
Parallel Band Two-Sided Matrix
Bidiagonalization for Multicore Architectures

LAPACK Working Note # 209

Hatem Ltaief1, Jakub Kurzak1, and Jack Dongarra1,2,3?

1 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville

2 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee

3 School of Mathematics & School of Computer Science,
University of Manchester

{ltaief, kurzak, dongarra}@eecs.utk.edu

Abstract. The objective of this paper is to extend, in the context of
multicore architectures, the concepts of algorithms-by-tiles [Buttari et
al., 2007] for Cholesky, LU, QR factorizations to the family of two-
sided factorizations. In particular, the bidiagonal reduction of a general,
dense matrix is very often used as a pre-processing step for calculating
the singular value decomposition. Furthermore, in the last Top500 list
from June 2008, 98% of the fastest parallel systems in the world were
based on multicores. The manycore trend has increasingly exacerbated
the problem, and it becomes critical to efficiently integrate existing or
new numerical linear algebra algorithms suitable for such hardware. By
exploiting the concept of algorithms-by-tiles in the multicore environment
(i.e., high level of parallelism with fine granularity and high performance
data representation combined with a dynamic data driven execution),
the band bidiagonal reduction presented here achieves 94 Gflop/s on a
12000× 12000 matrix with 16 Intel Tigerton 2.4 GHz processors.

1 Introduction

The objective of this paper is to extend, in the context of multicore architectures,
the concepts of algorithms-by-tiles by Buttari et al. [7] for Cholesky, LU , QR
factorizations to the family of two-sided factorizations i.e., Hessenberg, Tridiago-
nalization, Bidiagonalization. In particular, the Bidiagonal Reduction (BRD) of
a general, dense matrix is very often used as a pre-processing step for calculating
the Singular Value Decomposition (SVD) [14, 28]:

A = X Σ Y T ,

with A ∈ IRm×n, X ∈ IRm×m , Σ ∈ IRm×n, Y ∈ IRn×n.

? Research reported here was partially supported by the National Science Foundation
and Microsoft Research.

The necessity of calculating SVDs emerges from various computational sci-
ence disciplines, e.g., in statistics where it is related to principal component
analysis, in signal processing and pattern recognition, and also in numerical
weather prediction [10]. The basic idea is to transform the dense matrix A to an
upper bidiagonal form B by applying successive distinct transformations from
the left (U) as well as from the right (V) as follows:

B = UT × A × V,

A ∈ IRn×n , U ∈ IRn×n , V ∈ IRn×n, B ∈ IRn×n.

The most commonly used algorithm to perform this two-sided reduction is
the Golub-Kahan bidiagonalization [15]. Although this algorithm works for any
matrix size, it adds extra floating point operations for rectangular matrices and
thus, faster methods such as the Lawson-Hanson-Chan bidiagonalization are
preferred [8]. Here, only square matrices are consider, and performance result
comparisons of different bidiagonalization algorithms for rectangular matrices
will appear in a companion paper.

Also, we only look at the first stage of BRD, which goes from the origi-
nal dense matrix A to a band bidiagonal matrix Bb, with b being the num-
ber of upper-diagonals. The second stage, which annihilates those additional b
upper-diagonals, has been studied especially by Lang [21] and is not examined
in this paper. This two-stage transformation process is also explained by Grosser
et al. [16]. Although expensive, orthogonal transformations are accepted tech-
niques and commonly used for this reduction because they guarantee stability,
as opposed to Gaussian Elimination [28]. The two common transformations are
based on Householder reflectors and Givens rotations. Previous work by the au-
thors [22] demonstrates the effectiveness of Householder reflectors over Givens
rotations. Therefore, this two-sided band BRD is done by using Householder
reflectors.

