
1Enhancing Parallelism of Tile QR
Factorization for Multicore Architectures

Bilel Hadri, Hatem Ltaief, Emmanuel Agullo, and Jack Dongarra

Abstract

To exploit the potential of multicore architectures, recent dense linear algebra libraries have used tile
algorithms, which consist of scheduling a Directed AcyclicGraph (DAG) of fine granularity tasks where nodes
represent tasks, either panel factorization or update of a block-column, and edges represent dependencies
among them. Although past approaches already achieve high performance on moderate and large square
matrices, their way of processing a panel in sequence leads to limited performance when factorizing tall and
skinny matrices or small square matrices. We present a new, fully asynchronous method for computing a
QR factorization on shared-memory multicore architectures that overcomes this bottleneck. Our contribution
is to adapt an existing algorithm that performs a panel factorization in parallel (named Communication-
Avoiding QR and initially designed for distributed-memorymachines) to the context of tile algorithms using
asynchronous computations. An experimental study shows significant improvement (up to almost10 times
faster) compared to state-of-the-art approaches. We aim toeventually incorporate this work into the Parallel
Linear Algebra for Scalable Multi-core Architectures (PLASMA) library.

I. Introduction and Motivations

QR factorization is one of the major one-sided factorizations in dense linear algebra.
Based on orthogonal transformations, this method is well known to be numerically stable
and is a first step toward the resolution of least square systems [12]. We have recently
developed a parallel tile QR factorization [7] as part of theParallel Linear Algebra Software
for Multi-core Architectures (PLASMA) project [3].

PLASMA Tile QR factorization has been benchmarked on two architectures [4], a quad-
socket quad-core machine based on an Intel Xeon processor and a SMP node composed of
16 dual-core Power6 processors. Table I and II report the parallel efficiency (the quotient of
the division of the time spent in serial by the product of the time spent in parallel and the
number of cores used) achieved with different square matrixsizes on each architecture.
PLASMA Tile QR factorization scales fairly well for large square matrices and up to
the maximum number of cores available on those shared-memory machines, 16 and 32
cores on Intel and Power6, respectively. However, for smallmatrices, the parallel efficiency
significantly decreases when the number of cores increases.For example, for matrix sizes
lower than 1000, the efficiency is roughly at most50% on Intel and Power6 with 16 cores.
And this declines on Power6 with only a6% parallel efficiency achieved on 32 cores for a
matrix of size 500. The cores run out of work and stay idle mostof the time. The significant
decrease of efficiency is also explained by the sequential nature of the panel factorization
which limits the opportunities for parallelism and generates load imbalance especially when

Bilel Hadri, Hatem Ltaief, Emmanuel Agullo and Jack Dongarra are with the Department Electrical Engineering and
Computer Science, University of Tennessee, Knoxville.
E-mail: {hadri, ltaief, eagullo, dongarra}@eecs.utk.edu

Jack Dongarra is also with the Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee, and with the School of Mathematics Schoolof Computer Science, University of Manchester

Research reported here was partially supported by the NSF and Microsoft Research.



TABLE I
PARALLEL EFFICIENCY ON INTEL

Number of cores
Matrix order 2 4 8 16

500 69% 55% 39% 24%
1000 88% 73% 60% 45%
2000 97% 91% 81% 69%
4000 98% 97% 94% 84%
8000 97% 97% 96% 89%

TABLE II
PARALLEL EFFICIENCY ON POWER6

Number of cores
Matrix order 4 8 16 32

500 43% 25% 12% 6%
1000 67% 46% 24% 12%
2000 80% 65% 46% 25%
4000 90% 79% 71% 51%
8000 95% 88% 85% 75%

processing small or tall and skinny (TS) matrices (of sizem−by−n with m >> n) where
a large proportion of the elapsed time is spent in those sequential panel factorizations.

