1

Enhancing Parallelism of Tile QR
Factorization for Multicore Architectures

Bilel Hadri, Hatem Ltaief, Emmanuel Agullo, and Jack Dongar

Abstract

To exploit the potential of multicore architectures, recdanse linear algebra libraries have used tile
algorithms, which consist of scheduling a Directed Acy@i@ph (DAG) of fine granularity tasks where nodes
represent tasks, either panel factorization or update dbekirolumn, and edges represent dependencies
among them. Although past approaches already achieve légrmance on moderate and large square
matrices, their way of processing a panel in sequence lealimited performance when factorizing tall and
skinny matrices or small square matrices. We present a nély, dsynchronous method for computing a
QR factorization on shared-memory multicore architectuhat overcomes this bottleneck. Our contribution
is to adapt an existing algorithm that performs a panel faaton in parallel (named Communication-
Avoiding QR and initially designed for distributed-memanachines) to the context of tile algorithms using
asynchronous computations. An experimental study shogrsfisiant improvement (up to almogd times
faster) compared to state-of-the-art approaches. We aienentually incorporate this work into the Parallel
Linear Algebra for Scalable Multi-core Architectures (PEMA) library.

. Introduction and Motivations

QR factorization is one of the major one-sided factorizagion dense linear algebra.
Based on orthogonal transformations, this method is watmknto be numerically stable
and is a first step toward the resolution of least square mgs{@2]. We have recently
developed a parallel tile QR factorization [7] as part of BHagallel Linear Algebra Software
for Multi-core Architectures (PLASMA) project [3].

PLASMA Tile QR factorization has been benchmarked on twaigectures [4], a quad-
socket quad-core machine based on an Intel Xeon procesd@a S8MP node composed of
16 dual-core Power6 processors. Table | and Il report thallpaefficiency (the quotient of
the division of the time spent in serial by the product of timeet spent in parallel and the
number of cores used) achieved with different square maiegs on each architecture.
PLASMA Tile QR factorization scales fairly well for large sare matrices and up to
the maximum number of cores available on those shared-nyemachines, 16 and 32
cores on Intel and Power6, respectively. However, for smalirices, the parallel efficiency
significantly decreases when the number of cores incre&sesxample, for matrix sizes
lower than 1000, the efficiency is roughly at mésts on Intel and Power6 with 16 cores.
And this declines on Power6 with only@% parallel efficiency achieved on 32 cores for a
matrix of size 500. The cores run out of work and stay idle nebshe time. The significant
decrease of efficiency is also explained by the sequentiarea@f the panel factorization
which limits the opportunities for parallelism and genegibad imbalance especially when

Bilel Hadri, Hatem Ltaief, Emmanuel Agullo and Jack Dongaare with the Department Electrical Engineering and
Computer Science, University of Tennessee, Knoxuville.
E-mail: {hadri, Itaief, eagullo, dongarf@eecs.utk.edu

Jack Dongarra is also with the Computer Science and MathesnBivision, Oak Ridge National Laboratory, Oak
Ridge, Tennessee, and with the School of Mathematics Safd@bmputer Science, University of Manchester

Research reported here was partially supported by the N8Rierosoft Research.

TABLE | TABLE Il

PARALLEL EFFICIENCY ON INTEL PARALLEL EFFICIENCY ON POWERG

Number of cores Number of cores
Matrix order 2 4 8 16 Matrix order 4 8 16 32
500 69% | 55% | 39% | 24% 500 43% | 25% | 12% | 6%
1000 88% | 73% | 60% | 45% 1000 67% | 46% | 24% | 12%
2000 97% | 91% | 81% | 69% 2000 0% | 65% | 46% | 25%
4000 98% | 97% | 94% | 84% 4000 90% | 79% | 71% | 51%
8000 97% | 9% | 96% | 89% 8000 95% | 88% | 8% | 75%

processing small or tall and skinny (TS) matrices (of sizeby—n with m >> n) where
a large proportion of the elapsed time is spent in those sei@lipanel factorizations.

The purpose of this paper is to present a fully asynchronoethad to compute a QR
factorization of TS matrices on shared-memory multicochéectures. This new technique
finds its root in combining the core concepts from the Tile @Rtdrization implemented
in the PLASMA library and the Communication-Avoiding QR (QR) [9] algorithm in-
troduced by Demmel et al. Initially designed for distritdi@emory machines, CAQR
factors general rectangular distributed matrices with i@l panel factorization. Even if
the present paper discusses algorithms for shared-meneamfines where communications
are not explicit, multicore platforms often symbolize, atsmaller scale, a distributed-
memory environment with a memory and/or cache hierarchetefit from memory locality
in computer programs. Hence the relevance of using algostthat limit the amount of
communication in our context too.

This present journal version is an extension of a confergmoeeeding paper [14].
Here are the main differences compared to that paper. Wesirdgere a new variant
(Section 1lI-B) of the main algorithm. We also discuss in matetail the amount of
parallelism provided by our algorithms. To do so, we first pane their corresponding
Directed Acyclic Graphs (DAG) (Section 1V) to the ones oétdlgorithms, i.e., PLASMA.
We then study their impact on actual parallel executionesaSection V-C).

The paper is organized as follows. Section Il presents tlo&dsaund work. Section Il
describes two new approaches that combine algorithmicsittean tile algorithms and the
Communication-Avoiding algorithms. Section IV shows tloat algorithms lead to DAGs
exhibiting more parallelism than tile algorithms such aABMA. Section V explains how
the tasks from the resulting DAGs are scheduled in pardiiebection VI, an experimental
study shows the behavior of our algorithm on multicore detftures and compares it against
existing numerical libraries. Finally, in Section VII, wemrclude and present future work
directions.

