning

slack in the schedule to replicate the second workflow in Figure 2a
for fault tolerance. This is represented by the new tasks E’, F’, G’,
H’, and I’. Even if the copy of this workflow on the batch system
(i.e. the set of crossed-out tasks) fails, the other copy can complete.

Although Figure 2 is a simplified motivating example, Section 4
will show a similar scheduling improvement on an actual LEAD
run. Thus we see that the VGrADS interface provides a single in-
terface to query and manage resources enabling better scheduling
of workflows to meet its constraints. Next, we detail the system
components of the VGrADS system supporting LEAD workflows.

3. SYSTEM COMPONENTS
Figure 3 shows the interaction of various system components.

The first step in the workflow planning process is resource procure-
ment. The planner triggers the activities of vgES system and returns
a set of slots or a “Gantt Chart” that represents the resources as-
signed for this request. This Gantt Chart is then shared between the
workflow planner, the DAG scheduler and the fault tolerance com-
ponent to develop the schedule. The schedule for the workflows is
represented as task mappings on each of the slots. The interaction
of the virtual grid execution system with the grid and cloud sites are
described in greater detail in Section 3.1. While resources are being
bound by vgES, the workflow planner uses a four stage planning
process to determine the schedule for the LEAD workflow sets to
meet the deadline and accuracy constraint. The workflow planner
interacts with a DAG scheduler, EC2 planner and fault tolerance
sub-components to trade-off various system parameters - perfor-
mance, reliability and cost. Once the workflow planner determines
the workflow plan and the resources are bound, the execution sys-
tem monitors and manages the workflows. We detail the execution
system changes required to support workflow set orchestration in
Section 3.3.

Thus, the integrated system is comprised of several interacting
components that together provide a resource collection abstraction
that we term virtual grids. This abstraction provides methodolo-
gies for efficiently utilizing resources through intelligent workflow
orchestration, task scheduling, and fault tolerance mechaisms.

3.1 Virtual Grid Execution System
The Virtual Grid Execution System (vgES) [23, 25] acquires

resources and ensures their availability during time intervals ex-
pressed by the user. vgES can be configured to draw from dedicated
resources, batch queue managed resources, and cloud resources
accessed through the Amazon Elastic Compute Cloud (Amazon
EC2) [2] or Eucalyptus [33] . Internally, vgES maintains a database
populated with static information about the entire collection of HPC
and cloud resources available, and translates high level requests for
resource collections into the most appropriate set of real resources
at any given time. Note that, since the provisioning and availabil-
ity chacteristics of the real resources often change over time, the
same abstract request made at different times may result in a differ-
ent sets of real resources being aquired that still meet the abstract
request constraints.

When vgES recieves a request to construct a virtual grid, it per-
forms a database search to find the best collection of resources to
provision, and returns a virtual grid abstract data structure. The
structure contains meta-data describing performance characteristics
of the resources, timing information on when the resources will be
available, and locality information about the proximity of the re-
sources to one another. This information is organized as a tree that
can be searched to inspect resource characteristics. In addition,
vgES provides the view of resources in the form of a Gantt chart
that describes how the resources will be provisioned over time.

After a request has been accepted and a virtual grid has been
created, vgES finally performs the task of actually provisioning
the resources using several “drivers” for the different types of re-
sources (described in detail below) When vgES acquires access to
the resources, we install our own, independent version of a Portable
Batch Scheduler (PBS) compatible resource manager (Torque) and
Globus interfaces [24] as shown in Figure 3. Having our own re-
source manager running inside each provisioned set of resources
gives us both a uniform interface and the ability to reuse a set of
resources for several tasks, rather than repeatedly making provi-
sioning requests. Next, we describe how resource procurement is
enabled at grid and cloud sites.

3.1.1 Service overlay over grid systems
Currently, most HPC sites use some form of batch scheduling

software (e.g., Torque [47], Maui [27]) to manage the mapping of
user workload to dedicated compute and storage resources. Typi-
cally, sites configure their systems to implement a “space-sharing”
policy, where application jobs request resources and the batch queue
software provides exclusive access to the requested resources when
enough capacity becomes available. When there are more resource
requests (jobs) than there are unoccupied resources available, some
jobs must wait in a queue. The amount of time that jobs wait in
queue on extant HPC sites has been shown to be both substantial
(relative to the execution time of the jobs) and highly variable. This
uncertaintly makes effective scheduling very difficult, especially
for applications with time constraints.

To provide abstract slots for scheduling, even in the presence of
batch queue delays, vgES uses an abstraction for making statisti-
cal advanced reservations called Virtual Advance Reservations for
Queues (VARQ) [31]. VARQ is in turn built on another technol-
ogy we developed, the Queue Bounds Estimation from Time Se-
ries (QBETS) [30] service, which provides statistical predictions
of batch queue delays.
Queue Bounds Estimation. Previous studies [9, 43] of predict-
ing batch queue turnaround times have focused on the modeling
and prediction of batch queue wait time using point value statis-
tics, such as the mean wait time, as the predictor for future job wait

times. While these statistics provide good aggregate predictors,
they tend to be poor predictors for individual job wait times due to
the highly variable nature of the data (often spanning five to seven
orders of magnitude when wait times are measured in seconds [6,
9, 43]). Instead, we predictupper boundson those wait times. For
many scientific workflows, including LEAD, the ability to predict
the longest timethat a job will wait in queue is enough to make
informed scheduling decisions.

