
Dynamic Task Scheduling for Linear Algebra Algorithms
on Distributed-Memory Multicore Systems ∗

Fengguang Song
University of Tennessee

EECS Department
Knoxville, TN, USA

song@eecs.utk.edu

Asim YarKhan
University of Tennessee

EECS Department
Knoxville, TN, USA

yarkhan@eecs.utk.edu

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
Knoxville, TN, USA

dongarra@eecs.utk.edu

ABSTRACT
Multicore systems have increasingly gained importance in
both shared-memory and distributed-memory environments.
This paper presents a dynamic task scheduling approach
to executing dense linear algebra algorithms on multicore
systems (either shared- or distributed-memory). We use a
task-based library to replace the existing linear algebra sub-
routines such as PBLAS to transparently provide the same
interface and computational function as the ScaLAPACK
library. Linear algebra programs are written with the task-
based library and executed by a dynamic runtime system.
We mainly focus our runtime system design on the met-
ric of performance scalability. We propose an algorithm to
solve data dependences without process cooperation in a dis-
tributed manner. We have implemented the runtime system
and applied it to three linear algebra algorithms: Cholesky
factorization, LU factorization, and QR factorization. Our
experiments on both shared-memory machines (16-core In-
tel Tigerton, 32-core IBM Power6) and distributed-memory
machines (Cray XT4 using 1024 cores) demonstrate that our
runtime system is able to achieve good scalability. Further-
more, we provide analytical analysis to show why the tiled
algorithms are scalable and the expected execution time.

1. INTRODUCTION
Multicore systems have increasingly gained importance in

both shared-memory and distributed-memory environments
[8] [11] [14]. Given a processor with hundreds or even thou-
sands of processing cores, it is critical to increase the degree
of thread-level parallelism to utilize all the available cores to
improve program performance [1] [4]. The goal is to create
as many concurrent tasks as possible to prevent processing
cores from becoming idle. The number of synchronization
points such as supersteps must be minimized as well since a
potentially large number of tasks could be ready to execute
but are stalled within the following supersteps.

We strive to design linear algebra software that is going to
scale well on both shared-memory and distributed-memory
multicore systems. Our approach to developing the scal-
able software is to put fine-grained computational tasks in
a directed acyclic graph (DAG) and schedule them dynami-
cally. To achieve high scalability, we propose a decentralized
scheduling scheme for distributed-memory systems. That
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is, each node runs a private runtime system and commu-
nicates with other nodes regarding data dependences only
when necessary. The runtime system has no globally shared
data structures, no requirement of large storage space for
DAGs, and no blocking operations. Furthermore, it respects
critical paths and keeps load balance. The runtime sys-
tem is composed of three types of threads: task-generation
thread, computing thread, and communication thread. At
any time, only a small portion of the graph is stored in mem-
ory. The task-generation thread generates tasks sequentially
and stores tasks in a fixed-size task window (i.e., building
vertices of the graph). The computing thread analyzes the
relationship between the tasks in the task window and solves
data dependences automatically (i.e., building edges of the
graph). The communication thread is responsible for send-
ing and receiving messages.

For easy use, our linear algebra software uses the same
interface as ScaLAPACK. While offering scalability guarantee,
the dynamic DAG scheduling mechanism is transparent to
users. Instead of implementing every linear algebra algo-
rithm from scratch, we use a task-based library to generate
tasks for the basic linear algebra subroutines such as PBLAS
so that a new algorithm is simply a combination of a few
task-based subroutines. The execution of a linear algebra
program is data-availability driven. It starts from the entry
task of the DAG and finishes with the exit task.

We apply the runtime system to a class of tiled linear al-
gebra algorithms: Cholesky factorization, LU factorization,
and QR factorization that are introduced in [4]. In the tiled
algorithms, each task computes a LAPACK or a Level-3
BLAS subroutine. The tiled algorithms can fully utilize the
Level-3 BLAS operations such that the cache hit rate is max-
imized and data movement is minimized. Our theoretical
analysis shows that the tiled LU and QR algorithms have
a provably good expected execution time. We conducted
experiments on both shared- and distributed-memory ma-
chines. Our experimental results demonstrate that the de-
centralized task scheduling approach is efficient and scalable.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces linear algebra algorithms and the task-
based linear algebra library. Section 3 presents the algorithm
to solve data dependences in a distributed manner. Section
4 describes the design and implementation of the runtime
system and its space overhead. Section 5 analyzes the ex-
pected execution time, the communication and computation
ratio, and the degree of parallelism. Section 6 gives the ex-
perimental results. Section 7 describes the related work, and
finally Section 8 provides our conclusion and future work.



2. TASK-BASED LINEAR ALGEBRA
LIBRARY AND PROGRAM

Most LAPACK and ScaLAPACK algorithms are com-
posed of a small number of fundamental operations [2] [5].
The fundamental operations are implemented as Level-2 or
Level-3 BLAS routines. For instance, the Cholesky, LU,
and QR factorizations all repetitively perform the two op-
erations: panel factorization and trailing submatrix update.
The panel factorization transforms the leftmost collection
of columns (i.e., column panel) followed by updating the
trailing submatrix using the panel factorization result. For
instance, Fig. 1 shows an example of block LU factorization.
First, the N × NB panel is factorized by the LU factoriza-
tion. Next, after some pivoting, we solve the block row U12

using L11. Finally, we update the submatrix A22 by multi-
plying the previously computed L21 and U12.
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Figure 1: Block LU factorization.