The purpose of this paper is to present a fully asynchronous method to compute a QR
factorization of TS matrices on shared-memory multicore architectures. This new technique
finds its root in combining the core concepts from the Tile QR factorization implemented
in the PLASMA library and the Communication-Avoiding QR (CAQR) [9] algorithm in-
troduced by Demmel et al. Initially designed for distributed-memory machines, CAQR
factors general rectangular distributed matrices with a parallel panel factorization. Even if
the present paper discusses algorithms for shared-memory machines where communications
are not explicit, multicore platforms often symbolize, at asmaller scale, a distributed-
memory environment with a memory and/or cache hierarchy to benefit from memory locality
in computer programs. Hence the relevance of using algorithms that limit the amount of
communication in our context too.

This present journal version is an extension of a conferenceproceeding paper [14].
Here are the main differences compared to that paper. We present here a new variant
(Section III-B) of the main algorithm. We also discuss in more detail the amount of
parallelism provided by our algorithms. To do so, we first compare their corresponding
Directed Acyclic Graphs (DAG) (Section IV) to the ones of tile algorithms, i.e., PLASMA.
We then study their impact on actual parallel execution traces (Section V-C).

The paper is organized as follows. Section II presents the background work. Section III
describes two new approaches that combine algorithmic ideas from tile algorithms and the
Communication-Avoiding algorithms. Section IV shows thatour algorithms lead to DAGs
exhibiting more parallelism than tile algorithms such as PLASMA. Section V explains how
the tasks from the resulting DAGs are scheduled in parallel.In Section VI, an experimental
study shows the behavior of our algorithm on multicore architectures and compares it against
existing numerical libraries. Finally, in Section VII, we conclude and present future work
directions.

II. Background

TS matrices are present in a variety of applications in linear algebra, e.g., in solving
linear systems with multiple right-hand sides using block iterative methods by computing
the QR factorization of a TS matrix [10], [18]. But above all,TS matrices show up at
each panel factorization step while performing one-sided factorization algorithms (QR, LU
and Cholesky). The implementation of efficient algorithms handling such matrix shapes is
paramount. In this section, we describe different algorithms for the QR factorization of TS
matrices implemented in the state-of-the-art numerical linear algebra libraries.

2



A. LAPACK/ScaLAPACK QR factorization

Generally, a QR factorization of anm × n real matrix A is the decomposition of A as
A = QR, where Q is anm × m real orthogonal matrix and R is anm × n real upper
triangular matrix. QR factorization uses a series of elementary Householder matrices of the
general formH = I − τvvT wherev is a column reflector andτ is a scaling factor.

Regarding the block or block-partitioned algorithms as performed in LAPACK [5] or
ScaLAPACK [6] respectively,nb elementary Householder matrices are accumulated within
each panel and the product is represented asH1H2...Hnb = I −V TV T . Here V is an×nb
matrix in which columns are the vectorsv, T is a nb × nb upper triangular matrix andnb
is the block size.

Although the panel factorization can be identified as a sequential execution that represents
a small fraction of the total number of FLOPS performed (θ(n2)) FLOPS for a total of
θ(n3)) FLOPS), the scalability of of block factorizations is limited on a multicore system.
The parallelism is only exploited at the level of the BLAS routines for LAPACK or
PBLAS routines for ScaLAPACK. This methodology complies a fork-join model since
the execution flow of a block factorization represents a sequence of sequential operations
(panel factorizations) interleaved with parallel ones (updates of the trailing submatrices).

B. Tile QR factorization (PLASMA-like factorization)

PLASMA Tile QR factorization [7], [8] evolves from the blockalgorithms that provides
high performance implementations for multicore system architectures. The algorithm is
based on annihilating matrix elements by square tiles instead of rectangular panels as in
LAPACK. PLASMA Tile QR algorithm relies on four primary operations developed by four
computational kernels:

• CORE DGEQRT: this routine performs the QR factorization of a diagonal tile Akk of size nb × nb of the
input matrix. It produces an upper triangular matrixRkk and a unit lower triangular matrixVkk containing the
Householder reflectors. An upper triangular matrixTkk is also computed as defined by the WY technique [20] for
accumulating the transformations.Rkk andVkk are written on the memory area used forAkk while an extra work
space is needed to store the structureTkk. The upper triangular matrixRkk, calledreference tile, is eventually used
to annihilate the subsequent tiles located below, on the same panel.