Our methodology for predicting bounds on individual job wait
times, QBETS [30], uses historical job traces from over 25 super-
computer centers around the world which send trace updates, in
real time, as jobs are processed. We perform one trace-based simu-
lation per machine/queue tuple on this trace applying an automatic
job clustering algorithm, an on-line change point detection heuris-
tic, and finally an empirical quantile prediction methodology that
results in our final bound prediction. Functionally, our method pro-
vides us the ability to service prediction requests in the form of
two useful functions. The first function gives a user who is about
to submit a job running onN processors for wall-clock timeW
(N,W) to a machine/queue combination(M,Q) an upper bound
queue wait time predictionboundwith a prediction success proba-
bility of prob.

bound= GETBOUND(M,Q,N,W, prob)

The result of this function is analogous to the statement,A job
(N,W) submitted to batch queue(M,Q) has a probability(prob)
of waiting in queue no longer than(bound). While this prediction
is useful in many settings, for deadline-driven applications (e.g.
LEAD), we would rather specify the time and predict the proba-
bility that the job will start before then. To do this, we can invert
GETBOUND() and provide the second useful prediction routine:

prob= GETPROB(M,Q,N,W,bound)

Although GETPROB() accurately predicts the probability that a
job will start beforebound, it cannot say exactly when in that time
interval the job will execute. That is, the job could start imme-
diately or one second before the deadline. While this suffices for
scheduling individual jobs, it is problematic when we are schedul-
ing multiple jobs with dependencies on one another. We need a
way to ensure that dependences are enforced, not just statistical es-
timates of that likelihood. To provide that capability, we build on
QBETS with virtual advance reservations.
Virtual Advance Reservation. Virtual Advance Reservations for
Queues (VARQ) [31] allows us to make probabilistic advance reser-
vations with no modification to the underlying site software or poli-
cies. Our studies of time series data gathered for QBETS showed
us that, although the queue wait time experienced by jobs is highly
variable, the upper bound predictions produced by QBETS are far
more stable. Often, the predictions remain stable for days or weeks
changing only when a drastic event occurs (e.g. a deadline for a
large user). Thus, we posit that we can legitimately make predic-
tions for future job submissions assuming that large, prediction-
changing events are infrequent. Based on this assumption, we have
devised a methodology that allows us to search the time between
nowand a specified future job start deadline to find the best time to
submit a job to meet the deadline. VARQ computes aprobability
trajectory, in 30 second intervals, by repeated calls to the QBETS
GETPROB() routine. At each interval, we know that the job could
start immediately after being submitted, and so the execution time
of the jobW must be adjusted to cover the time to the deadline,
plus the job runtime itself. We denote this adjusted job runtime
Wad j. VARQ uses GETPROB() to obtain a probability prediction,
decrementingboundandWad j by 30 seconds at each step until the

deadline is reached. At the end of this process, VARQ uses the
computed probability trajectory and a specified minimum success
probability to find the latest point in time where a job can be sub-
mitted so that it will start before the specified start time, holding the
resources for the entire duration of the job after the deadline arrives.
In a previous work [31] we showed that VARQ can successfully
make probabilistic advance reservations on large scale production
super-computers today. Using VARQ, vgES can time submission to
the queue to maximize the probability of resource arrival for virtual
grid use.

3.1.2 Cloud system overlay
Over the past few years, a number of (mostly commercial) en-

tities have started selling the excess capacity of their resources
through an interface that allows a user to start and control vir-
tual machine images that are capable of running their applications.
These “cloud computing” systems can provide substantial comput-
ing resources to scientists and other users. While the end product of
many cloud systems is similar to what a user expects to get from a
batch scheduled HPC resource, the way in which the resources are
provisioned is very different, and has unique associated costs and
benefits. For example, with Amazon’s EC2 [2], which is the lead-
ing cloud resource provider, a user submits a request for a num-
ber of virtual machine instances (based on a common template),
and expects to either have those resources provisioned “instantly”
(within a few minutes) or for the request to fail. In batch queue sys-
tems, the expectation is that a submitted valid job will always run
“eventually”. This difference adds a bit of complexity to a user who
would like to make advance allocation requests using both types of
resources in concert. In addition, another difference that impacts
the co-scheduling of batch scheduled and cloud resources stems
from the fact that batch scheduled resources typically incur a cost
that is virtual in nature (users of such systems are commonly given
a budget of node/CPU hours that they “spend” when they use re-
sources), where public cloud offerings such as Amazon EC2 charge
users based on resource usage using real currency. Balancing these
different charging models during a resource scheduling phase must
be taken into account and can be complex, depending on the objec-
tives of the user.

In vgES, we have built a “cloud resource” driver that has a simi-
lar interface to the previously discussed QBETS/VARQ batch queue
driver. Since Amazon EC2 is currently the best specified and most
common interface to cloud resources, the driver is built to con-
trol virtual machine reservations through the EC2 API. Using this
driver, vgES may provision resources from EC2 in order to meet
deadlines if the current set of batch queue resources are unlikely to
satisfy a user request.

To further augment the number of resources available to users,
we have built an open source cloud computing system called Eu-
calyptus [33] that can be run on any set of machines that supports
commonly available open-source software (Linux, Xen, etc). Euca-
lyptus exports an EC2-compatible interface and therefore the vgES
driver can interact with any Eucalyptus installation just as it inter-
acts with Amazon EC2. Thus, using Eucalyptus, we can transform
any collection of machines into an EC2-compatible compute cloud
that can be seamlessly managed by vgES. Studies into the suitabil-
ity of cloud computing systems for HPC application workloads [12,
35] indicate that certain applications perform well in existing public
clouds while others require more specialized performance/feature
enhancements before they become viable HPC resource providers.
While the public clouds are generally designed to provide good
performance for a wide variety of applications, we can leverage
the fact that Eucalyptus can run on local resources to provide those

enhancements. The result for us is a specialized cloud computing
installation that can utilize high performance networks, access to
local parallel file systems, and other resources that are not typically
offered by public cloud computing systems. We feel that this is
the direction that private clouds and clouds for e-Science use will
need to take in the future. We further argue that these experiments
suggest that such clouds can be a viable platform for scientific com-
putation.

3.2 Workflow Planner
vgES interacts with different resource types and unifies resources

available with certain properties to the workflow planner. For ex-
ample, scientific workflows such as LEAD often have assigned al-
locations through TeraGrid and other supercomputing centers as
well as other local cluster sites. In addition to these assigned re-
sources, users might have access to other resources that might have
higher price points and are not used regularly. LEAD can use Ama-
zon EC2 resources that are priced differently from the TeraGrid re-
sources. The trade-off cost versus benefit of using higher priced
resources must be represented in the workflow planning process.
Using vgES, we study the impact of scheduling LEAD workflow
sets on a mix of TeraGrid, local grid and cloud sites and Amazon
EC2 resources. This four phase workflow planning approach is de-
tailed in this section.