[l. Background

TS matrices are present in a variety of applications in liregebra, e.g., in solving
linear systems with multiple right-hand sides using blaekative methods by computing
the QR factorization of a TS matrix [10], [18]. But above allS matrices show up at
each panel factorization step while performing one-sidedofrization algorithms (QR, LU
and Cholesky). The implementation of efficient algorithnasdiling such matrix shapes is
paramount. In this section, we describe different algargior the QR factorization of TS
matrices implemented in the state-of-the-art numericeddr algebra libraries.

A. LAPACK/ScaL APACK QR factorization

Generally, a QR factorization of am x n real matrix A is the decomposition of A as
A = QR, where Q is anm x m real orthogonal matrix and R is an x n real upper
triangular matrix. QR factorization uses a series of elgamgrHouseholder matrices of the
general formH = I — rvv? wherev is a column reflector and is a scaling factor.

Regarding the block or block-partitioned algorithms asfqrened in LAPACK [5] or
ScalLAPACK [6] respectivelypb elementary Householder matrices are accumulated within
each panel and the product is representedf a,...H,, = I — VTV'. Here V is an x nb
matrix in which columns are the vectors T is anb x nb upper triangular matrix andb
is the block size.

Although the panel factorization can be identified as a setipleexecution that represents
a small fraction of the total number of FLOPS performé@nt)) FLOPS for a total of
6(n?)) FLOPS), the scalability of of block factorizations is li@idl on a multicore system.
The parallelism is only exploited at the level of the BLAS tioes for LAPACK or
PBLAS routines for ScaLAPACK. This methodology complies aakfjoin model since
the execution flow of a block factorization represents a sege of sequential operations
(panel factorizations) interleaved with parallel onesdates of the trailing submatrices).

B. Tile QR factorization (PLASMA-like factorization)

PLASMA Tile QR factorization [7], [8] evolves from the bloagorithms that provides
high performance implementations for multicore systemhigectures. The algorithm is
based on annihilating matrix elements by square tiles aost#f rectangular panels as in
LAPACK. PLASMA Tile QR algorithm relies on four primary opsirons developed by four
computational kernels:

« CORE_DGEQRT: this routine performs the QR factorization of a diagon# tily; of size nb x nb of the
input matrix. It produces an upper triangular matfi, and a unit lower triangular matri¥, containing the
Householder reflectors. An upper triangular maffiy, is also computed as defined by the WY technique [20] for
accumulating the transformationBy, and Vi, are written on the memory area used fog, while an extra work
space is needed to store the structlizg. The upper triangular matriRy, calledreference tileis eventually used
to annihilate the subsequent tiles located below, on thesgaemel.

« CORE_DTSQRT: this routine performs the QR factorization of a matrix bbiy coupling the reference til&;.x
that is produced by CORBGEQRT with a tile below the diagonal;.. It produces an updatefy factor, a
matrix V;; containing the Householder reflectors and a mdfkix resulting from accumulating the reflectov;.

« CORE_DORMGQR: this routine applies the transformations computed by COREEQRT
(Vier, Tri) to a tile Ay; located on the right side of the diagonal tile.

« CORE_DTSSSMQR: this routine applies the reflectoi§, and the matriXZ;, computed by COREDTSQRT to
two tiles Ay; and A;;.

Since the Tile QR factorization is also based on Househao#ftactors that are orthogonal
transformations, this factorization is stable. Figure @vehthe first panel reduction applied
on a 3-by-3 tile matrix. The triangular shapes located on Idfe side of the matrices
correspond to the extra data structure needed to store fflieeedt 7;; triangular matrices.
The striped tiles represent the input dependencies forrtikng submatrix updates. The
algorithm for general matrices, with/ 7" tiles in row andNT' tiles in column, is formulated
in Algorithm 1. As of today, PLASMA implements Algorithm 1rbugh a given framework
based on a static scheduling and discussed later in Sect®nlI¥ the rest of the paper,
we will use the termPLASMA-like factorizatiorto refer to any factorization based on
Algorithm 1, without regard to the framework implementingor the scheduling mechanism
used.

CORE_DGEQRT CORE_DORMQR CORE_DORMQR

N NN NN

CORE_DTSQRT CORE_DTSSSMQR CORE_DTSSSMQR

I < —<HN

CORE_DTSQRT CORE_DTSSSMQR CORE_DTSSSMQR

Fig. 1. Reduction of the first tile column.

Algorithm 1 Tile QR factorization (PLASMA-like factorization)

for k=1 to min(MT,NT) do
Ry ks Vi, T, +— CORE_ DGEQRTAy 1)
for j=k+1to NT do
Ay,; «— CORE.DORMQRVi,k, Tk k, Ak,;)
end for
for i =k+1to MT do
Ry i, Vik, Ti,r < CORE.DTSQRTRg,k, Ai k)
for j=k+1to NT do
Ak,j, Ai,j — CORE_DTSSSMQR(/L,/“ Ti,/w Ak_’j, Aiyj)
end for
end for
end for

Although PLASMA achieves high performance on most types afrives by implement-
ing Algorithm 1 [4], each panel factorization is still penfieed in sequence, which limits
the performance when processing small or TS matrices (sedtsaeported in Section).

C. Parallel Panel Factorizations

The notion of splitting a column into separate pieces andop®aing reductions to the
separate pieces in a recursive manner can be attributed teekl@&entleman’s early work
on sparse matrices around the mid 70s [11]. The idea of pheatlg the factorization of
a panel was first developed by Pothen and Raghavan, to theobestr knowledge, in
the late 1980s [19]. The authors implemented distributédogional factorizations using
Householder and Givens algorithms. Each panel is actualyposed of one single column
in their case. Their idea is to split the column infd pieces or subcolumns (iP is
the number of processors) and to perform local factorimativom which they merge the
resulting triangular factors, as explained in Algorithm 2.