• CORE DTSQRT: this routine performs the QR factorization of a matrix built by coupling the reference tileRkk

that is produced by COREDGEQRT with a tile below the diagonalAik. It produces an updatedRkk factor, a
matrix Vik containing the Householder reflectors and a matrixTik resulting from accumulating the reflectorsVik.

• CORE DORMQR: this routine applies the transformations computed by COREDGEQRT
(Vkk, Tkk) to a tile Akj located on the right side of the diagonal tile.

• CORE DTSSSMQR: this routine applies the reflectorsVik and the matrixTik computed by COREDTSQRT to
two tiles Akj andAij .

Since the Tile QR factorization is also based on Householderreflectors that are orthogonal
transformations, this factorization is stable. Figure 1 shows the first panel reduction applied
on a 3-by-3 tile matrix. The triangular shapes located on theleft side of the matrices
correspond to the extra data structure needed to store the different Tij triangular matrices.
The striped tiles represent the input dependencies for the trailing submatrix updates. The
algorithm for general matrices, withMT tiles in row andNT tiles in column, is formulated
in Algorithm 1. As of today, PLASMA implements Algorithm 1 through a given framework
based on a static scheduling and discussed later in Section V-A. In the rest of the paper,
we will use the termPLASMA-like factorizationto refer to any factorization based on
Algorithm 1, without regard to the framework implementing it nor the scheduling mechanism
used.

3



Fig. 1. Reduction of the first tile column.

Algorithm 1 Tile QR factorization (PLASMA-like factorization)
for k = 1 to min(MT, NT ) do

Rk,k, Vk,k, Tk,k ← CORE DGEQRT(Ak,k)
for j = k + 1 to NT do

Ak,j ← CORE DORMQR(Vk,k, Tk,k, Ak,j)
end for
for i = k + 1 to MT do

Rk,k, Vi,k, Ti,k ← CORE DTSQRT(Rk,k, Ai,k)
for j = k + 1 to NT do

Ak,j, Ai,j ← CORE DTSSSMQR(Vi,k, Ti,k, Ak,j , Ai,j)
end for

end for
end for

Although PLASMA achieves high performance on most types of matrices by implement-
ing Algorithm 1 [4], each panel factorization is still performed in sequence, which limits
the performance when processing small or TS matrices (see results reported in Section I).

C. Parallel Panel Factorizations

The notion of splitting a column into separate pieces and performing reductions to the
separate pieces in a recursive manner can be attributed to Morven Gentleman’s early work
on sparse matrices around the mid 70s [11]. The idea of parallelizing the factorization of
a panel was first developed by Pothen and Raghavan, to the bestof our knowledge, in
the late 1980s [19]. The authors implemented distributed orthogonal factorizations using
Householder and Givens algorithms. Each panel is actually composed of one single column
in their case. Their idea is to split the column intoP pieces or subcolumns (ifP is
the number of processors) and to perform local factorizations from which they merge the
resulting triangular factors, as explained in Algorithm 2.
Demmel et al. [9] extended this work and proposed a class of QRalgorithms that can perform
the factorization of a panel (block-columns) in parallel, named Communication-Avoiding
QR (CAQR). Compared to Algorithm 2, steps 1 and 2 are performed on panels of several
columns thanks to a new kernel, called TSQR (since a panel is actually a TS matrix). CAQR
successively performs a TSQR factorization (local factorizations and merging procedures)
over the panels of the matrix, applying the subsequent updates on the trailing submatrix
after each panel factorization, as illustrated in Figure 3.The panels are themselves split in

4



Algorithm 2 Pothen and Raghavan’s algorithm.
Successively apply the three following steps over each column of the matrix:

1) Local factorization. Split the current column intoP pieces (if P is the number of processors) and let each
processor independently zeroes its subcolumn leading to a single non zero element per subcolumn.