Furthermore, in the last Top500 list from June 2008 [1], 98% of the fastest
parallel systems in the world were based on multicores. The many-core trend
has exacerbated the problem even more and it becomes judicious to efficiently
integrate existing or new numerical linear algebra algorithms suitable for such
hardware. As discussed in [7], a combination of several parameters is essential to
match the architecture associated with the cores: (1) fine granularity to reach a
high level of parallelism and to fit the cores’ small caches; (2) asynchronicity to
prevent any global barriers; (3) Block Data Layout (BDL), a high performance
data representation to perform efficient memory access; and (4) dynamic data
driven scheduler to ensure any enqueued tasks can immediately be processed as
soon as all their data dependencies are satisfied. While (1) and (3) represent im-
portant items for one-sided and two-sided transformations, (2) and (4) are even
more critical for two-sided transformations because of the tremendous amount of
tasks generated by the right transformation. Indeed, as a comparison, the algo-
rithmic complexity for the QR factorization is 4/3 n3, while it is 8/3 n3 for the
BRD algorithm, with n being the matrix size. On the other hand, previous work
done by Kurzak et al. [19, 20] show how the characteristics of tiled algorithms

2

perfectly match even the architectural features of modern multicore processors
such as the Cell Broadband Engine processor.

The remainder of this document is organized as follows: Section 2 recalls the
standard BRD algorithm. Section 3 describes the implementation of the parallel
tiled BRD algorithm. Section 4 outlines the pros and cons of static and dynamic
scheduling. Section 5 presents performance results. Comparison tests are run on
shared-memory architectures against the state of the art, high performance dense
linear algebra software libraries, LAPACK [3] and ScaLAPACK [9]. Section 6
gives a detailed overview of previous projects in this area. Finally, section 7
summarizes the results of this paper and presents the ongoing work.

2 The Standard Bidiagonal Reduction

In this section, we review the original BRD algorithm of a general, dense matrix.

2.1 The Sequential Algorithm

The standard BRD algorithm of A ∈ IRn×n based on Householder reflectors
combines two factorizations methods, i.e. QR (left reduction) and LQ (right
reduction) decompositions. The two phases are written as follows:

Algorithm 1 Bidiagonal Reduction with Householder reflectors
1: for j = 1 to n do
2: x = Aj:n,j

3: uj = sign(x1) ||x||2 e1 + x
4: uj = uj / ||uj ||2
5: Aj:n,j:n = Aj:n,j:n − 2 uj (u∗j Aj:n,j:n)
6: if j < n then
7: x = Aj,j+1:n

8: vj = sign(x1) ||x||2 e1 + x
9: vj = vj / ||vj ||2

10: Aj:n,j+1:n = Aj:n,j+1:n − 2 (Aj:n,j+1:n vj) v∗j
11: end if
12: end for

Algorithm 1 takes as input a dense matrix A and gives as output the upper
bidiagonal decomposition. The reflectors uj and vj can be saved in the lower and
upper parts of A, respectively, for storage purposes and used later if necessary.
The bulk of the computation is located in line 5 and in line 10 in which the
reflectors are applied to A from the left and then from the right, respectively.
Four flops are needed to annihilate one element of the matrix, which makes the
total number of operations for such algorithm 8/3 n3 (the lower order terms
are neglected). It is obvious that Algorithm 1 is not efficient as is, especially
because it is based on matrix-vector Level-2 BLAS operations. Also, a single

3

entire column/row is reduced at a time, which engenders a large stride access
to memory. The main contribution described in this paper is to transform this
algorithm to work on tiles instead to generate, as many as possible, matrix-
matrix Level-3 BLAS operations. First introduced by Berry et al. in [5] for the
reduction of a nonsymmetric matrix to block upper-Hessenberg form and then
revisited by Buttari et al. in [7], this idea considerably improves data locality
and cache reuse.

3 The Parallel Band Bidiagonal Reduction

In this section, we present the parallel implementation of the band BRD algo-
rithm based on Householder reflectors.

3.1 Fast Kernel Descriptions

There are eight overall kernels implemented for the two phases, four for each
phase.

For phase 1 (left reduction), the first four kernels are identical to the ones used
by Buttari et al. [7] for the QR factorization, in which the reflectors are stored
in column major form. DGEQRT is used to do a QR blocked factorization using
the WY technique for efficiently accumulating the Householder reflectors [26].
The DLARFB kernel comes from the LAPACK distribution and is used to apply
a block of Householder reflectors. DTSQRT performs a block QR factorization
of a matrix composed of two tiles, a triangular tile on top of a dense square tile.
DSSRFB updates the matrix formed by coupling two square tiles and applying
the resulting DTSQRT transformations. Buttari et al. gives a detailed description
of the different kernels [7].

For phase 2 (right reduction), the reflectors are now stored in rows. DGELQT
is used to do a LQ blocked factorization using the WY technique as well. DT-
SLQT performs a block LQ factorization of a matrix composed of two tiles,
a triangular tile beside a dense square tile. However, minor modifications are
needed for the DLARFB and DSSRFB kernels. These kernels now take into
account the row storage of the reflectors.