Demmel et al. [9] extended this work and proposed a class calg&ithms that can perform
the factorization of a panel (block-columns) in parallehmmed Communication-Avoiding
QR (CAQR). Compared to Algorithm 2, steps 1 and 2 are perfdrome panels of several
columns thanks to a new kernel, called TSQR (since a panetusily a TS matrix). CAQR
successively performs a TSQR factorization (local fageitrons and merging procedures)
over the panels of the matrix, applying the subsequent epdan the trailing submatrix
after each panel factorization, as illustrated in Figur@i3 panels are themselves split in

Algorithm 2 Pothen and Raghavan’s algorithm.
Successively apply the three following steps over eachneolof the matrix:

1) Local factorization. Split the current column inta® pieces (if P is the number of processors) and let each
processor independently zeroes its subcolumn leading tegéesnon zero element per subcolumn.

2) Merge. Annihilate those nonzeros thanks to what they cat@irsive elimination phasand that we nammerging
stepfor consistency with upcoming algorithms. This mergingpsi itself composed ofog, (P) stages. At each
stage, processors cooperate pairwise to complete thddraration. After its element has been zeroed, a processor
takes no further part in the merging step and remains idli tinet end of that step. The processor whose element
is updated continues with the next stage. Afier,(P) such stages, the only remaining nonzero is the diagonal
element. All in all, the merging step can be represented asamybtree where each node corresponds to a pairwise
transformation.

3) Update. Update the trailing submatrix.

block-rows, calleddlomainsthat are factorized independently (step 1) and then medsiep

2) using a binary tree strategy similar to the one of Potheal. dtigure 2 illustrates TSQR’s
merging procedure(step 2). Initially, at stalge- 0, a QR factorization is performed on each
domain. Then, at each stage> 0 of the binary tree, the R factors are merged into pairs
R, and R, and each pair formed that way is factorized. This is repeati the final

R (Ro2 in Figure 2) is obtained. If the matrix is initially split iot” domainslog,(P) (the

Fig. 2. TSQR factorization on four domains. The
intermediate and final R factors are represented in
black.

Fig. 3. CAQR: the panel (gray area) is factorized using
TSQR. The trailing matrix (dashed area) is updated.

depth of the binary tree) stages are performed during thgenaocedure. Demmel proved
that TSQR and CAQR algorithms induce a minimum amount of camoation (under

certain conditions, see Section 17 of [9] for more details)l are numerically as stable
as the Householder QR factorization. Both Pothen and Ragfsand Demmel et al’s
approaches have a synchronization point between each fatefization (TSQR kernel

in Demmel et al’s case) and the subsequent update of tHgraubmatrix, leading to a
suboptimal usage of the parallel processing power.

Synchronization 1:Processors (or cores) that are no longer active in the ntesfiep
still have to wait until the end of that merging step befor#ating the computation related
to the next panel.

In the next section, we present an asynchronous algorithbtotrercomes these bottlenecks
and enables look-ahead in the scheduling.

I11. Tile CAQR

In this section, we present two new algorithms that extehdsTile QR factorization (as
implemented in PLASMA and described in Section 1I-B) by penfing the factorization of

a panel in parallel (based on the CAQR approach describe@dticd 11-C). Furthermore,

we adapt previous parallel panel factorization approad¢Bgs[19] in order to enable a

fully asynchronous factorization, which is critical to @&e high performance on multicore
architectures. The names of our algorithms below come fiwendegree of parallelism of
their panel factorization

A. Semi-Parallel Tile CAQR (SP-CAQR)

CORE_DGEQRT CORE_DORMQR CORE_DORMQR

)
N <M <l
—_— - —

N < <l W
(b) CORE DTSQRT CORE_DTSSSMQR CORE_DTSSSMQR

N < <
— L —
N < <
© CORE_DTSQRT CORE_DTSSSM QR CORE_DTSSSM: QR
N
=SR-S
N i < <
(d) CORE_DTTQRT CORE_DTTSSMQR CORE_DTTSSMQR
—_— - —
N <A <

Fig. 4. Unrolling the operations related to the first paneBP+CAQR. Two domains are used, separated by the red line.
First step, the factorization of the first tile in each domaid the corresponding updates are shown in (a). Second step,
the factorization of the second and third tiles in each domaing the reference tile and the corresponding updates are
presented in (b) and (c) respectively. Unrolling the magginocedure related to the first panel factorization in SRRBA

is shown in (d).

As CAQR, SP-CAQR decomposes the matrix in domains (blogksyoWithin a domain, a
PLASMA-like factorization (tile algorithm given in Algotthm 1) is performed. The domains
are almost processed in an embarrassingly parallel fasfriam one to another.

First, a QR factorization is independently performed innedomain on the current panel
(of a tile width), similarly to step 1 of Algorithm 2. Seconthe corresponding updates are
applied to the trailing submatrix in each domain, similaidystep 3 of Algorithm 2. For
example, Figure 4 (a,b,c) illustrates the factorizatiotheffirst panel and the corresponding
updates for two domains of 3-by-3 tiles (MT=6 and NT=3). Thedate procedure is
triggered while the panel is still being factorized. Indeedmpared to CAQR Demmel
et al.'s approach, our algorithm has the flexibility to ildewve steps 1 and 3 of the initial
Algorithm 2.

CORE_DGEQRT CORE_DTSQRT CORE_DTSQRT CORE_DTTQRT

Fig. 5. Factorization of the last panel and the merging steR-CAQR.

Third and last, the final local R factors from each domain aeeged based on the TSQR
algorithm described in Section [I-C and the correspondifackrow is again updated.
This is the only time where a particular domain needs anotmer to advance in the
computation. The merging procedure can also be performégeasctorization and update
processes go (steps 1 and 2). Moreover, cores that no lormggcipate in the merging
procedure can proceeiht awaywith the computation of the next panel. Synchronization 1
is now released in our SP-CAQR approach which can potentaiable look-ahead in
the scheduling. Figure 4(d) illustrates the merging pracedelated to the first panel
factorization. The factorization of the second panel canirigated while the merging
procedure of the first panel has not yet terminated.