2) Merge. Annihilate those nonzeros thanks to what they call arecursive elimination phaseand that we namemerging
stepfor consistency with upcoming algorithms. This merging step is itself composed oflog

2
(P ) stages. At each

stage, processors cooperate pairwise to complete the transformation. After its element has been zeroed, a processor
takes no further part in the merging step and remains idle until the end of that step. The processor whose element
is updated continues with the next stage. Afterlog

2
(P ) such stages, the only remaining nonzero is the diagonal

element. All in all, the merging step can be represented as a binary tree where each node corresponds to a pairwise
transformation.

3) Update. Update the trailing submatrix.

block-rows, calleddomains, that are factorized independently (step 1) and then merged(step
2) using a binary tree strategy similar to the one of Pothen etal. Figure 2 illustrates TSQR’s
merging procedure(step 2). Initially, at stagek = 0, a QR factorization is performed on each
domain. Then, at each stagek > 0 of the binary tree, the R factors are merged into pairs
Ri,k andRi+1,k and each pair formed that way is factorized. This is repeateduntil the final
R (R0,2 in Figure 2) is obtained. If the matrix is initially split into P domains,log2(P ) (the

Fig. 2. TSQR factorization on four domains. The
intermediate and final R factors are represented in
black.

Fig. 3. CAQR: the panel (gray area) is factorized using
TSQR. The trailing matrix (dashed area) is updated.

depth of the binary tree) stages are performed during the merge procedure. Demmel proved
that TSQR and CAQR algorithms induce a minimum amount of communication (under
certain conditions, see Section 17 of [9] for more details) and are numerically as stable
as the Householder QR factorization. Both Pothen and Raghavan’s and Demmel et al.’s
approaches have a synchronization point between each panelfactorization (TSQR kernel
in Demmel et al.’s case) and the subsequent update of the trailing submatrix, leading to a
suboptimal usage of the parallel processing power.

Synchronization 1:Processors (or cores) that are no longer active in the merging step
still have to wait until the end of that merging step before initiating the computation related
to the next panel.
In the next section, we present an asynchronous algorithm that overcomes these bottlenecks
and enables look-ahead in the scheduling.

III. Tile CAQR

In this section, we present two new algorithms that extends the Tile QR factorization (as
implemented in PLASMA and described in Section II-B) by performing the factorization of

5



a panel in parallel (based on the CAQR approach described in Section II-C). Furthermore,
we adapt previous parallel panel factorization approaches[9], [19] in order to enable a
fully asynchronous factorization, which is critical to achieve high performance on multicore
architectures. The names of our algorithms below come from the degree of parallelism of
their panel factorization

A. Semi-Parallel Tile CAQR (SP-CAQR)

Fig. 4. Unrolling the operations related to the first panel inSP-CAQR. Two domains are used, separated by the red line.
First step, the factorization of the first tile in each domainand the corresponding updates are shown in (a). Second step,
the factorization of the second and third tiles in each domain using the reference tile and the corresponding updates are
presented in (b) and (c) respectively. Unrolling the merging procedure related to the first panel factorization in SP-CAQR
is shown in (d).

As CAQR, SP-CAQR decomposes the matrix in domains (block-rows). Within a domain, a
PLASMA-like factorization (tile algorithm given in Algorithm 1) is performed. The domains
are almost processed in an embarrassingly parallel fashion, from one to another.

First, a QR factorization is independently performed in each domain on the current panel
(of a tile width), similarly to step 1 of Algorithm 2. Second,the corresponding updates are
applied to the trailing submatrix in each domain, similarlyto step 3 of Algorithm 2. For
example, Figure 4 (a,b,c) illustrates the factorization ofthe first panel and the corresponding
updates for two domains of 3-by-3 tiles (MT=6 and NT=3). The update procedure is
triggered while the panel is still being factorized. Indeed, compared to CAQR Demmel
et al.’s approach, our algorithm has the flexibility to interleave steps 1 and 3 of the initial
Algorithm 2.