Moreover, since the right orthogonal transformations do not destroy the zero
structure and do not introduce fill-in elements, the computed left and right re-
flectors can be stored in the lower and upper annihilated parts of the original
matrix, for later use. Although the algorithm works for rectangular matrices,
for simplicity purposes, only square matrices are considered. Let NBT be the
number of tiles in each direction. Then, the tiled band BRD algorithm with
Householder reflectors appears as in Algorithm 2. It basically performs a se-
quence of interleaved QR and LQ factorizations at each step of the reduction.

4

Algorithm 2 Tiled Band BRD Algorithm with Householder reflectors.
1: for i = 1, 2 to NBT do
2: // QR Factorization
3: DGEQRT(i, i, i)
4: for j = i + 1 to NBT do
5: DLARFB(”L”, i, i , j)
6: end for
7: for k = i + 1 to NBT do
8: DTSQRT(i, k, i)
9: for j = i + 1 to NBT do

10: DSSRFB(”L”, i, k, j)
11: end for
12: end for
13: if i < NBT then
14: // LQ Factorization
15: DGELQT(i, i, i + 1)
16: for j = i + 1 to NBT do
17: DLARFB(”R”, i, j, i + 1)
18: end for
19: for k = i + 2 to NBT do
20: DTSLQT(i, i, k)
21: for j = i + 1 to NBT do
22: DSSRFB(”R”, i, j, k)
23: end for
24: end for
25: end if
26: end for

The characters ”L” and ”R” stand for Left and Right updates. In each kernel
call, the triplets (i, ii, iii) specify the tile location in the original matrix, as in
figure 1: (i) corresponds to the reduction step in the general algorithm, (ii) gives
the row index and (iii) represents the column index. For example, in figure 1(a),
the black tile is the input dependency at the current step, the white tiles are
the zeroed tiles, the bright gray tiles are those which need to be processed and
finally, the dark gray tile corresponds to DTSQRT(1,4,1). In figure 1(a), the blue
tiles represent the final data tiles and the dark gray tile is DLARFB(”R”,1,1,4).
In figure 1(b), the reduction is at step 3 where the dark gray tiles represent DSS-
RFB(”L”,3,4,4). In figure 1(c), the dark gray tiles represent DSSRFB(”R”,3,4,5).

These kernels are very rich in matrix-matrix operations. By working on small
tiles with BDL, the elements are stored contiguous in memory and thus the access
pattern to memory is more regular, which makes these kernels high performing. It
appears necessary then to efficiently schedule the kernels to get high performance
in parallel.

The next section describes the number of operations needed to apply this
reduction.

5

(a) BRD: Left Reduction Step 1. (b) BRD: Right Reduction Step 1.

(c) BRD: Left Reduction Step 3. (d) BRD: Right Reduction Step 3.

Fig. 1. BRD algorithm applied on a tiled Matrix with NBT= 5.

3.2 Operation Count

The algorithmic complexity for the band BRD is split into two phases: QR
factorization with 4/3 n3 and a band LQ factorization with 4/3 n (n− b) (n− b)
with b being the tile size (equivalent to the bandwidth of the matrix). The total
number of flops is then 4/3 (n3 + n (n− b) (n− b)). Compared to the full BRD
reduction complexity, i.e., 8/3 n3, the band BRD algorithm is doing O(n2 b) less
flops, which is a negligible expense of the overall BRD algorithm cost provided
n >> b.

Furthermore, by using updating factorization techniques as suggested in [14,
27], the kernels for both implementations can be applied to tiles of the orig-
inal matrix. Using updating techniques to tile the algorithms have first been
proposed by Yip [29] for LU to improve the efficiency of out-of-core solvers,
and were recently reintroduced in [17, 23] for LU and QR, once more in the
out-of-core context. The cost of these updating techniques is an increase in the

6

operation count for the whole BRD reduction. However, as suggested in [11–13],
by setting up inner-blocking within the tiles during the panel factorizations and
the trailing submatrix update, DGEQRT-DGELQT-DTSQRT-DTSLQT kernels
and DLARFB-DSSRFB kernels respectively, those extra flops become negligible
provided s << b, with s being the inner-blocking size (see Buttari et al. [7] for
further information). This blocking approach has been also described in [17, 24].