Two new kernels are used in this step for reducing a triamgiila on top of another
triangular tile as well as applying the related updatesnttoat point on, we consider the
matrices locally to their domain and we note them with thnelessripts. For instancd,, ; ;
is the tile (or block-matrix) at (local) block-rowand (local) block-colump in domainp.
And we want to merge two domains, let us gayand p2. With these notations, here are
the two new kernels:

« CORE_DTTQRT: this routine performs the QR factorization of a matrix buiy coupling the factorR,: i
from the domainpl with the factorR,2 1, from the domainp2. It produces an updated fact®, . ., an upper
triangular matrixV,,2 1 » containing the Householder reflectors and an upper triamguoitrix 1, ; ;. resulting from
accumulating the reflectorg,z,1,x. The reflectors are stored in the upper annihilated part efntlatrix. Another
extra storage is needed for storifff, ; .

o CORE_DTTSSMQR: this routine applies the reflectov$, 1 5 and the matrixl’), ; , computed by COREDTTQRT
to two tiles Ap1 k,; and Ap21,5.

Finally, Figure 5 unrolls the third and last panel factotiga. A QR factorization is
performed on the last tile of the first domain as well as on thires panel of the second
domain. The local R factors are then merged to produce theRirfactor.

We call the overall algorithm Semi-Parallel because theakegf parallelism of the panel
factorization depends on the number of domains used. Ftarios, on a 32 core machine,
let us assume that a matrix split in 8 domains. Even if eachailons itself performed in
parallel (with a PLASMA-like factorization), then 8 coream@ximum) may simultaneously
factorize a given panel (one per domain). The main diffegemgainst Algorithm 1 is that
Algorithm 1 is optimized for cache reuse [4] (data is loadetb icache a limited number
of times) whereas our new algorithm (SP-CAQR) provides npamallelism by processing
a panel in parallel. The expected gain will thus be a tradéefiveen increased degree of
parallelism and efficient cache usage.

Assuming that a matrix A is composed o117 tiles in row andNT tiles in column,
SP-CAQR corresponds to Algorithm 3. The PLASMA-like fa@ation occurring within

Algorithm 3 Semi-Parallel Tile CAQR (SP-CAQR)

next MT = MT,c; proot =0
for k=1 to min(MT,NT) do
if &> nextMT then
proot + +; next MT+ = MTioc;
end if
/* PLASMA-like factorization in each domain */
for p = proot to P — 1 do
tbeg =0
if p == proot then
ibeg = k — proot x M T}
end if
Rp,ibeg,k7 Vp,ibeg,k7 Tp,ibeg,k — CORE_DGEQRTMp,ibeg,k)
for j=k+1to NT do
Ap,ibeg,j — CORE_DORMQR(Vp,ibeg,k7 Tp,ibeg,k7 Ap,ibeg,j)
end for
for i = ibeg + 1 to M T, do
Ry ibeg,ks Vp,iks Ip,ik < COREDTSQRT®Rp ibeg, ks Ap,i,k)
for j=k+1to NT do
Ap,ibeg,js Ap,ij < COREDTSSSMQRUp i k: Tp,i ks Ap,iveg.ir Ap.ini)
end for
end for
end for
[* Merge */
for m =1 to ceil(log, (P — proot)) do
pl = proot ; p2 = pl +2m~1
while p2 < P do
i1=0;12=0
if pl==prootthen
il =k — proot x MTjc
end if
Rp1 i1k, Vi2,i2,k, Tpo,in, < COREDTTQRT(Rp1 i1k, Rp2,i2.1)
for j=k+1to NT do
Api,i1,j, Ap2.i2.; < CORELDTTSSMQRUV;2,i2,k, T2 12, k> Ap1.it.is Apz.iz.5)
end for
pl+ =2"; p2+ =2"
end while
end for
end for

each domairp is interleaved with the merge operations for each panélNe note M T,
the number of tiles per column within a domain (assumed emtst@andproot the index
of the domain containing the diagonal block of the curremgbad. The PLASMA-like
factorization occurring in a domain is similar to Algorithinexcept that the reference tile
in domainp is not always the diagonal block of the domain (as alreadicedtin Figure 5).
Indeed, if the diagonal block of the current pakek part of domainproot (p == proot),
then the reference tile is the diagonal onke{ = k — proot x MT,,.). Otherwise (i.e.,
p # proot), the tile of the first block-row of the panel is systematigaised as a reference
(tbeg = 0) to annihilate the subsequent tiles located below, within $ame domain. The
index of the block-row merged is then affected accordingly=£ & — proot x M1T,,. when
pl == proot).

B. Fully-Parallel Tile CAQR (FP-CAQR)

One may proceed further in the parallelization procedureadgressively and indepen-
dently factorizing each tile located on the local panel afhedomain. The idea is to process

the remaining part of a panel within a domain in parallel teh a local merging procedure.
Figure 6 describes this Fully-Parallel QR factorizatioP{EAQR), and the corresponding
algorithm is given in Algorithm 4.

(a)s —
(b) CORE_DTTQRT CORE_DTTSSM(IQR CORE_DTTSSMQR

(© CORE_DTTQRT

Fig. 6. Unrolling the operations related to the first paneFMCAQR. Two domains are used, separated by the red line.
The tree steps are illustrated, the factorization(a), tlvallmerge (b) and the global merge(c).