6



Fig. 5. Factorization of the last panel and the merging step in SP-CAQR.

Third and last, the final local R factors from each domain are merged based on the TSQR
algorithm described in Section II-C and the corresponding block-row is again updated.
This is the only time where a particular domain needs anotherone to advance in the
computation. The merging procedure can also be performed asthe factorization and update
processes go (steps 1 and 2). Moreover, cores that no longer participate in the merging
procedure can proceedright awaywith the computation of the next panel. Synchronization 1
is now released in our SP-CAQR approach which can potentially enable look-ahead in
the scheduling. Figure 4(d) illustrates the merging procedure related to the first panel
factorization. The factorization of the second panel can beinitiated while the merging
procedure of the first panel has not yet terminated.

Two new kernels are used in this step for reducing a triangular tile on top of another
triangular tile as well as applying the related updates. From that point on, we consider the
matrices locally to their domain and we note them with three subscripts. For instanceAp,i,j

is the tile (or block-matrix) at (local) block-rowi and (local) block-columnj in domainp.
And we want to merge two domains, let us sayp1 andp2. With these notations, here are
the two new kernels:

• CORE DTTQRT: this routine performs the QR factorization of a matrix built by coupling the factorRp1,k,k

from the domainp1 with the factorRp2,1,k from the domainp2. It produces an updated factorRp1,k,k, an upper
triangular matrixVp2,1,k containing the Householder reflectors and an upper triangular matrixT r

p2,1,k resulting from
accumulating the reflectorsVp2,1,k. The reflectors are stored in the upper annihilated part of the matrix. Another
extra storage is needed for storingT r

p2,1,k.
• CORE DTTSSMQR: this routine applies the reflectorsVp2,1,k and the matrixT r

p2,1,k computed by COREDTTQRT
to two tilesAp1,k,j andAp2,1,j .

Finally, Figure 5 unrolls the third and last panel factorization. A QR factorization is
performed on the last tile of the first domain as well as on the entire panel of the second
domain. The local R factors are then merged to produce the final R factor.

We call the overall algorithm Semi-Parallel because the degree of parallelism of the panel
factorization depends on the number of domains used. For instance, on a 32 core machine,
let us assume that a matrix split in 8 domains. Even if each domain is itself performed in
parallel (with a PLASMA-like factorization), then 8 cores (maximum) may simultaneously
factorize a given panel (one per domain). The main difference against Algorithm 1 is that
Algorithm 1 is optimized for cache reuse [4] (data is loaded into cache a limited number
of times) whereas our new algorithm (SP-CAQR) provides moreparallelism by processing
a panel in parallel. The expected gain will thus be a trade offbetween increased degree of
parallelism and efficient cache usage.

Assuming that a matrix A is composed ofMT tiles in row andNT tiles in column,
SP-CAQR corresponds to Algorithm 3. The PLASMA-like factorization occurring within

7



Algorithm 3 Semi-Parallel Tile CAQR (SP-CAQR)
nextMT = MTloc; proot = 0
for k = 1 to min(MT, NT ) do

if k > nextMT then
proot + +; nextMT+ = MTloc;

end if
/* PLASMA-like factorization in each domain */
for p = proot to P − 1 do

ibeg = 0
if p == proot then

ibeg = k − proot×MTloc

end if
Rp,ibeg,k, Vp,ibeg,k, Tp,ibeg,k ← CORE DGEQRT(Ap,ibeg,k)
for j = k + 1 to NT do

Ap,ibeg,j ← CORE DORMQR(Vp,ibeg,k, Tp,ibeg,k, Ap,ibeg,j)
end for
for i = ibeg + 1 to MTloc do

Rp,ibeg,k, Vp,i,k, Tp,i,k ← CORE DTSQRT(Rp,ibeg,k, Ap,i,k)
for j = k + 1 to NT do