The workflow planning approach we describe here specifically
targets deadline-sensitive workflows such as LEAD. However the
different phases of the workflow planning approach can be applied
to other workflows which might be less time-sensitive.

3.2.1 Resource Procurement
Each resource site is queried for a certain number of processors

for the time duration from now till the deadline. Our workflow or-
chestration has two goals: to meet the specified deadline and sched-
ule the maximum number of workflows in the given time such as to
increase the probability that at least the minimum required work-
flows complete by the deadline. Thus, we pick an aggressive re-
source request policy (with no cost constraints) querying all sites
for the maximum duration. Once a minimal set of resources are
available, the workflow planner instructs vgES to “bind” the re-
sources (i.e., appropriate mechanisms are used to start the procure-
ment of the resources on grid and cloud sites). Resource availabil-
ity might be delayed due to batch queue wait times or the virtual
machine startup overhead. Once resources become available vgES
sets up appropriate application software. The multi-phase planning
process is initiated in parallel.

3.2.2 Phase 1: Minimal Scheduling
The goal of this stage of the pipeline is to schedule the mini-

mum fraction of workflows required on regular resource sites (i.e.,
we do not use Amazon EC2 in this phase). We implement a sim-
ple probabilistic DAG scheduler. The DAG scheduler traverses the
DAG bottom-up and assigns deadlines for the tasks given a work-
flow deadline. Subsequently the tasks are sorted by deadline for
the scheduling phase. Each task T has a durationd and must be
scheduled no earlier thanearliestStartTimeand must finish no later
than latestFinishTime. The DAG scheduler finds a task mapping
on each of the slots returned by vgES for a particular task. Subse-
quently all task mappings that meet the task deadline are considered
for selection and the best success probability mapping is selected.
Data transfer times are accounted for when finding a task mapping
that can meet a deadline. For any task in a workflow, the probability
that it will succeed depends on the resource on which it is sched-
uled as well as the probability of its parent tasks finishing. When

two tasks are scheduled on independent resource slots their prob-
abilities are independent and the probability of a task is the joint
probability of its parent and itself. However, in a slot abstraction,
if a Task T and its parents are scheduled on the same resource slot
then the Task T has the same probability of finishing as its weakest
parent. The process is repeated for all tasks in the workflow. If the
minimum fraction of workflows cannot be scheduled at this stage,
the planner exits with an error. The probability of a workflow com-
pleting is the minimum of the success probability of all tail nodes.

3.2.3 Phase 2: Fault Tolerance Trade-off
In the trade-off stage we compare scheduling additional work-

flows with increasing the fault-tolerance of one or more tasks of the
scheduled minimum fraction of workflows. We compare the suc-
cess probability of the minimum fraction of workflows completing
as the criteria for picking the scheduling at this stage. Probabilities
of tasks completing are computed using the failure probability of
the resources and the probabilities of its parent tasks. We maintain
a queue of tasks from the scheduled workflows that are sorted by
their probability of completion. We compare:

1. a schedule from scheduling additional workflow from the
workflow set, and

2. a schedule where a taskTi from the sorted queue of tasks
of the scheduled workflow from Phase 1 is replicated one or
more times on available resources.

The workflow planner interacts with a fault tolerance component
to determine if a task should implement replication in the second
case. For this implementation, the fault tolerance component im-
plements replication based fault-tolerance techniques to increase
the probability of success for each workflow task. Given the cur-
rent mapping of tasks on a Gantt chart of available resource slots
with corresponding reliability characteristics, each workflow task is
replicated on additional slots to increase the probability of success
of a task to the desired success probability. This in turn increases
the workflow success rate and hence potentially increases the frac-
tion of workflows that need to finish by a given deadline.

The fault-tolerance techniques determine the mapping of the repli-
cated tasks on the available slots and return the mapping to the
planner. During this mapping process, we use simple techniques
based on joint-probabilities derived from success probabilities of
tasks on slots. For each task, a window of replication is determined
by the planner, which constrains the replicated tasks to start-after
and end-before particular time based on task dependencies. The
fault tolerance mapping process tries to fit a task on the available
slots in that replication window based on the expected performance
characteristics of the task (number of cpus required and expected
execution times derived from performance models). If the task fits
on a slot, the success probability of the task increases. When the
success probability reaches the desired level during this replication
process, the mapping of the replicated tasks is returned to the plan-
ner. It should be noted that the fault tolerance techniques may not
be able to reach the desired success probability by replication in all
cases. In such cases, the workflow planner is responsible for chang-
ing system parameters (e.g. less compact Gantt chart, additional
resources) and iteratively using the fault tolerance techniques.

The schedule that yields the higher success probability from these
two approaches is selected and this step is repeated till no additional
workflows can be scheduled or all tasks in the originalM workflows
have been checked to see if fault tolerance can be applied.

3.2.4 Phase 3: Additional Scheduling

The goal of this phase is to use the available space on the slots
for any other scheduling. If any workflows in the set have not been
scheduled in the earlier step, an attempt is made to schedule those.
If any tasks have not been checked for fault tolerance in the ear-
lier step, an attempt is made to replicate those tasks to increase its
success probability.

3.2.5 Phase 4: EC2 Scheduling
Finally, the planner uses Amazon EC2 as a backup resource to

determine if additional replication on this higher-priced resource
can increase the success probability of individual tasks. Amazon
EC2 is the prevailing example of cloud systems. The cloud model
lends itself well to adaptive load conditions albeit at a slightly higher
cost model. This makes it an ideal choice for using as a overflow re-
source site for LEAD workflows to meet application requirements.

This orchestration approach enables us to study (a) the trade-offs
between replicating certain tasks in the workflow, (b) the implica-
tions of using Amazon EC2 as a overflow resource for scientific
workflows. We use specific policies (e.g., Amazon EC2 as over-
flow resource) in this implementation but the multi-phase workflow
planning is configurable for other use cases and policy choices [40].