Actually, FP-CAQR does not depend on the number of domaied,ysrovided that the
number of tiles per column is a power of two (otherwise thergaised for the merge
operations might not match, from one instance to anothemthErmore, a given instance
of FP-CAQR can be obtained with an instance of SP-CAQR by singothe instance of
SP-CAQR with a number of domain8 equal to the number of tiles per rod7". This
approach has been mainly mentioned for pedagogic and ctenpks purposes. Therefore,
we will focus on SP-CAQR in the remainder of the paper. In tioWing section, we will
discuss frameworks for exploiting this exposed paraltelis

V. Graph Driven Asynchronous Execution

Tile algorithms in general provide fine granularity parigie, and standard linear algebra
algorithms can then be represented as a DAG to help unddrgi@nexecution flow [8].
The DAGs of Algorithms 1, 3 and 4 are shown in Figures 7(a)) & 7(c) respectively.
The nodes represent tasks, either panel factorizationaatemf a block-column, and edges
represent dependencies among them.

From Figure 7, it is obvious that SP-8 and FP-CAQR considgrethance the parallelism
compared to the PLASMA-like Tile QR factorization. For exae for MT=16 and NT=2,
three kernels at most can run concurrently for the PLASM&-ITile QR factorization
while a maximum of 16 and 20 kernels can run at the same tim&ke8 and FP-CAQR,
respectively. Figure 8 shows a larger DAG representatiorilefQR factorization. Basically,
the wider the DAG, the better opportunity to gain parallalis

(@) One domain: SP-1 (or PLASMA-like Tile QR factor-

ization).

(c) Sixteen domains: SP-16 (or FP-CAQR).

Fig. 7. DAG representations of Tile QR factorization with MII6 and NT=2 depending on the number of domains.

AN |
BN

=

%
.-
2
¢
Y

i
-~

&0
= S
1/
.\\
\,«4
T &;
¢/
\

2

Il
l’.
th{.:.\‘i“lr
40 ‘!‘z:‘sw‘

')

Fig. 8. DAG representations of Tile QR factorization with M32 and NT=4 with sixteeen domains: SP-16

10

Algorithm 4 Fully-Parallel Tile CAQR (FP-CAQR)

nextMT = MT,.
proot =0
for k=1 to min(MT,NT) do
if k> nextMT then
proot 4+ +
nextMT+ = MTi,.
end if
[* PLASMA-like factorization in each domain */
for p = proot to P — 1 do
tbeg =0
if p == proot then
ibeg = k — proot x M T}
end if
for ¢« = ibeg to MTj,. — 1 do
pri,k, Vp,iyzﬁ Tp,i,k — CORE_DGEQRT(AP’Z"}C)
for j=k+1to NT do
Ap,iyj — CORE_D(DR'\/'QR(V},,L’/w Tp,i,ky Apyi’j)
end for
end for
/* Local Merge */
for m =1 to ceil(logy (M Tioc — ibeg) do
il = ibeg;i2 =il +2F~!
while i2 < MT;,. do
Ry vk, Vpsiok, Ty io i < COREDTTQRT(Ry i1,k, Rp i2,k)
for j=k+1to NT do
Ap.i1j, Ap,iz.j «— COREDTTSSMQRW),i2,k, Ty iz ks Ap.it.is Api2.5)
end for
il4 = 2% 24 = 2F
end while
end for
end for
[* Global Merge */
for m =1 to ceil(log, (P — proot)) do
pl = proot ; p2 = pl +2m "1
while p2 < P do
i1=0;:12=0
if pl==prootthen
il =k — proot x MT,.
end if
Rp1 i1k, Vi2,i2,k, Tho,in, < COREDTTQRT(Rp1 i1k, Rp2,i2.1)
for j=k+1to NT do
Apl,il,j,Apzz‘z,j — CORE_DTTSSMQRszm,mT;é,iz,k7Ap1,i1,j7Ap2,i2,j)
end for
pl+ =2™; p2+ =27
end while
end for
end for

Once the DAGs are established, the tasks can be schedulechasyously and indepen-
dently as long as the dependencies are not violated. Aalrpiath can be identified in the
DAG as the path that connects all the nodes that have therhigimeber of outgoing edges.
Based on this observation, a scheduling policy can be udeereahigher priority is assigned
to those nodes that lie on the critical path. Clearly, in thgecof the PLASMA-like Tile QR
factorization and SP-CAQR, the nodes associated to the DRFE€ubroutine (red nodes)
as well as those involved in the merging procedure, i.e.,.0M@QRT subroutine (yellow
nodes), have the highest priority. Other priority levels d@e defined for the remaining

11

kernels. The DAG scheduling results in an out of order exenuwvhere idle time is almost
completely eliminated, since only very loose synchromirais required between the threads
(see large traces in Section V-C).

Noteworthy to mention here is the natural suitability of s@dgorithms for a distributed
computing environment. Each domain (or a group of domaimsicc be allocated to a
particular processing node. The main computation would dreedwvithin the nodes. Com-
munication between processing nodes would only be limitethe level of the merging
procedure, so the name of Communication-Avoiding algorgh

In the following section, we will discuss frameworks for éxiping this exposed paral-
lelism.

V. Parallel Scheduling

This section explains how the resulting DAGs from the PLASHhi#& QR factorization
and SP-CAQR can be efficiently scheduled on a multicore machiwo schedulers ap-
proaches are discussed: a static approach where the scgedupredetermined (exactly
the one implemented in PLASMA) and a dynamic approach whewsins are made at
runtime.

A. Static scheduling

Developed initially on the IBM Cell processor [16], the stadcheduling implemented in
PLASMA uses POSIX threads and naive synchronization mesiven Figure 9 shows the
step-by-step scheduling execution with eight threads oquare tile matrix (/7" = NT =
5). In this particular figure, the work is distributed by colosnof tiles and there are five
panel factorization steps, and each of those steps is pstbsequentially. It implements
a right-looking QR factorization, and the steps of the fazadion are pipelined. The cores
are mapped on a one dimensional partitioning. The mappirnigetdasks is executed before
the actual numerical factorization based on a look-aheadfing depth. The look-ahead
strategy greedily maps the cores that might run out of worth&different block column
operations. This static approach is well adapted to scleefligiorithm 1 and achieves high
performance [4] thanks to an efficient cache reuse [17]. Bhasic scheduling could be

0 1 2 3 4

5 6 7 0

CORE DTSQRT CORE ._DORMQR CORE ._DTSSSMQR

CORE _DGEQRT

Fig. 9. Work assignment in the static pipeline implementaf the tile QR factorization.

extended to the SP-CAQR algorithm since SP-CAQR performsAsRIA-like factorization
on each domain. However, this would prompt load balanciagds difficult to address with

12

a hand-written code Another solution consists of using a dynamic schedulerravtiiee
tasks are scheduled as soon as their dependencies aredatigdi that prevents cores from
stalling.