Each fundamental operation can be regarded as a black
box. We wish to keep the same interface but execute the
program asynchronously in order to eliminate unnecessary
barriers between operations (i.e., data-flow driven). To mini-
mize the programming effort, we propose to use a task-based
library called Task-based Basic Linear Algebra Subroutines
(TBLAS) to replace the fundamental subroutines. The new
task-based subroutine does nothing but generate a set of ap-
propriate tasks and store them in a task window (i.e., a fixed
size task pool). A runtime system executes the tasks in the
task window dynamically.

To understand how it works, Fig. 2 shows the pseudocode
that implements the LU factorization with our task-based
library. The subroutines of PDGETF2_T, PDTRSM_T, PDGEMM_T
simply generate tasks and put them into the task window
which is a member of the runtime system data structure
RTS_context. One can build new linear algebra algorithms
directly upon the task-based library.

Programs written with the task-based library will be exe-
cuted by a single thread called task-generation thread. The
task-generation thread executes the serial task-based pro-
gram and creates tasks one by one to keep the original se-
quential semantics. The number of tasks to be generated
are constrained by the size of the task window that is set to

for (k=0; k < nblks; k++) {
/* panel factorization */

PDGETF2_T(nblks-k, 1, A, k, k, &RTS_context);
/* compute block row of U */

PDTRSM_T(1, nblks-k, A, k, k, &RTS_context);
/* trailing submatrix update */
PDGEMM_T(nblks-k, 1, A, k, k, 1, nblks-k, A, k, k,

nblks-k, nblks-k, A, k, k, &RTS_context);
}

Figure 2: Block LU factorization program written

with the task-based subroutines.

be proportional to the number of matrix blocks allocated to
a process. Whenever an empty window slot is available, the
task-generation thread will start and generate a new task. A
finished task will be removed from the task window imme-
diately. Since the task-generation thread does no computa-
tion, it takes a very small percentage of the CPU time. The
execution of a task-based program is started by the task-
generation thread placing the entry task of the DAG into
the task window. An idle computing thread picks up and
executes the entry task and fires new tasks after finishing it.

3. DISTRIBUTED DEPENDENCE SOLVING
It is not trivial to generate tasks and solve data depen-

dences in a distributed environment without much commu-
nication. Processes running on different nodes execute the
same program and generate the same set of tasks so that
a task may be duplicated by each process. A correct al-
gorithm requires all the processes make a uniform decision
regarding which consumer task to fire and how to make sure
the consumer task is fired only once. Other complex issues
include which process should execute a specific task and how
to handle tasks with multiple outputs but belonging to dif-
ferent processes. This section first introduces a centralized
algorithm, then describes how to use block data layout and
various tasks modes to extend it to a distributed algorithm.

3.1 A Centralized Version
On a shared-memory machine, a single task-generation

thread executes the user program sequentially and maintains
the serial semantic order between tasks. We use a single
linked task list to maintain the task order. If there exists
a data dependence, the task list can determine which task
precedes another. Figure 3 illustrates how to detect a RAW
(read after write), WAR (write after read), or WAW (write
after write) dependence based on the task list. A task takes a
number of inputs and writes to one or more outputs. Thus,
tasks stored in the task list keep information such as the
input and output memory locations. Whenever two tasks
access the same memory location and one of them is write,
the runtime system detects a data dependence and stalls the
successor till the predecessor is finished. Since WAR and
WAW dependences can be avoided by renaming, we only
consider the true dependence (RAW) here.
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Figure 3: Detecting data dependences based on the

task list.



There are two operations to access the task list: APPEND
and FIRE. The task-generation thread generates a new task
tj and invokes the APPEND operation to put task tj to the
end of the task list. Before the appending, APPEND scans
the task list from the list head to check if there exists a task
ti such that ti writes to datum x and tj reads datum x (i.e.,
a data dependence). If none of the previous tasks writes to
tj ’s kth input, we set the status of tj ’s kth input as “ready”.
When all of tj ’s inputs are ready, task tj becomes a ready
task.

After a task completes and modifies datum y, the FIRE
operation starts to search for the tasks that want to read the
datum y. Instead of from the head of the list, the runtime
system scans the task list from the position of the completed
task to the end of the list to find which tasks are waiting
for y. The scanning process will exit when confronting the
first task that writes to y. We denote the set of scanned
tasks that are linked between the completed task and the
exit point as S. If a task is in S and one of its inputs is
datum y, the FIRE operation marks that input as “ready”.
If the completed task has more than one output, the FIRE
operation will do the same task list scanning but check de-
pendences for all the outputs simultaneously. Since we track
data dependences for data blocks and use a fixed size task
window, the space overhead is not expensive. Section 4.3
discusses the space overhead of this method.