3.3 Execution Manager
Workflow engines execute workflows based on DAG dependen-

cies. However when considering workflow sets the execution plan
might include execution dependencies on other workflow’s tasks
that might be scheduled to run on the same resources. Thus we
need execution level support for workflow set execution in slots
that respects the order of the DAG and other workflow tasks sched-
uled on the same slot.

We implemented a simple slot exection ordering mechanism in
the Execution Manager (shown in Figure 1b). This ordering mech-
anism submits jobs to the slot execution batch queue system using
the schedule. When the execution manager receives a job it checks
to see if all tasks that are scheduled on the slot before this task have
been submitted. If not all tasks scheduled before this have been
submitted the task is saved in a pending queue for later execution.
Events in the system such as job submission and job completion
trigger a thread that checks the elements in the pending queue to
see if a task might now be ready to run. This ordering mechanism
is sufficient to sequence task execution on slots as per the gener-
ated schedule. However this ordering mechanism is not completely
resistant to failures. If an earlier task fails to arrive, a task will be
stuck in the pending queue till it is rectified. Thus, the ordering
mechanism depends on an external mechanism such as the moni-
toring system to diagnose errors and rectify it.

4. EVALUATION
The integrated system demonstrates a powerful resource abstrac-

tion over grid and cloud systems that can be used by workflow plan-
ning mechanisms for predictable service guarantees. This allows
even deadline-sensitive applications such as LEAD to run on non-
dedicated machines. However, it is important to understand the dif-
ferent parameters of the system and the tradeoffs with existing sys-
tems. We present results that (a) demonstrate acceptable overhead
of vgES in executing LEAD workflows on a distributed system
(Section 4.1), (b) compare our approach to traditional approaches
using historical data from batch queue systems (Section 4.2), and
(c) explore via simulation the parameters that impact the fault tol-
erance (Section 4.3).
Workflows. We submit eight LEAD workflows which are ready to
run in five minutes from the start of the experiment. The data set we
use for the each of the LEAD workflows is a small regional weather

Figure 4: Scheduling an actual LEAD workflow set using VGrADS.

forecast and takes about 90 minutes to complete. The first few
steps of the workflow take a few minutes on single processors and
the weather forecasting model (WRF [29]) takes over an hour and
fifteen minutes on 16 processors. The constraint on the workflow
set is that at least one must complete by a deadline of 2 hours. Each
of the experiments was repeated between 10 to 15 times.
Testbed. The experiments in Sections 4.1 and 4.2 use the same
testbed containing batch and cloud resources. The software con-
sists of an Apache ODE workflow engine, the workflow planner
service, the vgES code base and associated databases. The dis-
tributed infrastructure consists of batch queue systems run at RENCI
/ University of North Carolina Chapel Hill (kittyhawk), University
of California Santa Barbara (mayhem), and NCSA TeraGrid (mer-
cury); Eucalyptus-based cloud resources at University of Houston
(uheuca), University of Tennessee Knoxville (utkeuca)), and Uni-
versity of California Santa Barbara (ucsbeuca); and Amazon EC2
(ec2). For this set of experiments we obtained advanced reserva-
tions on the mercury and kittyhawk clusters.

Section 4.3 uses a different set-up. That testbed consists of a
virtual machine where our entire software stack is hosted. As we
describe in Section 4.3.1, the virtual machine allows us to vary sys-
tem parameters (e.g. reliability) to study their impact on fault tol-
erance..
Visual representation. All the experiments we describe began as
demonstrations at the SC08 conference. To give a feel for the ex-
periments, Figure 4 shows a screen shot from one run. (Full play-
backs of several cases can be found on the web [48].) This run
scheduled 5 of the 8 workflows distributed across the six resources.
The slot on each resource is represented by a background grey rect-
angle. Each colored rectangle represents one task, and tasks from
the same workflow have the same color. Horizontal length repre-
sents (scheduled) time, and vertical height represents number of
processors (up to 32). The color bands at the bottoms of tasks rep-
resent the task state (e.g. green for running, gray for completed).

Here, the scheduler mapped many single-processor tasks from all
the workflows to utkeuca (a Eucalyptus cloud). It assigned the
WRF models to the larger batch queue clusters (mayhem, kitty-
hawk, and mercury). One model was replicated (on mercury and
EC2) for fault tolerance. As it happened, one replica (on mercury,
marked with the red band) did fail but the run met the overall con-
straints.

4.1 Infrastructure timing metrics
In this section we study the performance of our integrated sys-

tem. We present the event timeline of the system and compare the
resource binding parameters.

4.1.1 Resource Binding

 0

 5

 10

 15

 20

 25

ec
2

ki
tty

ha
w

k

m
ay

he
m

m
er

cu
ry

uc
sb

eu
ca

uh
eu

ca

ut
ke

uc
a

D
ur

at
io

n
fo

r
re

so
ur

ce
 b

in
di

ng
 (

in
 M

in
s)

Machines

Figure 5: Binding time

Figure 5 shows the average time required for binding each of
the sites over nine to thirteen runs. The error bars show the mini-
mum and the maximum values seen in the experiments. The batch
systems (kittyhawk, mayhem and mercury) take less time to set up
than the cloud sites in our setup since we have reservations in place
at the batch sites (kittyhawk and mercury) or the system has lower
loads (mayhem) and hence there is no wait time. The Eucalyptus
clouds (uheuca, ucsbeuca, utkeuca) and Amazon EC2 grant access
to resources immediately but have a set-up overhead since the vir-
tual machines need to be booted with the image. EC2 and uheuca
take longer since they boot 16 nodes at each site. There is some
variation in the bind time at Amazon EC2, kittyhawk and mercury
that is the result of runtime characteristics such as the load on the
machine. In this graph, we see that the overheads from cloud com-
puting are slightly higher than from batch systems. However the
overhead on all sites is less than 25 minutes, which is acceptable
for workflows such as LEAD which run for a number of hours.