B. Dynamic scheduling

We decided to present experimental results obtained withelh @stablished and ro-
bust dynamic scheduler, SMP Superscalar (SMPSs) [2]. SNE*&garallel programming
framework developed at the Barcelona Supercomputer Cé@tartro Nacional de Super-
computacion). SMPSs is a dynamic scheduler implememtaiiat addresses the automatic
exploitation of the functional parallelism of a sequengidgram in multicore and symmetric
multiprocessor environments.

SMPSs allows programmers to write sequential applicatiand the framework is able to
exploit the existing concurrency and use the different pssors by means of an automatic
parallelization at execution time. As in OpenMP, a progrania responsible for identifying
parallel tasks, which have to be side-effect-free (atonfuictions. However, he is not
responsible for exposing the structure of the task graph.task graph is built automatically,
based on the information of task parameters and their chreadity.

Based on the annotations in the source code, a source toescomtpiler generates the
necessary code and a runtime library exploits the existarglielism by building at runtime
a task dependency graph. The runtime takes care of schgdbkntasks and handling the
associated data.

Regarding its implementation, it follows the same appraallescribed in [17] in order
to get the best performance by drastically improving theedating. However, SMPSs is
not able to recognize accesses to triangular regions oé.aRdr example, if only the lower
triangular region is accessed during a particular task, S8Wwill still create a dependency
on the whole tile and therefore prevent the scheduling of sufysequent tasks that only
use the strict upper triangular region of the same tile. Tpasg this bottleneck, we force
the scheduler to drop some dependencies by shifting thiénstgoointer address of the tile
back and forth.

C. Execution Traces

Figure 10 illustrates the entire execution flow of Algorithdy 3 and 4 on eight cores with
MT=16 and NT=2 when tasks are dynamically scheduled basedependencies defined
by the corresponding DAG in Figure 7 (Section IV). Each linghe execution flow shows
which tasks are performed by one of the threads involved enfélctorization. Figure 10
shows the parallel execution traces. Figure 10.a) outlinegpoor parallelism of PLASMA-
like Tile QR factorization. Not only is the trace irregularnthv lots of idle time (white
spaces) but also two out of eight cores are actually coniplatactive. On the contrary,
Figures 10.b) and 10.c), present less idle time and most efctires are concurrently
performing operations. It is also important to mention thia presence of idle time is
mainly due to the relative small size of the matrix, i.e., MB=and NT=2. The cores run
out of work right from the beginning, while such a behaviomsre expected toward the
end of the factorization when the matrix is large enougheéuj Figure 11 shows that
all the idle times, which represent the major scalabilityitiof the fork-join approach, is

10ne might think to map a constant number of cores per domainafiter NT panels have been processed, the cores
of the first domain would then run out-of-work.

13

£

E
O
]

I'i
!|!

(2)
~

:

!55

Bl T N

Fig. 10. Parallel execution traces with MT=16 and NT=2 on &salepending on the number of domains. a) One domain:
SP-1 (or PLASMA-like Tile QR factorization), b) Eight donmai SP-8, ¢) Sixteen domains: SP-16 (or FP-CAQR).

removed thanks to the very low synchronization requiresiehthe graph driven execution.

I||
I!E

Fig. 11. Parallel execution traces of SP-16 with MT=32 and=MDn 8 cores.

In the next section, experimental results of our SP-CAQPordigm with SMPSs are
presented.

VI. Experimental Results

A. Experimental environment

The experiments were conducted on a quad-socket, quad¥y@okine based on an Intel
Xeon EMT64 E7340 processor operating2aéi9 GHz. The theoretical peak is equal 9@

14

Gflop/s/ per core ot53.2 Gflop/s for the whole node, composed of 16 cores. There are two
levels of cache. The level-1 cache, local to the core, isdéwiinto 32 kB of instruction
cache and 32 kB of data cache. Each quad-core processor dxingly composed of two
dual-core Core2 architectures, the level-2 cachehast MB per socket (each dual-core
shares 4 MB). The machine is running Linux 2.6.25 and pravibigel Compilers 11.0
together with the MKL 10.1 vendor library [1].

The test matrices were generated by calling DLARNV functimom LAPACK. Their
values thus follow a pseudo-random uniform distributioowdver, since we use the same
routine with a consistent seed state, for a given size, alafiplications use the same matrix
in entry.

The performance of the Tile QR factorization strongly dejseon two tunable parameters:
the tile size (NB) and the inner blocking sizes (IB) [4]. Tlie size trades off parallelization
granularity and scheduling flexibility with single coreligation, while the inner block size
trades off memory load with extra-flops due to updating faz&tion techniques [12]. The
optimal tile size (NB) and inner blocking size (IB) vary infction of the matrix dimensions
(m, n) as discussed in [4]. However, to have a more consistetnbf results, we decided
to use constant values: NB = 200 and IB = 40. Those values wapgrieally chosen to
maximize the asymptotic performance, the impact of the [B)Bpn SP-CAQR performance
being out-of-the scope of the paper.