3.2 Block Data Layout and Task Assignment
Block data layout is a technique used to improve memory

hierarchy performance [12]. In the block data layout, a ma-
trix of size N is divided into submatrices (or blocks) of size
NB × NB. Data elements within a block are stored contigu-
ously in memory. On a distributed memory system, we use
the 2D cyclic distribution method to map matrix blocks to
different processes. The process grid is used to map a 1D
array of P processes to a 2D rectangular grid (or mesh). We
assume a process grid has Pr rows and Pc columns, where
Pr × Pc = P . Let A[I, J ] be a matrix block that is located
at the I-th row and J-th column of matrix A, then A[I, J ]
will be mapped to process [I mod Pr, J mod Pc]. Note that
we always map a block as an indivisible unit. We also bind
a task to its output block such that the computation is cen-
tered around data to minimize data movement and maxi-
mize data locality. If the output of a task t is A[I, J ], then
we assign task t to process [I mod Pr, J mod Pc]. Since
blocks are allocated to processes statically, the assignment
of tasks to processes is static too. The task scheduling within
a process is dynamic.

In addition to reducing the data movement cost, the 2D
cyclic distribution of blocks and tasks has a few more ad-
vantages. It has been proven to have the following proper-
ties [6] [9]: (1) Communication volume is within a constant
factor of the optimal. (2) The maximal load imbalance is
N2(Pr + Pc − 2)/(2P ), which is small compared to the run-
time Θ(N3/P ). (3) The proportional load imbalance stays
constant while increasing the number of processes. (4) Ma-

trix size N is capable of growing with
√

P to maintain scal-
ability when we increase the number P of processes consid-
ering the fact that the matrix memory requirement grows
with N2. Furthermore, it allows us to design a compact
efficient runtime system to avoid complex cases such as dis-
tributed work stealing and dynamic tracking of the owner-
ship of blocks. We believe the property of the bounded load

imbalance is able to provide a balanced workload on every
process. The ScaLAPACK library ([2]) and our experiments
in Sect. 6 demonstrate that using the 2D cyclic distribution
can achieve good load balance and high performance.

3.3 Various Task Modes
It is sufficient to create a single instance for a task on

shared-memory machines. The single instance contains all
the necessary information for the runtime system to analyze
data dependences and execute the task. A task contains the
following information:

• Task-related information such as task id, function type,
and priority.

• Input: which blocks are the inputs and a ready status
for each input. A block is denoted by a 3-tuple of
〈matrix, row index, column index〉.

• Output: which block is the output. If a task has more
than one output, we distinguish them as minor out-
puts.

On distributed-memory machines, a task will correspond
to a number of task instances since each task will be cre-
ated and inspected by all the processes. We assume a task
has a constant number of inputs and outputs and propose
a novel approach to generating tasks. The objective is to
make all the processes reach the same conclusion without
any cooperative communication.

Suppose a task has c1 inputs and c2 outputs, then we cre-
ate a number c1+c2 of task instances and distribute them to
different processes. Each task instance plays a role of ”rep-
resentative” for the task’s corresponding input or output.
The location of the task instance follows the location of the
represented input or output. As defined in Table 1, the ma-
jor output of a task corresponds to an owner task instance
and it is the process who stores the owner task instance to
execute the task. Each input of a task corresponds to an
input shadow task instance (either local or remote depend-
ing on whether the input and the major output are assigned
to the same process). If a task has more than one output,
then for each minor output, we either create a local minor-
output-shadow task instance or a pair of source/sink minor-
output-shadow task instances. When the minor output and
the major output are stored in the same process, the minor
output leads to a local minor-output-shadow task instance.
Otherwise, one source and one sink minor-output-shadow
task instances are generated and stored in two processes, re-
spectively. Note that the location of an input or output is
well defined based on the 2D cyclic distribution method.

3.4 The Distributed Algorithm
We partition the task list described in the previous cen-

tralized version into multiple lists across different processes.
Each process maintains a private task list. To reduce the
time to traverse the task list, we further divide a process’s
private task list into a number of block access lists so that
each block A[I, J ] is associated with a separate task list.
This way, we can perform the APPEND and FIRE oper-
ations quickly on shorter lists. Section 4.3 discusses the
memory requirement to store block access lists.

The distributed algorithm predefines an arbitrator for each
block to decide the data dependence involving the specific
block. At any time, only the block’s arbitrator can make



Table 1: A variety of task modes.

Task mode Definition

Owner An owner task instance is stored by the process which owns the task’s major output. The owner task
instance keeps the complete information of the task.

Local
input
shadow

A local input shadow task instance is stored by the process which owns the specific input. The input
block and the task’s major output block must belong to the same process. The local input shadow
task instance keeps partial information regarding which specific input to read and a pointer to the
owner task instance.

Remote
input
shadow

A remote input shadow task instance is stored by the process which owns the specific input. The
input and the task’s major output must belong to different processes. The remote input shadow
instance keeps partial information about which input to read and what is the output.

Local
minor output
shadow

A local minor-output shadow task instance is stored by the process which owns the minor output.
The minor-output and the task’s major output must belong to the same process. The task’s owner
task instance keeps a pointer pointing to the local minor-output shadow.

Source
minor output
shadow

If the minor-output of a task belongs to a process different from the task’s major output, a source
minor-output shadow task instance is generated and stored by the owner task’s process. The source
minor-output shadow instance keeps partial information regarding what is the minor-output block.
The task’s owner instance keeps a pointer to the source minor-output shadow.