4.1.2 Event timeline
Figures 6 and 7 show a snapshot of an experiment timeline. These

experiments were repeated a number of times and are repeatable as
shown in our archive [48]. Figure 6 shows the timeline of the plan-
ning phase of the orchestration. Each line on the graph represents
the duration of a particular event where the ends of the line signify
the start and end time of the event. In the first step, the planner
queries vgES. Once a set of slots is determined to be sufficient, the
binding process starts on all the sites in parallel. While the bind-
ing is in progress, the planner queries bandwidth across all pairs of
sites and launches the phased workflow planning. The four phases
take only a few seconds and complete well before the resource pro-
curement is complete. The resource procurement duration varies
by site, but resources are ready within 20 minutes. Once the re-
sources are ready, the workflows begin execution (Figure 7). In
this snapshot workflow1 failed and hence finished early. All other
workflows completed by the deadline of 2 hours as expected. These
figures demonstrate the effectiveness of our approach in scheduling
workflow sets across distributed resource sites.

We also compared the start and end times of execution with those
predicted by the scheduler. The scheduler underestimated both by
13 to 22 minutes. The cause of this is that the slots returned by
vgES do not consider the overheads associated with resource pro-
curement and set-up. A simple work-around might be to assume
a maximum overhead to the start time of the slots. But in the long
term, we need need better prediction mechanisms returned by vgES
interfaces, as well as support for dynamic and staggered execution
to maximize slot utilization.

4.2 Deadline scheduling
Table 1 compares our scheduler with other strategies for deadline

scheduling of workflows on a TeraGrid node. We use historical logs
from the batch systems to find average wait times for jobs similar to
the tasks in our workflow. In all cases, the queue variability is sig-
nificant and strategies that do not appear to meet the deadlinemight
work at some times. For all the cases, “resource binding” is the de-
lay to begin computing, whether it is due to waiting in a queue or
overhead for virtual machine startup. The best case time is running
with an advanced reservation, thus avoiding any wait time. How-
ever, this requires requesting the reservation far in advance, which
is not always practical. Without reservations, current systems like
LEAD, insert tasks into a batch queue only when all their prede-
cessors are complete (as Figure 2b showed). This incurs repeated
waits in the queue, which the table shows to be more than the ac-
tual execution time and causes the workflow to miss the deadline.

 0

 5

 10

 15

 20

V
G

E
S

Q
ue

ry

B
IN

D
IN

G
-m

ay
he

m

B
IN

D
IN

G
-k

itt
yh

aw
k

B
IN

D
IN

G
-m

er
cu

ry

B
IN

D
IN

G
-u

tk
eu

ca

B
IN

D
IN

G
-u

cs
be

uc
a

B
IN

D
IN

G
-e

c2

B
IN

D
IN

G
-u

he
uc

a

B
A

N
D

W
ID

T
H

P
H

A
S

E
1

P
H

A
S

E
2

P
H

A
S

E
3

P
H

A
S

E
4

T
im

e
(in

 m
in

s)

Events

Figure 6: Time line of the planning phase of a run

 0

 20

 40

 60

 80

 100

 120

w
or

kf
lo

w
1

(f
ai

le
d)

w
or

kf
lo

w
2

w
or

kf
lo

w
3

w
or

kf
lo

w
4

w
or

kf
lo

w
5

w
or

kf
lo

w
6

T
im

e
(in

 m
in

s)

Events

Figure 7: Time line of workflow execution

Another strategy would be to submit a large job for an entire work-
flow – corresponding to a virtual grid slot – which would run one
or more workflows. As the table shows, even submitting a single
workflow in this way may not meet the deadline. In fairness, we
should note that, according to our data, this strategy would succeed
about half the time based on the distribution of queue wait times.
Requesting separate slots for six workflows (the number scheduled
by our orchestration approach) is worse, and running all eight re-
quires nearly 6 hours to complete. The vgES system queries mut-
liple sites and the workflow planner then schedules the workflows
across these distributed sites. By opportunistically procuring re-
sources at multiple sites, vgES is able to complete execution of six
workflows by the deadline inspite of the overheads.

4.3 Fault tolerance exploration
The workflow planner interacts with the fault-tolerance compo-

nent to determine if and where a task needs to be replicated to
increase the fault-tolerance of a given workflow. In this section,
we evaluate these fault-tolerance techniques under varying resource
(slot) reliability conditions.

4.3.1 Experimental Setup

Type Resource Set Planning (s) Resource
Binding
(s)

Execution
Time (s)

Total
time (s)

Batch queue execution time with ad-
vanced reservation

mercury (1 workflow) * - 5,224 5,224
(1.45 hrs)

Batch queue execution time in current
systems (1 workflow)

mercury - 5,711 5,224 10,935
(3.04hrs)

Batch queue single slot execution
time (1 workflow)

mercury - 2,200 5,224 7,424
(2.06 hrs)

Batch queue single slot execution
time (6 workflows)

mercury - 2,830 5,224 8,054
(2.24 hrs)

Batch queue single slot execution
time (8 workflows)

mercury - 14,530 5,224 19,754
(5.49 hrs)

vgES Mix of batch and cloud
resources

183 * 1,017 5,693
(from ex-
ecution)

6,893
(1.93 hrs)

* TeraGrid users must request advanced reservations at least48 hours before start of run.