Ap,ibeg,j , Ap,i,j ← CORE DTSSSMQR(Vp,i,k, Tp,i,k, Ap,ibeg,j , Ap,i,j)
end for

end for
end for
/* Merge */
for m = 1 to ceil(log

2
(P − proot)) do

p1 = proot ; p2 = p1 + 2m−1

while p2 < P do
i1 = 0 ; i2 = 0
if p1==prootthen

i1 = k − proot×MTloc

end if
Rp1,i1,k, Vp2,i2,k, T r

p2,i2,k ← CORE DTTQRT(Rp1,i1,k, Rp2,i2,k)
for j = k + 1 to NT do

Ap1,i1,j , Ap2,i2,j ← CORE DTTSSMQR(Vp2,i2,k, T r
p2,i2,k, Ap1,i1,j , Ap2,i2,j )

end for
p1+ = 2m; p2+ = 2m

end while
end for

end for

each domainp is interleaved with the merge operations for each panelk. We noteMTloc

the number of tiles per column within a domain (assumed constant) andproot the index
of the domain containing the diagonal block of the current panel k. The PLASMA-like
factorization occurring in a domain is similar to Algorithm1 except that the reference tile
in domainp is not always the diagonal block of the domain (as already noticed in Figure 5).
Indeed, if the diagonal block of the current panelk is part of domainproot (p == proot),
then the reference tile is the diagonal one (ibeg = k − proot × MTloc). Otherwise (i.e.,
p 6= proot), the tile of the first block-row of the panel is systematically used as a reference
(ibeg = 0) to annihilate the subsequent tiles located below, within the same domain. The
index of the block-row merged is then affected accordingly (i1 = k − proot×MTloc when
p1 == proot).

B. Fully-Parallel Tile CAQR (FP-CAQR)

One may proceed further in the parallelization procedure byaggressively and indepen-
dently factorizing each tile located on the local panel of each domain. The idea is to process

8



the remaining part of a panel within a domain in parallel too,with a local merging procedure.
Figure 6 describes this Fully-Parallel QR factorization (FP-CAQR), and the corresponding
algorithm is given in Algorithm 4.

Fig. 6. Unrolling the operations related to the first panel inFP-CAQR. Two domains are used, separated by the red line.
The tree steps are illustrated, the factorization(a), the local merge (b) and the global merge(c).

Actually, FP-CAQR does not depend on the number of domains used, provided that the
number of tiles per column is a power of two (otherwise the pairs used for the merge
operations might not match, from one instance to another). Furthermore, a given instance
of FP-CAQR can be obtained with an instance of SP-CAQR by choosing the instance of
SP-CAQR with a number of domainsP equal to the number of tiles per rowMT . This
approach has been mainly mentioned for pedagogic and completeness purposes. Therefore,
we will focus on SP-CAQR in the remainder of the paper. In the following section, we will
discuss frameworks for exploiting this exposed parallelism.

IV. Graph Driven Asynchronous Execution

Tile algorithms in general provide fine granularity parallelism, and standard linear algebra
algorithms can then be represented as a DAG to help understand the execution flow [8].
The DAGs of Algorithms 1, 3 and 4 are shown in Figures 7(a), 7(b) and 7(c) respectively.
The nodes represent tasks, either panel factorization or update of a block-column, and edges
represent dependencies among them.

From Figure 7, it is obvious that SP-8 and FP-CAQR considerably enhance the parallelism
compared to the PLASMA-like Tile QR factorization. For example, for MT=16 and NT=2,
three kernels at most can run concurrently for the PLASMA-like Tile QR factorization
while a maximum of 16 and 20 kernels can run at the same time forSP-8 and FP-CAQR,
respectively. Figure 8 shows a larger DAG representation ofTile QR factorization. Basically,
the wider the DAG, the better opportunity to gain parallelism.

9



(a) One domain: SP-1 (or PLASMA-like Tile QR factor-
ization).

(b) Eight domains: SP-8.

(c) Sixteen domains: SP-16 (or FP-CAQR).

Fig. 7. DAG representations of Tile QR factorization with MT=16 and NT=2 depending on the number of domains.

Fig. 8. DAG representations of Tile QR factorization with MT=32 and NT=4 with sixteeen domains: SP-16.