Sink
minor output
shadow

A sink minor-output shadow task instance is stored by the process to which the minor output is
assigned. The availability of the sink minor-output shadow is notified by the availability of the
source minor-output shadow.

the decision. We let the process that owns the block be the
arbitrator and determine data dependences for its owned set
of blocks. We extend the previous centralized algorithm to
the distributed algorithm using the following rules:

• Both blocks and tasks are allocated to specific pro-
cesses by 2D cyclic distribution.

• Every process has a task-generation thread and gener-
ates tasks independently.

• Every process only stores and keeps track of matrix
blocks assigned to itself.

• Every process stores “relevant” tasks only. That is,
suppose a task t takes block A[I, J ] as an input or
output, A[I, J ] ∈ process Pi implies that an instance
of task t will be created and stored by Pi. A particular
task mode will be assigned to the task instance based
on Table 1.

We now use a simple example to show how the distributed
algorithm works (Fig. 4). Suppose a matrix of size 3 blocks
by 3 blocks is distributed to a 2 × 2 process grid by 2D
cyclic distribution, then each process is allocated with a set
of blocks (i.e., shaded blocks). Let the processes P1, P2,
P3, P4 execute a sequential program and generate a set of
tasks: t1, t2, and t3. We assume task t1 reads and writes
block 1, task t2 reads block 1 and writes block 4, and task t3
reads block 1 and writes block 7. Figure 4 illustrates what
task instances for t1, t2, t3 are generated and where they
are stored. Since every task has one output, only three task
modes are used in the example. Based on the status of the
task lists on P1 and P3, it is easy to find that t2 and t3 can
be started simultaneously when task t1 is finished.

Theorem 1. The distributed algorithm guarantees that a
task will eventually get all of its inputs and become ready.

Proof Sketch. Suppose a task T ∈ P0 has k inputs
which are allocated on k different processes {P1, . . . , Pk}.
Let task T’s ith input be generated by Pi at time ti and be

received by P0 at time t′i. Also suppose T is generated by
P0 at time t0. There could be an arbitrary order in the set
{t0, t′1, t′2, . . . , t′k}. To prove task T can eventually get all of
its inputs and become ready, we need to show the distributed
algorithm handles the following three cases correctly:
Case 1: t0 < {t′1, t′2, . . . , t′k}. The received input simply up-
dates the corresponding ready status for task T.
Case 2: {t′1, t′2, . . . , t′k} < t0. The runtime system creates a
temporary task until P0 replaces it by T at time t0.
Case 3: {t′1, . . . , t′s} < t0 < {t′s+1, . . . , t

′

k}. It is equivalent
to the mixed case of 1 and 2.

Theorem 2. The distributed algorithm is deadlock free
for any task window of size W ≥ 1.

Proof. Each process Pi has a task window Qi. Suppose
a deadlock occurs between m processes {Pi1 , Pi2 , . . ., Pim}

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
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7 8 9

P1 P2

P3 P4

t1, W

t2, R

t3, R

t3, W

t2Unready tasks:

Unready tasks: t3 Unready tasks: ∅

Unready tasks: ∅

Ready tasks: t1

t2, W

Figure 4: Snapshot of the distributed algorithm af-

ter the processes generated tasks t1, t2, t3.



that form a waiting cycle such that Pik
waits for Pik+1

.
If the first task in the task window is a non-owner task,
it will be executed and removed immediately. So when the
deadlock happens, the first task ∈ Qi must be an owner task.
Let tid

be the first task in Qid
, where d ∈ [1, m]. Suppose

ti1 ∈ Qi1 is unable to execute because ti1 is waiting for one
of its parent task ℘(ti1) ∈ Qi2 to finish. Task ℘(ti1) must be
either ti2 itself or behind ti2 in Qi2 . Thus, ti2 ≤ ℘(ti1) < ti1 .
By following the deadlock cycle of {Pi1 , Pi2 , . . . , Pim , Pi1},
we can show that ti1 < tim < tim−1

< . . . < ti2 < ti1 . It
contradicts the fact that each task window stores the tasks
in the program’s sequential order.

4. RUNTIME SYSTEM DESIGN
On a distributed-memory system, every compute node

runs an instance of the runtime system. The runtime system
has two task pools: a task window and a ready task pool.
The task window stores all the generated but not finished
tasks. The implementation of the task window actually uses
the block access lists indexed by block locations [I, J ]. The
maximal number of tasks to be generated is constrained by
the task window size. As introduced in Sect. 3.4, a process’s
runtime system only stores the blocks and tasks that are as-
signed to the process based on the 2D cyclic distribution.
The ready task pool is much simpler than the task window.
It stores a pointer pointing to the corresponding ready task
in the task window (Fig. 5). Each task has a priority. Hints
regarding critical paths (e.g., panel tasks in the factoriza-
tions) are provided by the task-based library writers and
tasks on the critical path are assigned a high priority.