In the following part, we present a comparison of two approaches for tile
scheduling, i.e., a static and a dynamic data driven execution scheduler that
ensures the small kernels (or tasks) generated by Algorithm 2 are processed as
soon as their respective dependencies are satisfied.

4 Static Vs Dynamic Scheduling

Two types of schedulers were used, a dynamic one, where scheduling decisions
are made at runtime, and a static one, where the schedule is predetermined.

The dynamic scheduling scheme similar to [7] has been extended for the two-
sided orthogonal transformations. A Directed Acyclic Graph (DAG) is used to
represent the data flow between the nodes/kernels. While the DAG is quite easy
to draw for a small number of tiles, it becomes very complex when the number of
tiles increases and it is even more difficult to process than the one created by the
one-sided orthogonal transformations. Indeed, the right updates impose severe
constraints on the scheduler by filling up the DAG with multiple additional edges.
The dynamic scheduler maintains a central progress table, which is accessed in
the critical section of the code and protected with mutual exclusion primitives
(POSIX mutexes in this case). Each thread scans the table to fetch one task at a
time for execution. As long as there are tasks with all dependencies satisfied, the
scheduler will provide them to the requesting threads and will allow an out-of-
order execution. The scheduler does not attempt to exploit data reuse between
tasks. The centralized nature of the scheduler is inherently non-scalable with the
number of threads. Also, the need for scanning potentially large table window, in
order to find work, is inherently non-scalable with the problem size. However, this
organization does not cause performance problems for the numbers of threads,
problem sizes and task granularities investigated in this paper.

The static scheduler used here is a derivative of the scheduler used suc-
cessfully in the past to schedule Cholesky and QR factorizations on the Cell
processor [18, 20]. The static scheduler imposes a linear order on all the tasks in
the factorization. Each thread traverses the tasks space in this order picking a
predetermined subset of tasks for execution. In the phase of applying transfor-
mations from the right each thread processes one block-column of the matrix;
In the phase of applying transformations from the left each thread processes one
block-row of the matrix (figure 2). A dependency check is performed before exe-
cuting each task. If dependencies are not satisfied the thread stalls until they are
(implemented by busy waiting). Dependencies are tracked by a progress table,
which contains global progress information and is replicated on all threads. Each
thread calculates the task traversal locally and checks dependencies by polling

7

the local copy of the progress table. Due to its decentralized nature, the mecha-
nism is much more scalable and of virtually no overhead. Also, processing of tiles
along columns and rows provides for greater data reuse between tasks, to which
the authors attribute the main performance advantage of the static scheduler.
Since the dynamic scheduler is more aggressive in fetching of tasks, it completes

DGEQRT DTSQRT DLARFB DSSRFB

0 1 2 3 4

2 3 4 5

2 3 4

0 1

4

5

6

7

0

1

6

7

0

1

5

6

7

2

3

DGEQRT DTSQRT DLARFB DSSRFB

Fig. 2. Task Partitioning with eight cores on a 5× 5 tile matrix.

each step of the factorization faster. The static scheduler, on the other hand,
takes longer to complete a given step of the factorization, but successfully over-
laps consecutive steps achieving the pipelining effect, what leads to very good
overall performance (figure 3).

In the next section, we present the experimental results comparing our band
BRD implementations with the two schedulers against the state of the art li-
braries, i.e., LAPACK [3], ScaLAPACK [9] and MKL version 10 [2].

8

 DGEQRT DTSQRT DLARFB DSSRFB

 DGELQT DTSLQT DLARFB DSSRFB

CORE 0
CORE 1
CORE 2
CORE 3
CORE 4
CORE 5

CORE 0
CORE 1
CORE 2
CORE 3
CORE 4
CORE 5

Time

Fig. 3. Scheduler Tracing with six Intel Tigerton 2.4 GHz cores: Top dynamic – Bottom
static.

5 Experimental Results

The experiments have been achieved on two different platforms: a quad-socket
dual-core Intel Itanium 2 1.6 GHz (eight total cores) with 16GB of memory,
and a quad-socket quad-core Intel Tigerton 2.4 GHz (16 total cores) with 32GB
of memory. Hand tuning based on empirical data has been performed for large
problems to determine the optimal tile size b = 200 and inner-blocking size
s = 40 for the tiled band BRD algorithm. The block sizes for LAPACK and
ScaLAPACK have also been hand tuned to get a fair comparison, b = 32 and
b = 64 respectively.