We recall that SP-CAQR depends on the number P of domains asddve note SH2
an instance of SP-CAQR witl? domains. If P = 1, it corresponds to a PLASMA-like
factorization (but SP-1 relies on SMPSs whereas PLASMA anmmants a static scheduler).
On the other side of the spectrum, we recall tRat MT (MT is the number of tiles per
row) corresponds to the FP-CAQR algorithm. As discussedecti® V, our SP-CAQR
algorithm is scheduled with SMPSs dynamic scheduler.

In this section, we essentially present experiments on T&icea (where the higher im-
provements are expected), but we also consider generalgaradesmatrices. A comparison
against state of the art linear algebra packages (LAPACHI.APACK, PLASMA) and the
vendor library MKL 10.1 concludes the section. All the pagés have been linked against
the BLAS from Intel MKL.

When we report the Gflop/s rate, we consistently use the nurobdloating point
operations that a standard algorithm would perform. Alf@enance results reported in the
paper (SP-CAQR, PLASMA, ScaLAPACK, MKL, LAPACK) are indeedmputed using the
same algorithmic complexity formul&:m.n? —2.n? /3 flops. The actual number of floating
point operations depends on the algorithm. For instanceCABR and MKL perform a
different number of operations. Furthermore, that numlegedds on the tile size (NB), the
internal blocking size (IB), and the number of domains (RYleed, SP-CAQR trades flops
for communications.

B. Tall and Skinny matrices

Figure 12 shows the performance obtained on matrices oftamyiles per row, using 16
cores. The plot is under-scaled (the actual theoreticd pedormance i§53.2 Gflop/s. The
number of tiles per columi/T has to be greater than or equal to the number of domains
P; for instance, SP-16 can only be executed on matrices ofagt M = 16 *x 200 = 3200
rows, since a tile is itself of orde00. The overall limited performance (at best% of
the theoretical peak of the machine) shows the difficulty dbieve high performance on

15

Gflop/s

TS matrices. This is mainly due to the Level-2 BLAS operaiarhich dominate the panel
factorization kernels.

If the matrix is tall enough, SP-CAQR (if the number of donsaia large too) is up to
more than3 times faster than the (PLASMA-like) Tile QR algorithm (SR-With such TS
matrices, the greater the number of domains, the higherahfermance. In particular, For
instance SP-32 is optimum on a 6400 by 400 matrix.

18 100

16 90

]
14 80

70

? 60
10
50
)
40

> 30

Gflop/s

20

200 400 800 1600 3200 6400 200 400 800 1600 3200 6400

M (Number of rows) N (Number of columns)

Fig. 12. Performance of 16 core executions on TS Fig. 13. Performance of 16 core executions on TS matrices
matrices with2 tiles per row (V = 400 is fixed). with 32 tiles per column §/ = 6400 is fixed).

Figure 13 shows the performance of matrices Wittiles per column on execution using
16 cores. The improvement brought by SP-CAQR is again stfton@S matrices (SP-16 is
twice as fast as SP-1 whe¥ = 800). However, when the shape of the matrix tends to be
square (right part of the graph), PLASMA-like algorithm ¢$Pbecomes relatively more
and more efficient. It is the fastest execution in the caseheffactorization of a square
matrix (6400 by 6400). The reason is that, for such large quaatrices, the lack of
parallelism within the panels is mostly hidden by the othgpartunities of parallelism (see
Section 1I-B) and is thus completely balanced by the verydyoache usage of PLASMA-
like factorizations.

C. Square matrices

Figures 14 and 15 show the performance obtained on squarécesatising 8 and 16
cores, respectively. They confirm that the lack of paralialiof PLASMA-like algorithm
(SP-1) on small matrices leads to a limited performance am@atperformed by SP-CAQR
(SP-P, P > 1). On the other hand, PLASMA-like factorization becomes itinast efficient
approach for matrices of order greater than 3200. Note Heahtimber of tiles per column
MT has to be greater than or equal to the number of dom&jner instance, SP-16 can
only be executed on matrices of order at least equal/te- 16 x 200 = 3200 rows, since
a tile is itself of order200.

D. Comparison with state-of-the-art libraries

In Figure 16, we compare our new approach, SP-CAQR agaimSERIA, ScaLAPACK,
LAPACK and MKL for a TS matrix of size51200 x 3200. SP-CAQR is27% faster than
PLASMA, if the matrix is split in 16 domains (SP-16). Furthere, for this matrix shape,
SP-CAQR is slightly faster when scheduled dynamically {$Rhan statically (PLASMA)

16

60

50

40

30

20

. /
20
" ﬁ
’0/{ 10 AWT
0 G 0 O
200 400 800 1600 3200 6400 200 400 800 1600 3200 6400
N (Matrix order) N (Matrix order)

Gflop/s

Gflop/s
5 3

Fig. 14. Performance on square matrices using 8 cores.Fig. 15. Performance on square matrices using 16 cores.

with a ratio of 79 Gflop/s agains5 Gflop/s. The performance of SP-CAQR depends on
the number of domains. In this case, the most significantopmdnce variation1 %) is
obtained betweefl and4 domains.

Theoretical Peak 160
i Peak
140
DGEMM Peak 140
- DGEMM Peak
120
100 o— 100
g ./' ” -
§ 0 g s > =T F =
= C O O o 8o
© & / //“‘
60
60 e —
. / /‘
[ScaLaPaCK] 40 / ['ScaL APACK]
20 HiE) /f/
|_—0—
o o [aacr] ® X Qum
0 : ,
0 he !