4.1 Thread Types
There are three types of threads in the runtime system:

task-generation thread, computing thread, and communica-
tion thread. If a node has n processing cores, we launch
one task-generation thread, one communication thread, and
n−1 computing threads. We let the n−1 computing threads
occupy n− 1 cores. As shown in Fig. 5, the task-generation
thread executes a sequential program and generates tasks to
fill in the task window by invoking the APPEND operation.
The task-generation thread uses a counting semaphore to
start or stop itself depending on whether the task window
is full or not. Whenever a computing thread becomes idle,
it picks up a ready task from the ready task pool and com-
putes it. After finishing the task, the computing thread will
perform the FIRE operation to solve dependences and find
the finished task’s corresponding children.

The communication thread is responsible for sending and
receiving messages by posting MPI_ISend and MPI_IRecv op-
erations. The interaction between the computing threads
and the communication thread is through the message inbox
and outbox. If a computing thread wants to send a block to
some computing threads running on different nodes, it puts
a message in the outbox and the communication thread will
send it out. Whenever receiving a message, the communi-
cation thread places the message in the inbox which will be
read by one of the computing threads.

The communication thread and the task-generation thread
take the last core. The reason why we do not launch mul-
tiple communication threads is because the thread support
level of MPI THREAD MULTIPLE at the moment is not
portable on all systems and mixing computing thread and
communication thread together on the same core interferes

...Task window:

...Ready task pool:

Task-Generation thread

Computing thread Computing thread Computing

Network

outbox

inbox

Communication 

thread

...

...

...

...

...
thread

Figure 5: Architecture of the runtime system.

with the maximized cache hit rate of the computing thread.
When there are many cores on each node (e.g., 16 or more),
it is reasonable to dedicate one of the many cores to process
communications.

4.2 Memory Deallocation
We use an indirect data structure to store matrices. Given

a matrix A of size N and block size of NB, the indirect data
structure consists of ( N

NB
)2 pointers pointing to a number

( N
NB

)2 of NB × NB blocks for matrix A. There are two ma-
trix types in our runtime system: user-defined input/output
matrix and intermediate-result matrix. The intermediate-
result matrices are allocated and deallocated on demand by
the runtime system. The first task that writes to the inter-
mediate block will allocate memory for the block. We as-
sume there is always available memory to allocate. If mem-
ory allocation fails, the runtime system returns an error and
aborts.

It is more difficult to deallocate blocks because the run-
time system cannot decide whether a block will be used
or not in the future. Similar to ANSI C programs calling
free() to release memory, we provide programmers with
a special routine Release_Block() to free a block. Re-

lease_Block() actually doesn’t release any memory, but
sets up a marker in the task window. While generating tasks,
the task-generation thread keeps track of the expected num-
ber of visits for each block. Meanwhile the computing thread
records the actual number of visits for each block. The run-
time system will free a block if and only if the following three
conditions are satisfied: i) The block is currently stored by
the process. ii) The actual number of visits is equal to the ex-
pected number of visits to the block. iii) Release_Block has
been called to free the block. In our runtime system, each
block maintains three data members for the memory deal-
location: num_expected_visits, num_actual_visits, and
is_released. This memory deallocation method bridges
the gap between the on-the-surface deterministic programs
and the internal nondeterministic execution by the dynamic
runtime system based on data availability.



4.3 Space Overhead
This section analyzes the memory requirement of the run-

time system for keeping track of data dependences. For ev-
ery input and output of a task, there is a task instance gen-
erated and added to the task list. The owner task instance
stores the complete information of the task. Suppose the
owner task has k arguments, then it uses 3k × 4 bytes since
each argument is represented by 3 integers. A non-owner
task instance stores information of task id, block location,
and a flag of input or output (i.e., 17 bytes). Therefore,
every task corresponds to 12k + 17(k − 1) bytes. If the task
window size is W , the runtime system uses W (29k − 17)
bytes to keep the data dependence related information.

Although a small task window size saves memory space,
a larger window size can explore more tasks in a longer dis-
tance and identify more parallelism. In our implementation,
we choose the task window size to be equal to the number of
blocks assigned locally to each process. Note a matrix is dis-
tributed across processes by 2D cyclic distribution. Suppose
a compute node has a memory of capacity M bytes (e.g., 4
GBytes). Let NB be the block size, then the local matrix

has a maximum dimension of
√

M/8/NB blocks and the task
window size W is M/8/NB2. The ratio of the space to store
the W tasks over the M -bytes is thus (29k − 17)/8/NB2.
To avoid too fine-grained tasks, we expect NB to be at least
32. Suppose a sufficiently complex task has a number k=16
of arguments, the overhead is just about 5.5% for NB=32.
The overhead will become much smaller when NB is bigger
and k is smaller. For instance, if k is still 16 but NB=100,
the space overhead is equal to 0.56%.

5. ANALYSIS OF SCALABILITY
We use the tiled algorithms presented in [4] to implement

the Cholesky, LU, and QR factorizations. Although the ex-
perimental results in the next section will demonstrate the
scalability of these algorithms, we also wish to prove that
the algorithms are scalable in theory and analyze what is
the expected execution time and to what extent the algo-
rithms could continue to scale.

The Cholesky factorization algorithm has a very high de-
gree of parallelism where each finished task in the panel can
fire a number nb of tasks in the trailing submatrix, where nb
is the matrix dimension in blocks. The LU and QR factoriza-
tions are updating-based algorithms whose data dependence
graphs are much denser than that of the Cholesky factoriza-
tion. This section skips the simpler Cholesky factorization
algorithm and analyzes the performance of the updating-
based LU and QR factorization algorithms.