Figure 4 shows the elapsed time in seconds for small and large matrix sizes
on the Itanium system with eight cores. The band BRD algorithms based on
Householder reflectors with static scheduling is slightly better than with dynamic
scheduling. However, both implementations by far outperform the others: for a
12000 × 12000 problem size, they run approximately 25 x faster than the full
BRD of ScaLAPACK, MKL and LAPACK. Figure 5(a) presents the parallel
performance in Gflop/s of the band BRD algorithm on the Itanium system. The
algorithm with dynamic scheduling runs at 82% of the machine theoretical peak
of the system and at 92% of the DGEMM peak. Figure 5(b) zooms in on the
three other implementations, and the parallel performance of the full BRD with
ScaLAPACK is significantly higher than the full BRD of LAPACK and MKL for
small matrix sizes. Also, the performances are almost the same for larger matrix
sizes.

The same experiments have been conducted on the Xeon system with 16
cores. Figure 6 shows the execution time in seconds for small and large matrix
sizes. Again, both band BRD algorithms almost perform in the same manner. For
a 12000 × 12000 problem size, the band BRD algorithm with dynamic sched-
uler roughly runs 70 x faster than MKL and LAPACK, and 20 x faster than
ScaLAPACK. Figure 7(a) presents the parallel performance in Gflop/s of the

9

band BRD algorithm. It scales quite well while the matrix size increases, reach-
ing 94 Gflop/s. It runs at 61% of the system theoretical peak and 72% of the
DGEMM peak. The zoom-in seen in figure 7(b) highlights the weakness of the
full BRD algorithm of MKL, LAPACK and ScaLAPACK. Note: the full BRD of
ScaLAPACK is twice as fast as than the full BRD of MKL and LAPACK most
likely thanks to the Two-dimensional Block Cyclic Distribution.

The following section briefly comments on the previous work done in BRD
algorithms.

100 500 1000 2000
0

1

2

3

4

5

6

7

8

9

Matrix Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Static HH Band Bidiag
Dynamic HH Band Bidiag
MKL Full Bidiag
LAPACK Full Bidiag
ScaLAPACK Full Bidiag

(a) Small Data Size.

4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

1600

1800

Matrix Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Static HH Band Bidiag
Dynamic HH Band Bidiag
MKL Full Bidiag
LAPACK Full Bidiag
ScaLAPACK Full Bidiag

(b) Large Data Size.

Fig. 4. Elapsed time in seconds for the band bidiagonal reduction on a dual-socket
quad-core Intel Itanium2 1.6 GHz with MKL BLAS V10.0.1.

0 2000 4000 6000 8000 10000 12000

5

10

15

20

25

30

35

40

45

50

55

60

Matrix Size

G
flo

ps

Theoritical Peak
DGEMM Peak
Static HH Band Bidiag
Dynamic HH Band Bidiag
MKL Full Bidiag
LAPACK Full Bidiag
ScaLAPACK Full Bidiag

(a) Performance comparisons.

0 2000 4000 6000 8000 10000 12000

2

4

6

8

10

12

14

16

18

Matrix Size

G
flo

ps

MKL Full Bidiag
LAPACK Full Bidiag
ScaLAPACK Full Bidiag

(b) Zoom-in.

Fig. 5. Parallel Performance of the band bidiagonal reduction on a dual-socket quad-
core Intel Itanium2 1.6 GHz processors with MKL BLAS V10.0.1.

10

100 500 1000 2000
0

5

10

15

Matrix Size

E
la

ps
ed

T
im

e
in

 s
ec

on
ds

Static HH Band Bidiag
Dynamic HH Band Bidiag
MKL Full Bidiag
LAPACK Full Bidiag
Scalapack Full Bidiag

(a) Small Data Size.

4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

Matrix Size

E
la

ps
ed

T
im

e
in

 s
ec

on
ds

Static HH Band Bidiag
Dynamic HH Band Bidiag
MKL Full Bidiag
LAPACK Full Bidiag
Scalapack Full Bidiag

(b) Large Data Size.

Fig. 6. Elapsed time in seconds for the band bidiagonal reduction on a quad-socket
quad-core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1.