1 2 4 6 8 10 12 14 16
1 2 4 6 8 10 12 14 16

Number of domains Number of Column Tiles (Width)

Fig. 16. Performance Comparisons of SP-CAQR Fig. 17. Scalability of SP-CAQR
depending on the number of domains. T '

Figure 17 shows the performance on 16 cores of the QR faatmiz of a matrix where
the number of rows is fixed to 51200 and the number of colummexaFor TS matrix
of size 51200 by 200, our approach for computing the QR factorization is almidstimes
faster than the Tile QR factorization of PLASMA and arountimes than MKL (exactly
9.54 and 8.77 as reported in Table 1ll). This result is essentially duehte higher degree
of parallelism brought by the parallelization of the parettorization. It is interesting to
notice that the ratio is of order of magnitude of the numbetares,16, which is clearly an
upper bound. LAPACK is around0 times slower than our approach, while ScaLAPACK
is only 3 times slower. By increasing the number of tiles in a columrtha matrix, the
ratio is less important, however, SP-CAQR is still fasterfémycompared to state-of-the-art
linear algebra packages. PLASMA is performing better amdgeo reach the performance
of SP-CAQR when the number of tiles in the column are incr@aker instance, PLASMA
is only 1.27 times slower for matrix size 051200 by 3200. Regarding the other libraries,
the ratio compared to ScaLAPACK is still 3t while SP-CAQR is more tha# times and
11 times faster than MKL and LAPACK respectively.

17

TABLE 11l
IMPROVEMENT OFSP-CAQRAGAINST OTHER LIBRARIES(PERFORMANCE RATIQ.

Matrix sizes | PLASMA | MKL | ScaLAPACK | LAPACK
51200 — 200 9.54 8.77 3.38 28.63
51200 — 3200 1.27 4.10 2.88 11.05

VIl. Conclusions and Future Work

By combining two existing algorithms (Tile QR factorizatidrom PLASMA and the
CAQR approach), we have proposed a new fully asynchronodsnamerically stable
QR factorization scheme for shared-memory multicore &chires. We have shown a
significant performance improvement (up to almbgttimes faster against previous estab-
lished linear algebra libraries). We have experimentadiyeased the impact of the number
of domains on performance, however we have considered oxdygl values for the two
other tunable parameters (a tile size NB29 and inner blocking size IB ofl0). We
expect to achieve even better performance by tuning thossreders together with the
number of domains. In particular, we plan to develop automitechniques to achieve an
optimum performance. The experiments presented in thisrpagve been conducted with
a well established dynamic scheduler, SMPSs. However, we &lgo used SP-CAQR with
PLASMA's experimental dynamic scheduler [15], making itspible to release SP-CAQR
as part of the PLASMA library. We plan to do so when the dynascigceduler is in a more
advanced stage of development.

SP-CAQR also represents a natural building block for extenthe PLASMA library to
distributed-memory environments. We will indeed beneétrirthe low amount of communi-
cation induced by communication-avoiding algorithms.tkermore, we plan to investigate
the extension of this work to the LU factorization where nuce stability issues are more
complex [13].

References

[1] Intel Math Kernel Library (MKL). http://www.intel.corsoftware/products/mkl/.
[2] SMP Superscalar. http://www.bsc.es/ Computer Sciences» Programming Models— SMP Superscalar.
[3] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langoul.dngou, and H. Ltaief. PLASMA Users Guide. Technical
report, ICL, UTK, 2009.
[4] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra. ComparatStudy of One-Sided Factorizations with Multiple
Software Packages on Multi-Core hardware. LAPACK WorkingtéN217, ICL, UTK, April 2009.
[5] E. Anderson, Z. Bai, C. Bischof, L. Blackford, J. Demmé&l,Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorenseh APACK Users’ Guide SIAM, 1992.
[6] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Deraiml. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. Whale$caLAPACK Users’ GuideSIAM, 1997.
[7] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Pataliled QR factorization for multicore architectures.
Concurrency and Computation: Practice and Experier2@(13):1573—-1590, 2008.
[8] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A ClaSPRarallel Tiled Linear Algebra Algorithms for Multicore
Architectures.Parallel Computing 35(1):38-53, 2009.
[9] J. W. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou. @mmication-optimal parallel and sequential QR and
LU factorizations. LAPACK Working Note 204, UTK, August 280
[10] R. W. Freund and M. Malhotra. A Block QMR Algorithm for MeHermitian Linear Systems With Multiple Right-
Hand SidesLinear Algebra and its Application®254(1-3):119-157, 1997.
[11] W. M. Gentleman. Row elimination for solving sparseelm systems and least squares problems. Numer. Anal.,.
Proc. Dundee Conf. 1975, LEct Notes Mafi06:122-133, 1976.
[12] G. H. Golub and C. F. Van LoarMatrix Computation John Hopkins Studies in the Mathematical Sciences. Johns
Hopkins University Press, Baltimore, Maryland, third éatit 1996.

18

[13]
[14]
[15]

[16]
[17]

(18]
[19]

[20]

L. Grigori, J. W. Demmel, and H. Xiang. Communicationo@ling Gaussian elimination. 18C '08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputpages 1-12, 2008.

B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. Tile QRwdtorization with Parallel Panel Processing for Multicore
Architectures. UT CS Technical Report ut-cs-09-647, UTkKcBmber, 2009, accepted in IPDPS 2010.

J. Kurzak and J. Dongarra. Fully Dynamic Scheduler fomérical Computing on Multicore Processors. LAPACK
Working Note 220, ICL, UTK, June 2009.

J. Kurzak and J. Dongarra. QR factorization for the @athadband EngineSci. Program, 17(1-2):31-42, 2009.

J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia. Schied) Linear Algebra Operations on Multicore Processors.
LAPACK Working Note 213, ICL, UTK, February 2009.

D. P. O'Leary. The Block Conjugate Gradient AlgorithmdaRelated Methodd.inear Algebra and Its Applications
29:293-322, 1980.

A. Pothen and P. Raghavan. Distributed orthogonabféztion: Givens and Householder algorithr8$AM Journal

on Scientific and Statistical Computing0:1113—-1134, 1989.

R. Schreiber and C. Van Loan. A Storage Efficient WY Repreation for Products of Householder Transformations.
SIAM J. Sci. Statist. Computl0:53-57, 1989.

19