In both LU and QR factorizations, the trailing matrix up-
date occupies the most of the computation. Figure 6 shows
an example of updating a matrix of size 4 blocks × 4 blocks
on a 2×2 process grid. Each task in the ith row is dependent
on the task in the (i-1)th row and all the tasks on the same
row are totally independent. For details of the algorithms,
please refer to [4].

5.1 Expected Execution Time

Theorem 3. Suppose each task takes the same amount
of time to compute and tasks on the ith row are dependent
on tasks on the i − 1th row. The tasks located on the same
row have no data dependences. If nb ≫ P , the expected

Figure 6: Trailing submatrix update in the tiled LU

and QR algorithms.

execution time T is as follows:

T =
nb2(tcomp + tcomm

k
)

PrPc

+ 2k(Pr − 1)tcomp, where

nb is the matrix dimension in blocks, tcomp is the computa-
tion time of a task, tcomm is the communication time for a
tile, k denotes a virtual tile of k × 1 tiles, and P = Pr × Pc

is the process grid.

Proof. The tasks in the trailing matrix update are essen-
tially executed along a pipeline. Each process occupies a set
of stages in the pipeline (Fig. 7). Consider an arbitrary pro-
cess Pi. At time t = 0, Pi has nb/Pc×k tasks. The next time
Pi appears in the pipeline is at t + Pr × (tcomp × k + tcomm)
when Pi will get another nb/Pc × k tasks. Since nb ≫ P , Pi

will get new tasks continuously and never become idle. The
expected execution time

T = Tcomputation + Tcommunication + Tpipestart + Tpipefinish.

We know Tcomputation = (
nb2

PrPc

)tcomp,

Tcommunication = (
nb2

PrPc × k
)tcomm,

Tpipestart = Tpipefinish = k(Pr − 1)tcomp,

thus

T =
nb2(tcomp + tcomm

k
)

PrPc

+ 2k(Pr − 1)tcomp.

Figure 7 shows an example of the asynchronous pipeline ex-
ecution on a 4×4 process grid. In the example, P0 gets new
tasks at time t = 5 after P4, P8, P12 finish their tasks in
sequence. Each rectangle in the figure represents a virtual
tile that consists of 4 × 1 tiles.

Corollary 1. Let T1 be the total computation time (i.e.,
nb2 × tcomp). If nb ≫ P , then the expected execution time

T =
T1

P
(1 +

tcomm

ktcomp

+
2k(Pr − 1)P

nb2
) ∼= T1

P
(1 +

tcomm

ktcomp

).

5.2 Communication and Computation Ratio
In the tiled linear algebra algorithms, each task computes

a Level-3 BLAS operation. A Level-3 BLAS operation has
a time complexity of O(NB3). This section analyzes the ra-
tio for the frequently used DGEMM whose time complexity is
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Figure 7: Pipeline execution by a 4× 4 process grid.

2NB3. Other Level-3 operations may have different com-
plexities such as 1

3
NB3, 2

3
NB3, and so on. The formula of

tcomm

ktcomp
for DGEMM can be expressed as follows:

tcomm

ktcomp

=
8 × NB2/bw

2NB3 × k/flops
, where

bw denotes the injection network bandwidth in GB/s, and
flops denotes the maximum DGEMM performance per core in
GFLOPS.

We now look at the value of tcomm

ktcomp
for two real ma-

chines. The first machine is a cluster machine connected
by a Myrinet network. Each core on the cluster has a max-
imum DGEMM performance of 10 GFLOPS and an injection
network bandwidth of 1.2 GB/s. Based on the above for-
mula, to keep the ratio tcomm

ktcomp
< 10% on the cluster ma-

chine, we should set NB ≥ 320 for k=1, NB ≥ 160 for k=2,
and NB ≥ 80 for k=4, accordingly. The second machine is
a Cray XT4 machine, where flops=8 GFLOPS and bw=4
GB/s. On the Cray XT4 machine, setting NB = 80 and
k=1 is sufficient to attain a small ratio of 10%. Therefore,
different systems may require different NB sizes to achieve
good program performance.

5.3 Degree of Parallelism
This section discusses the condition for which the tiled

updating algorithms can achieve good scalability if we dou-
ble the number of cores constantly. As described in The-
orem 3, each process in the pipeline continuously receives
new tasks. Suppose a matrix of dimension nb blocks is dis-
tributed across a P = Pr ×Pc process grid, and each process
has C threads running on C cores. Suppose the algorithm
executes a number nb of iterations. In the ith iteration, pro-
cess p appears in a number (nb− i)/Pr of rows. Also process
p appears (nb − i)/Pc times on each row. The tasks within
each row are totally independent and can be executed in
parallel, but the tasks between rows must be executed in
sequence. We let TaskGain represent the number of ready
tasks in process p. Between every two appearances of pro-

cess p on two rows, there are a maximal number (nb−i)d
Pc

of tasks entering process p assuming a lookahead depth of
d. But the C threads of process p have also computed (or
consumed) Pr ×C tasks since the distance between the two

rows is Pr tasks. Therefore, in the ith iteration,

TaskGain =
(nb − i)d

Pc

− Pr × C.