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

160

Matrix Size

G
flo

ps

Theoritical Peak
DGEMM Peak
Static HH Band Bidiag
Dynamic HH Band Bidiag
MKL Full Bidiag
LAPACK Full Bidiag
Scalapack Full Bidiag

(a) Performance comparisons.

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

Matrix Size

G
flo

ps

MKL Full Bidiag
LAPACK Full Bidiag
Scalapack Full Bidiag

(b) Zoom-in.

Fig. 7. Parallel Performance of the band bidiagonal reduction on a quad-socket quad-
core Intel Xeon 2.4 GHz processors with MKL BLAS V10.0.1.

6 Related Work

Grosser and Lang [16] describe an efficient parallel reduction to bidiagonal form
by splitting the standard algorithm in two stages, i.e., dense to banded and
banded to bidiagonal, in the context of distributed memory systems. The QR and
LQ factorizations are done using a tree approach, where multiple column/row
blocks can be reduced to triangular forms at the same time, which can amelio-
rate the overall parallel performance. However, those triangular blocks are then
reduced without taking into account their sparsity, which add some extra flops.

Ralha [25] proposed a new approach for the bidiagonal reduction called one-
sided bidiagonalization. The main concept is to implicitly tridiagonalize the ma-
trix ATA by a one-sided orthogonal transformation of A, i.e., F = A V . As
a first step, the right orthogonal transformation V is computed as a product
of Householder reflectors. Then, the left orthogonal transformation U and the

11

bidiagonal matrix B are computed using a Gram-Schmidt QR factorization of
the matrix F . This procedure has numerical stability issues and the matrix U
could loose its orthogonality properties.

Barlow et al. [4] and later, Bosner et al. [6], further improved the stability of
the one-sided bidiagonalization technique by merging the two distinct steps to
compute the bidiagonal matrix B. The computation process of the left and right
orthogonal transformations is now interlaced. Within a single reduction step,
their algorithms simultaneously perform a block Gram-Schmidt QR factorization
(using a recurrence relation) and a postmultiplication of a block of Householder
reflectors chosen under a special criteria.

7 Conclusion and Future Work

By exploiting the concepts of algorithms-by-tiles in the multicore environment,
i.e., high level of parallelism with fine granularity and high performance data
representation combined with a dynamic data driven execution, the BRD algo-
rithm with Householder reflectors achieves 94 Gflop/s on a 12000×12000 matrix
size with 16 Intel Tigerton 2.4 GHz processors. This algorithm performs most of
the operations in Level-3 BLAS. Although the algorithm considerably surpasses
in performance of the BRD algorithm of MKL, LAPACK and ScaLAPACK, its
main inefficiency comes from the implementation of the kernel operations. The
most performance critical, DSSRFB, kernel only achieves roughly 61% of peak
for the tile size used (b = 200) in the experiments. For comparison a simple call
to the DGEMM routine easily crosses 85% of peak. Unlike DGEMM, however,
DSSRFB is not a single call to BLAS, but is composed of multiple calls to BLAS
in a loop (due to inner blocking), since the inefficiency. DSSRFB could easily
achieve similar performance if implemented as a monolithic code and heavily
optimized. Finally, this work can be extended to the BRD of any matrix sizes
(m,n) by using the appropriate method depending on the ratio between both
dimensions.

8 Acknowledgment

The authors thank Alfredo Buttari for his insightful comments, which greatly
helped to improve the quality of this article.

References

1. http://www.top500.org.
2. http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm.
3. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
third edition, 1999.

12

4. J. L. Barlow, N. Bosner, and Z. Drmač. A new stable bidiagonal reduction algo-
rithm. Linear Algebra and its Applications, 397(1):35–84, Mar. 2005.

5. M. W. Berry, J. J. Dongarra, and Y. Kim. A highly parallel algorithm for the reduc-
tion of a nonsymmetric matrix to block upper-Hessenberg form. LAPACK Work-
ing Note 68, Department of Computer Science, University of Tennessee, Knoxville,
inst-UT-CS:adr, feb 1994. UT-CS-94-221, February 1994.

6. N. Bosner and J. L. Barlow. Block and parallel versions of one-sided bidiagonal-
ization. SIAM J. Matrix Anal. Appl., 29(3):927–953, 2007.

7. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel Tiled QR Factorization
for Multicore Architectures. LAPACK Working Note 191, July 2007.