Table 1: Comparison of planning, resource availability overheads andexecution time using various methodoligies to schedule work-
flows/sets. The numbers in italics are projections from historical data for similar sized jobs. The execution times (except the vgES
run) are part of our performance model

(a) (slotAcqProb=0.4, slotUpProb=0.4) (b) (slotAcqProb=0.6, slotUpProb=0.6)

(c) (slotAcqProb=0.8, slotUpProb=0.8)

Figure 8: Distribution of replication factors for slots with low reliability (a), medium reliability (b), high reliability (c)

For each experiment, we generate a Gantt chart for a given time
window for replication. The Gantt chart is randomly populated
with slots with random numbers of available processors, picked
from a given set of possibilities. The slots have (a) a base “Slot Up"
probability (‘slotUpProb’) with a random distribution of around
0.1 (slotUpProb± rand()× 0.1), which determines the probability
with which the slot would be available once the slot has been ac-
quired, and (b) a fixed “Slot Acquire" probability (‘slotAcqProb’),
which determines the probability of acquiring a slot from available
resources at a site. The combination of ‘slotAcqProb’ and ‘slotUp-
Prob’ determines the probability of task completion on that slot.
We execute an initial mapping process (using the DAG scheduler)
of a LEAD workflow onto the Gantt chart slots. We then invoke the
fault-tolerance component to potentially replicate a workflow task
in order to increase the current success probability of the task by
an amount denoted by the ‘Reliability increment’. In other words,
‘Reliability increment’ is the difference between current and de-
sired success probability for the given task. We vary ‘Reliability
increment’ from 0.1 to 0.5 in steps of 0.1. If the increment value
results in a desired success probability of more than 1, we peg it to
the difference between 1 and current success probability. The fault-
tolerance component either returns a set of slots to replicate if the
desired reliability is obtained, or reports failure. The “replication
factor” is the number of added slots required to reach the desired
success probability for the given task. We run 25 trials for each in-
crement, ‘slotUpProb’ and ‘slotAcqProb’ combination. We define
the “replication success rate” as the ratio of number of replication
success outcomes to the total number of trials for a case. Low repli-
cation factors and high replication success rates are desirable.

4.3.2 Results
Figures 8(a) -8(c) show the distributions of replication factors

for different reliability increments for different combinations of
‘slotAcqProb’ and ‘slotUpProb’. Figure 8(a) shows low-reliability
resources, implying low values of ‘slotAcqProb’ and ‘slotUpProb’
(0.4). We observe that beyond a increment value of 0.2, replication
fails for all Gantt charts. For lower increments, replication factors
range between 1 to 5. The number of replication failures increases
with increasing increments. Figure 8(b) shows medium-reliability
slots (‘slotAcqProb’ = 0.6 and ‘slotUpProb’ = 0.6). We observe
that there are fewer replication failures and lower median replica-
tion factors than in the low reliability case. Most cases up to an
increment of 0.3 have a replication factor of 4 or less. Figure 8(c)
shows the case where the slots have good reliabilities (‘slotAc-
qProb’ and base ‘slotUpProb’ values of 0.8). Here, we observe that
there are even fewer replication failures and lower median replica-
tion factors than the medium reliability case. The majority of cases
up to a reliability increment of 0.4 have a replication factor of 3
or less. We have run other scenarios with different increments and
slot reliabilities and the results are similar.

We can infer from these observations that increasing reliability
increments increases the median replication factor and the number
of cases of replication failures, implying that replication techniques
would be effective for moderate reliability increments. We can also
infer that higher reliability of slots results in smaller median repli-
cation factors and fewer replication failures.

Figure 9 shows the replication success rate for different reliabil-
ity increments for ‘slotAcqProb’=0.7 and different values of base
‘slotUpProb’. We observe that replication success rate decreases
as reliability increment increases. Also, the success rate falls more
rapidly for lower ‘slotUpProb’ values. We have made similar obser-
vations for other combinations of ‘slotAcqProb’ and ‘slotUpProb’.
The rate of decrease of replication success rate increases with de-

Figure 9: Replication success rate for different slot reliabilities

creasing reliabilities of slots. We believe that increasing the number
of trials would smooth out some of the curves. From these obser-
vations, we infer that lower reliability increments and higher slot
reliabilities are desirable in order to increase the replication suc-
cess rate.

5. RELATED WORK
This work focuses on various aspects of cyberinfrastructure: exe-

cution management, resource provisioning, workflow planning and
fault tolerance. However, there is no prior work that integrates grid
and cloud sites through a single provisioning mechanism, nor any
enabling execution of workflow sets with deadline and accuracy
constraints. We provide a summary of related work that have com-
mon features with different aspects of our research.
Execution systems. Grid and cloud tools such as Globus [18],
Apache Hadoop [19], and Virtual Workspaces/Nimbus [22] pro-
vide mechanisms to manage execution in distributed and clustered
environments. However, application- and QoS-based resource se-
lection is not possible with these tools. vgES provides a single
interface to query and manage execution across distributed sites
based on QoS properties of the resources. The idea of containers
or glidein has been used before in different projects to manage pro-
visioned resources [17, 38, 45]. Similarly, workflow engines (e.g.,
Taverna [34], Kepler [1], Pegasus [8]) provide execution-level sup-
port for managing workflows on distributed resources [46]. Our
approach uses similar support for each workflow but also manages
multiple workflows.
Resource Provisioning. The problem of provisioning resources
in HPC systems has been well studied and a variety of techniques
have been investigated within the context of HPC and Grid com-
puting [14]. Most systems in operation today rely on batch queue-
ing software [27, 47] to implement a space-sharing policy, where
applications are given exclusive access to the resources during ex-
ecution. This so called “best-effort” strategy is sufficient for ap-
plications that do not have strict deadlines, but results in hard-to-
predict application execution times due to highly variable queue
wait times. Several works have attempted to solve this problem by
developing methodologies for predicting wait times. Downey [9]
develops a strategy for modelling remaining job execution times
in order to predict when similar jobs will have access to freed re-
sources. Smith et al. [43] presents a template-based approach to
categorize and predict job wait times based on the use of the mean
wait times experienced by each category of jobs. These works pro-
vide good predictions for collections of jobs, but report large error
ranges when used to predict individual job wait times. Nurmi et

al. [6, 30] provide an approach to batch queue wait time prediction
that results in probabilistic upper bound predictions that have been
shown to produce accurate bound predictions for individual jobs.