Because the algorithm has nb iterations and i = 0 . . . nb− 1,
the overall task gain of process p can be expressed as:

TotalTaskGain ∼= nb2

6P
(2(1 + d)nb − 3 × P × C).

Note that as long as (1 + d)nb ≥ 1.5× TotalNumberCores,
every core will keep receiving new tasks constantly and not
become idle. We can also conclude that the lookahead tech-
nique is able to improve the degree of parallelism and is
necessary for the asynchronous algorithms.

6. EXPERIMENTAL RESULTS
To evaluate the effectiveness of our dynamic scheduling

approach and runtime system design, we conducted experi-
ments on both shared-memory and distributed-memory mul-
ticore systems.

6.1 Shared-Memory System
We applied our runtime system to the Cholesky factor-

ization and the QR factorization on two different multicore
SMP machines: a 16-core Intel Tigerton machine and a 32-
core IBM Power6 machine.

Figures 8 and 9 show our measurements on the Intel Tiger-
ton machine with 16 2.4-GHz cores (4 sockets, 4 cores each
socket) and 32GB memory. We compiled our dynamic schedul-
ing programs (called TBLAS) with Intel Fortran and C/C++
11.0 compilers at optimization level -O3. We compared
TBLAS to three libraries: LAPACK, Intel MKL 10.1, and
PLASMA 1.0. PLASMA is a parallel linear algebra library
developed at University of Tennessee for shared-memory mul-
ticore architectures [15]. To get a feeling of the best per-
formance upper bound, we also list the performance of the
serial DGEMM multiplied by sixteen cores (labeled as 16 ×
dgemm-seq). As for Cholesky factorization (Fig. 8), TBLAS
is slightly better than Intel MKL but not as good as PLASMA.
When the matrix size is large, TBLAS has the same perfor-
mance as PLASMA. LAPACK is not able to provide a good
performance on the multicore machine. As seen in Fig. 9
which shows the performance of QR factorization, TBLAS is
better than PLASMA when matrix size becomes large. Both
TBLAS and PLASMA are much faster than Intel MKL 10.1.

The second multicore SMP system is an IBM Power6 ma-
chine with 32 4.7-GHz cores (4 Multi-Chip Modules (MCM),
4 dual-core chips on each MCM). We compiled the TBLAS
programs with IBM xlf 11.1 and xlc 9.0 compilers. Fig-
ures 10 and 11 compare the performance of TBLAS to three
libraries: LAPACK, IBM ESSL 4.3, and PLASMA 1.0. The
performance of DGEMM is also displayed to show the best
upper bound. For Cholesky factorization (Fig. 10), TBLAS
is significantly better than ESSL and LAPACK, but slower
than PLASMA. As for QR factorization (Fig. 11), TBLAS
is better than ESSL when matrix size is greater than 6000
and the same as PLASMA when matrix size is greater than
10,000 by using 32 processing cores.

PLASMA 1.0 uses hand-optimized static schedules to im-
plement each linear algebra algorithm, hence it incurs less
overhead and solves relatively small matrices more efficiently
than the TBLAS runtime system. Although the perfor-
mance of TBLAS is not as good as that of PLASMA for
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Figure 8: Cholesky factorization on Intel Tigerton.
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Figure 9: QR factorization on Intel Tigerton.

smaller matrices, TBLAS provides a comparable performance
when matrix size is large. Also it should take much less
time and effort to redesign the other algorithms in LAPACK
or ScaLAPACK by using the TBLAS runtime system than
by the hand-optimized static scheduling method. More-
over, TBLAS is intended to provide scalable performance
on distributed-memory multicore systems.

6.2 Distributed-Memory System
We measured the performance of our runtime system on

the Cray XT4 Jaguar machine from ORNL. The machine
consists of nearly 8000 compute nodes each of which has a
quad-core 2.3-GHz AMD Opteron processor and 8GB mem-
ory. Cray XT4 adopts a 3D torus topology and is connected
by a SeaStar2 network. On this machine, the peak perfor-
mance per core is 9.2 GFLOPS and the maximum DGEMM
performance per core is 7.6 GFLOPS. We will look at the
weak scalability performance of our runtime system. That
is, when we double the number of nodes, we also increase
the matrix size N accordingly. Since the matrix memory
requirement grows with N2 but the physical memory size
grows linearly with the number of nodes, we increase the
matrix size by

√
2 when we double the number of nodes. The

first matrix size for our single node experiment is 20, 000. To
minimize message delays in our runtime system, we dedicate
one core on each node to do nothing but MPI communica-
tions. Therefore, we just used 3 out of 4 cores (25% less) on
each node to do real computations. However, for the per-
core performance, we divide TBLAS’s overall performance
by 4 × NumberNodes, instead of 3 × NumberNodes. We
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Figure 10: Cholesky factorization on IBM Power6.
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Figure 11: QR factorization on IBM Power6.

believe a node with more than 16 cores can achieve a much
better performance (i.e., 1/16=6.25% less).