8. T. F. Chan. An improved algorithm for computing the singular value decomposi-
tion. ACM Transactions on Mathematical Software, 8(1):72–83, Mar. 1982.

9. J. Choi, J. Demmel, I. Dhillon, J. Dongarra, Ostrouchov, S., A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK, a portable linear algebra library for
distributed memory computers-design issues and performance. Computer Physics
Communications, 97(1-2):1–15, 1996.

10. K. E. Danforth Christopher M. and M. Takemasa. Estimating and correcting
global weather model error. Monthly weather review, 135(2):281–299, 2007.

11. E. Elmroth and F. G. Gustavson. New serial and parallel recursive QR fac-
torization algorithms for SMP systems. In Applied Parallel Computing, Large
Scale Scientific and Industrial Problems, 4th International Workshop, PARA’98,
Ume̊a, Sweden, June 14-17 1998. Lecture Notes in Computer Science 1541:120-128.
http://dx.doi.org/10.1007/BFb0095328.

12. E. Elmroth and F. G. Gustavson. Applying recursion to serial and parallel QR
factorization leads to better performance. IBM J. Res. & Dev., 44(4):605–624,
2000.

13. E. Elmroth and F. G. Gustavson. High-performance library software for QR factor-
ization. In Applied Parallel Computing, New Paradigms for HPC in Industry and
Academia, 5th International Workshop, PARA 2000, Bergen, Norway, June 18-20
2000. Lecture Notes in Computer Science 1947:53-63. http://dx.doi.org/10.1007/3-
540-70734-4 9.

14. G. H. Golub and C. F. Van Loan. Matrix Computation. John Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, Maryland,
third edition, 1996.

15. Golub, G. H. and Kahan, W. Calculating the singular values and the pseudo
inverse of a matrix. SIAM J. Numer. Anal., 2:205–224, 1965.

16. B. Grosser and B. Lang. Efficient parallel reduction to bidiagonal form. Parallel
Comput., 25(8):969–986, 1999.

17. B. C. Gunter and R. A. van de Geijn. Parallel out-of-core computation and up-
dating of the QR factorization. ACM Transactions on Mathematical Software,
31(1):60–78, Mar. 2005.

18. J. Kurzak, A. Buttari, and J. J. Dongarra. Solving systems of linear equation on
the CELL processor using Cholesky factorization. Trans. Parallel Distrib. Syst.,
19(9):1175–1186, 2008. http://dx.doi.org/10.1109/TPDS.2007.70813.

19. J. Kurzak, A. Buttari, and J. J. Dongarra. Solving systems of linear equations on
the CELL processor using Cholesky factorization. IEEE Transactions on Parallel
and Distributed Systems, 19(9):1–11, Sept. 2008.

20. J. Kurzak and J. Dongarra. QR Factorization for the CELL Processor. LAPACK
Working Note 201, May 2008.

21. B. Lang. Parallel reduction of banded matrices to bidiagonal form. Parallel Com-
puting, 22(1):1–18, 1996.

13

22. H. Ltaief, J. Kurzak, and J. Dongarra. Parallel block hessenberg reduction us-
ing algorithms-by-tiles for multicore architectures revisited. UT-CS-08-624 (also
LAPACK Working Note 208).

23. E. S. Quintana-Ort́ı and R. A. van de Geijn. Updating an LU factorization with
pivoting. ACM Transactions on Mathematical Software, 35(2), July 2008.

24. G. Quintana-Ort́ı, E. S. Quintana-Ort́ı, E. Chan, R. A. van de Geijn, and F.
G. Van Zee. Scheduling of QR factorization algorithms on SMP and multi-core
architectures. In PDP, pages 301–310. IEEE Computer Society, 2008.

25. Rui Ralha. One-sided reduction to bidiagonal form. Linear Algebra and its Appli-
cations, 358:219–238, Jan 2003.

26. R. Schreiber and C. Van Loan. A storage efficient WY representation for products
of householder transformations. SIAM J. Sci. Statist. Comput., 10:53–57, 1989.

27. G. W. Stewart. Matrix Algorithms Volume I: Matrix Decompositions. SIAM,
Philadelphia, 1998.

28. L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia, PA,
1997.

29. E. L. Yip. Fortran subroutines for out-of-core solutions of large complex linear
systems. Technical Report CR-159142, NASA, November 1979.

14