For users who require a more concrete constraint on application
execution completion times, some research has explored the use of
advance reservations in HPC job schedulers. However, several re-
searchers have shown that the introduction of advance reservations
into HPC scheduling systems can result in significant decrease in
site utilization [20, 44]. For this reason, most sites do not provide a
general advance reservation facility to the user community.
Workflow planning. Workflow planning techniques today are fo-
cused on scheduling individual DAGs and do not consider the rela-
tionship between DAGs and constraints associated with scheduling
a set of workflows [5, 32, 51]. Various DAG scheduling algorithms
have been proposed for grid environments for optimizing various
parameters [26, 42, 50]. However, they have neither attempted to
orchestrate multiple workflows as required in our application nor
balance performance and reliability.
Fault Tolerance. There are several techniques for fault-tolerance
[11] of single parallel SPMD applications running on HPC sys-
tems, which include FT-MPI [13] and LA-MPI [4]. Reed et al. [41]
identify reliability challenges for large-scale HPC systems and pro-
vide adaptive techniques for failure detection (using performance
contracts) and runtime adaptation for MPI applications. The fault-
tolerance methods discussed in this paper leverage those single-site
techniques to distributed grid/cloud systems.

One of the prevalent methods for fault-tolerance on computa-
tional grid systems is simple retry, as in Condor-G [17] and Grid-
solve [49]. The application is resubmitted on a resource in case
of a failure. In Condor DAGMan [7] and Pegasus [5], in case of
a failure, the remaining portion of the workflow (the rescue DAG)
is re-executed. Kandaswamy et al. [21] evaluates migration based
techniques for fault-tolerance of workflow tasks on grids. Ramakr-
ishnan et al. [39] uses performability to capture degraded perfor-
mance from varying resource reliability for scheduling and fault
tolerance of workflows. In this paper, we use replication based
fault-tolerance techniques based on resource (slot) reliability and
application performance models.

6. CONCLUSION
Programming grid and cloud systems for e-Science workflows

and managing QoS in these environments is challenging. VGrADS’
virtual grid abstraction simplifies these tasks, unifying workflow
execution over batch queue systems (with and without advanced
reservations) and cloud computing sites (including Amazon EC2
and Eucalyptus). This paper details the vgES implementation of
virtual grids and their use in fault tolerant workflow planning of
workflow sets with time and accuracy constraints. Our experiments
show the efficiency of the implementation and the effectiveness of
the overall approach. Taken together, this provides an enabling
technology for executing deadline-driven, fault-tolerant workflows.
The integrated cyberinfrastructure from the LEAD and VGrADS
system components provides a strong foundation for next-generation
dynamic and adaptive environments for scientific workflows.

7. ACKNOWLEDGEMENTS
Research in the VGrADS project was supported by the National

Science Foundation (NSF) through grant #0331645. Access to the
LEAD infrastructure (both hardware and software) was supported
by NSF through grant #0331594. Access to TeraGrid nodes was
supported by NSF under award #0122296. The authors would also
like to thank the LEAD and VGrADS teams for feedback and sup-

porting infrastructure. The authors would like to dedicate this paper
to the memory of Ken Kennedy, who led the VGrADS project from
its inception to his untimely death.

8. REFERENCES
[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludscher, and

S. Mock. Kepler: An Extensible System for Design and Execution of
Scientific Workflows, 2004.

[2] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[4] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.
Risinger, M. A. Taylor, T. S. Woodall, and M. W. Sukalski.
Architecture of la-mpi, a network-fault-tolerant mpi.Parallel and
Distributed Processing Symposium, International, 1:15b, 2004.

[5] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy. Task scheduling strategies for workflow-based
applications in grids. InIEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2005). IEEE Press, 2005.

[6] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on queuing
delay for batch-scheduled parallel machines. InProceedings of
PPoPP 2006, March 2006.

[7] Condor Team. Dagman metascheduler –
http://www.cs.wisc.edu/condor/dagman.

[8] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and
S. Koranda. Mapping abstract complex workflows onto grid
environments.Journal of Grid Computing, 1(1):25–39, 2003.

[9] A. Downey. Predicting queue times on space-sharing parallel
computers. InProceedings of the 11th International Parallel
Processing Symposium, April 1997.

[10] K. K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda,
T. Baltzer, K. Brewster, R. Clark, B. Domenico, S. Graves, E. Joseph,
D. Murray, R. Ramachandran, M. Ramamurthy, L. Ramakrishnan,
J. A. Rushing, D. Weber, R. Wilhelmson, A. Wilson, M. Xue, and
S. Yalda. Service-Oriented Environments for Dynamically
Interacting with Mesoscale Weather.Computing in Science and
Engg., 7(6):12–29, 2005.

[11] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing systems.
ACM Comput. Surv., 34(3):375–408, 2002.

[12] C. Evangelinos and C. Hill. Cloud Computing for ParallelScientific
HPC Applications: Feasibility of running Coupled
Atmosphere-Ocean Climate Models on Amazon EC2.ratio,
2(2.40):2–34, 2008.

[13] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen,
J. Pjesivac-Grbovic, K. London, and J. Dongarra. Extendingthe mpi
specification for process fault tolerance on high performance
computing systems. InProceedings of the International
Supercomputer Conference (ICS) 2004. Primeur, 2004.

[14] D. G. Feitelson and L. Rudolph.Parallel Job Scheduling: Issues and
Approaches, pages 1–18. Springer-Verlag, 1995.

[15] I. Foster and C. Kesselman.The Grid2. Morgan Kauffmann
Publishers, Inc., 2003.

[16] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke.
Condor-g: A computation management agent for multi-institutional
grids.10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10 ’01), 00:0055, 2001.

[17] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke.
Condor-g: A computation management agent for multi-institutional
grids.Cluster Computing, 5(3):237–246, 2002.

[18] Globus.http://www.globus.org/.
[19] Hadoop.http://hadoop.apache.org/core.
[20] F. Heine, M. Hovestadt, O. Kao, and A. Streit. On the impact of

reservations from the grid on planning-based resource management.
In International Workshop on Grid Computing Security and

Resource Management (GSRM) at ICCS, pages 155–162, Atlanta,
USA, 2005. Springer.

[21] G. Kandaswamy, A. Mandal, and D. A. Reed. Fault toleranceand
recovery of scientific workflows on computational grids. InCCGRID
’08: Proceedings of the 2008 Eighth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID), pages 777–782,
Washington, DC, USA, 2008. IEEE Computer Society.

[22] K. Keahey, T. Freeman, J. Lauret, and D. Olson. Virtual workspaces
for scientific applications. InSciDAC Conference, 2007.