We compare TBLAS to the ScaLAPACK library provided
by Cray XT-LIBSCI 10.3.2. We implemented three types of
matrix factorizations: Cholesky, LU (with and without piv-
oting), and QR. For each factorization, TBLAS uses two
configurations. One is a single shared-memory node which
uses 4 cores for computation. The other is a distributed-
memory many-node configuration where each node uses 3
cores for computation and 1 core for communication. There-
fore, in Figs. 13, 15, and 17, TBLAS has two separate lines
for the two configurations, respectively.

Figures 12 and 13 demonstrate the overall and per-core
performance of the Cholesky factorization. The per-core
performance is the overall performance divided by the num-
ber listed on the x-axis. Although TBLAS uses 25% less
cores than ScaLAPACK for computation, it is close to ScaLA-
PACK (Fig. 12). In Fig. 13, the 4-comp-core perfor-
mance decreases from 6.8 GFLOPS to the 3-comp-core 5.2
GFLOPS, which is 23% less than the 4-comp-core perfor-
mance. For more than one compute node, TBLAS is scalable
from 8 cores to 1024 cores.

Figures 14 and 15 present the results for the LU factor-
ization. We list the LU factorization both with and without
pivoting. Since the LU without pivoting uses an algorithm
close to Cholesky factorization, its performance is as good
as that of Cholesky factorization. As shown in Fig. 15,
TBLAS LU with pivoting again scales well from 8 to 1024
cores. Moving from 4-comp-core (i.e., 5.1 GFLOPS) to 3-

comp-core (i.e., 4 GFLOPS), the TBLAS performance is
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decreased by 21%. The performance of TBLAS LU with
pivoting on a single node drops greatly from two cores to
four cores. We are currently working on how to tune cer-
tain parameters in the computational kernels to improve its
performance.

Figures. 16 and 17 show the performance of the QR
factorization. As seen in Fig. 17, the difference between
TBLAS 4-comp-core and 3-comp-core is equal to 25% (5.7
GFLOPS vs 4.25 GFLOPS), which is just equal to the 25%
less compute cores that TBLAS uses than ScaLAPACK.

In summary, our experiment scales from 1 core to 1024
cores on a quad-core distributed-memory machine. At first
glance it might appear that TBLAS is inferior to ScaLA-
PACK. But if a compute node has more than 16 cores,
we expect that the TBLAS Cholesky factorization will pro-
vide a much better performance than ScaLAPACK since the
present 25% unutilized compute cores (1 out of 4 cores) will
become less than 6.25% (Fig. 13). Similarly, we expect the
performance of the TBLAS LU and QR factorizations to be
comparable to ScaLAPACK’s performance since using more
than 16 cores per node will make TBLAS LU and QR fac-
torizations reach the single node performance (Figs. 15 and
17).

7. RELATED WORK
Most of the work that uses dynamic task scheduling has

focused on shared-memory systems. Cilk is a multithreaded
language that generalizes the semantics of C and uses a prov-
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Figure 14: Overall performance of LU factorization
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ably good “work-stealing” algorithm to schedule tasks. The
Cilk programming model is mainly used to solve recursive
problems [3] [7]. Buttari et al. designed and implemented
a set of linear algebra algorithms for multicore machines [4]
[10]. Their algorithms use the block data layout and sched-
ule fine-grained tasks dynamically. Recently they extended
their work and developed a library called PLASMA for a
richer set of linear algebra algorithms [15]. The initial release
of PLASMA 1.0 expresses each algorithm’s data dependence
relationship manually and schedules tasks statically.

SMP Superscalar is also a parallel programming environ-
ment for multicore architectures. SMP Superscalar compiles
a sequential C program and links it with the runtime system,
and executes the program in parallel. Similar to TBLAS, it
is able to analyze data dependence at runtime [13]. Instead
of using compiler technology, TBLAS replaces the basic lin-
ear algebra routines by a task-based library to run programs
in parallel automatically. Most importantly, our work is fo-
cused on designing scalable software for distributed-memory
systems. In addition, the same TBLAS program is able to
work on both shared-memory and distributed-memory mul-
ticore systems in an efficient and scalable manner.

8. CONCLUSIONS AND FUTURE WORK
We have designed a runtime system to schedule tasks dy-

namically on both shared- and distributed-memory multi-
core systems. Linear algebra programs are written with
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a task-based library and can be executed by the runtime
system automatically. We mainly focus our runtime sys-
tem design on the scalability metric. The paper has the
following contributions: (i) proposes a task-based library
to support dynamic scheduling of linear algebra algorithms
automatically; (ii) presents a distributed algorithm to re-
solve data dependences without process communication; (iii)
demonstrates the scalability and practicality of the dynamic
scheduling approach on both shared-memory and distributed-
memory multicore systems; (iv) proves that the class of tiled
linear algebra algorithms have sufficient degree of parallelism
and can offer scalability guarantees.

The current runtime system prototype does not optimize
memory affinity between tasks because when the block size
NB is large (e.g., ≥ 80), an optimized subroutine such as
Level-3 BLAS can maximize the cache hit rate and achieve
high performance. For small NBs, we plan to add new fea-
tures to the runtime system to improve the memory affinity.
Another research along this line is to study the dynamic
scheduling approach on NUMA architectures.
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