[23] Y.-S. Kee and C. Kessleman. Grid resource abstraction,
virtualization, and provisioning for time-targeted applications. In
ACM/IEEE International Symposium on Cluster Computing andthe
Grid (CCGrid08), May 2008.

[24] Y.-S. Kee, C. Kessleman, D. Nurmi, and R. Wolski. Enabling
personal clusters on demand for batch resources using commodity
software. InInternational Heterogeneity Computing Workshop
(HCW08) in conjunction with IEEE IPDPS08, April 2008.

[25] Y.-S. Kee, K. Yocum, A. A. Chien, and H. Casanova. Improving grid
resource allocation via integrated selection and binding.In
International Conference on High Performance Computing, Network,
Storage, 2006.

[26] G. Malewicz. Parallel scheduling of complex dags under uncertainty.
In Proceedings of the 17th Annual ACM Symposium on Parallel
Algorithms(SPAA), pages 66–75, 2005.

[27] Maui scheduler home page –
http://www.clusterresources.com/products/maui/.

[28] G. V. Mc Evoy and B. Schulze. Using clouds to address grid
limitations. InMGC ’08: Proceedings of the 6th international
workshop on Middleware for grid computing, pages 1–6, New York,
NY, USA, 2008. ACM.

[29] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp,
W. Skamarock, and W. Wang. The Weather Reseach and Forecast
Model: Software Architecture and Performance.Proceedings of the
11th ECMWF Workshop on the Use of High Performance Computing
In Meteorology, October 2004.

[30] D. Nurmi, J. Brevik, and R. Wolski. QBETS: Queue bounds
estimation from time series. InProceedings of 13th Workshop on Job
Scheduling Strategies for Parallel Processing (with ICS07), June
2007.

[31] D. Nurmi, J. Brevik, and R. Wolski. VARQ: Virtual advance
reservations for queues.Proceedings 17th IEEE Symp. on High
Performance Distributed Computing (HDPC), 2008.

[32] D. Nurmi, A. Mandal, J. Brevik, C. Koelbel, R. Wolski, and
K. Kennedy. Evaluation of a workflow scheduler using integrated
performance modelling and batch queue wait time prediction. In
Proceedings of SC’06, Tampa, FL, 2006. IEEE.

[33] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In9th International Symposium on Cluser
Computing and the Grid (CCGrid) - to appear, 2009.

[34] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,
M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe.
Taverna: Lessons in Creating a Workflow Environment for the Life
Sciences: Research Articles.Concurr. Comput. : Pract. Exper.,
18(10):1067–1100, 2006.

[35] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon S3
for science grids: a viable solution? InProceedings of the 2008
international workshop on Data-aware distributed computing, pages
55–64. ACM New York, NY, USA, 2008.

[36] H. Qian, E. Miller, W. Zhang, M. Rabinovich, and C. E. Wills.
Agility in virtualized utility computing. InVTDC ’07: Proceedings of
the 3rd international workshop on Virtualization technology in
distributed computing, pages 1–8, New York, NY, USA, 2007. ACM.

[37] L. Ramakrishnan and D. Gannon. A survey of distribted workflow
characteristics and resource requirements. Technical Report TR671,
Department of Computer Science, Indiana University, Indiana,
September 2008.

[38] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A. Yumerefendi,
and J. Chase. Toward a Doctrine of Containment: Grid Hosting with
Adaptive Resource Control. InProceedings of the ACM/IEEE

SC2006 Conference on High Performance Computing, Networking,
Storage and Analysis, November 2006.

[39] L. Ramakrishnan and D. A. Reed. Performability modeling for
scheduling and fault tolerance strategies for scientific workflows. In
HPDC ’08: Proceedings of the 17th international symposium on
High performance distributed computing, pages 23–34, New York,
NY, USA, 2008. ACM.

[40] L. Ramakrishnan and D. A. Reed. Predictable quality of service atop
degradable distributed systems. InJournal of Cluster Computing,
2009.

[41] D. A. Reed, C.-d. Lu, and C. L. Mendes. Reliability challenges in
large systems.Future Generation Computer Systems, 22(3):293–302,
2006.

[42] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. Dikaiakos.
Scheduling workflows with budget constraints. In S. Gorlatch and
M. Danelutto, editors,Integrated Research in GRID Computing,
CoreGRID, pages 189–202. Springer-Verlag, 2007.

[43] W. Smith, V. E. Taylor, and I. T. Foster. Using run-time predictions to
estimate queue wait times and improve scheduler performance. In
IPPS/SPDP ’99/JSSPP ’99: Proceedings of the Job Scheduling
Strategies for Parallel Processing, pages 202–219, London, UK,
1999. Springer-Verlag.

[44] Q. Snell, M. Clement, D. Jackson, and C. Gregory. The performance
impact of advance reservation meta-scheduling. In6th Workshop on
Job Scheduling Strategies for Parallel Processing, pages 137–153,
2000.

[45] B. Sotomayor, K. Keahey, and I. Foster. Combining batch execution
and leasing using virtual machines. InHigh Performance Distributed
Computing (HPDC), 2008.

[46] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields.Workflows
for e-Science: Scientific Workflows for Grids. Springer, December
2006.

[47] Torque home page –http://www.clusterresources.com/
pages/products/torque-resource-manager.%php.

[48] VGrADS Demo Site.http://vgdemo.cs.rice.edu/vgdemo/
archives.jsp?display=whitelist.

[49] A. YarKhan, J. Dongarra, and K. Seymour. Gridsolve: The evolution
of network enabled solver. InProceedings of the 2006 International
Federation for Information Processing (IFIP) Working Conference,
2006.

[50] J. Yu and R. Buyya. Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms.Scientific
Programming, 14(3-4):217–230, 2006.

[51] Y.Zhang, A. Mandal, H.Casanova, A. Chien, Y. Kee, K. Kennedy,
and C. Koelbel. Scalable Grid Application Scheduling via Decoupled
Resource Selection and Scheduling. InSixth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID’06).
IEEE, May 2006.