10



Algorithm 4 Fully-Parallel Tile CAQR (FP-CAQR)
nextMT = MTloc

proot = 0
for k = 1 to min(MT, NT ) do

if k > nextMT then
proot + +
nextMT+ = MTloc

end if
/* PLASMA-like factorization in each domain */
for p = proot to P − 1 do

ibeg = 0
if p == proot then

ibeg = k − proot×MTloc

end if
for i = ibeg to MTloc − 1 do

Rp,i,k, Vp,i,k, Tp,i,k ← CORE DGEQRT(Ap,i,k)
for j = k + 1 to NT do

Ap,i,j ← CORE DORMQR(Vp,i,k, Tp,i,k, Ap,i,j)
end for

end for
/* Local Merge */
for m = 1 to ceil(log

2
(MTloc − ibeg) do

i1 = ibeg; i2 = i1 + 2k−1

while i2 < MTloc do
Rp,i1,k, Vp,i2,k, T r

p,i2,k ← CORE DTTQRT(Rp,i1,k, Rp,i2,k)
for j = k + 1 to NT do

Ap,i1,j , Ap,i2,j ← CORE DTTSSMQR(Vp,i2,k, T r
p,i2,k, Ap,i1,j , Ap,i2,j)

end for
i1+ = 2k; i2+ = 2k

end while
end for

end for
/* Global Merge */
for m = 1 to ceil(log

2
(P − proot)) do

p1 = proot ; p2 = p1 + 2m−1

while p2 < P do
i1 = 0 ; i2 = 0
if p1==prootthen

i1 = k − proot×MTloc

end if
Rp1,i1,k, Vp2,i2,k, T r

p2,i2,k ← CORE DTTQRT(Rp1,i1,k, Rp2,i2,k)
for j = k + 1 to NT do

Ap1,i1,j , Ap2,i2,j ← CORE DTTSSMQR(Vp2,i2,k, T r
p2,i2,k, Ap1,i1,j , Ap2,i2,j )

end for
p1+ = 2m; p2+ = 2m

end while
end for

end for

Once the DAGs are established, the tasks can be scheduled asynchronously and indepen-
dently as long as the dependencies are not violated. A critical path can be identified in the
DAG as the path that connects all the nodes that have the higher number of outgoing edges.
Based on this observation, a scheduling policy can be used, where higher priority is assigned
to those nodes that lie on the critical path. Clearly, in the case of the PLASMA-like Tile QR
factorization and SP-CAQR, the nodes associated to the DGEQRT subroutine (red nodes)
as well as those involved in the merging procedure, i.e., theDTTQRT subroutine (yellow
nodes), have the highest priority. Other priority levels can be defined for the remaining

11



kernels. The DAG scheduling results in an out of order execution where idle time is almost
completely eliminated, since only very loose synchronization is required between the threads
(see large traces in Section V-C).

Noteworthy to mention here is the natural suitability of such algorithms for a distributed
computing environment. Each domain (or a group of domains) could be allocated to a
particular processing node. The main computation would be done within the nodes. Com-
munication between processing nodes would only be limited at the level of the merging
procedure, so the name of Communication-Avoiding algorithms.

In the following section, we will discuss frameworks for exploiting this exposed paral-
lelism.

V. Parallel Scheduling

This section explains how the resulting DAGs from the PLASMA-like QR factorization
and SP-CAQR can be efficiently scheduled on a multicore machine. Two schedulers ap-
proaches are discussed: a static approach where the scheduling is predetermined (exactly
the one implemented in PLASMA) and a dynamic approach where decisions are made at
runtime.

A. Static scheduling

Developed initially on the IBM Cell processor [16], the static scheduling implemented in
PLASMA uses POSIX threads and naive synchronization mechanisms. Figure 9 shows the
step-by-step scheduling execution with eight threads on a square tile matrix (MT = NT =
5). In this particular figure, the work is distributed by columns of tiles and there are five
panel factorization steps, and each of those steps is performed sequentially. It implements
a right-looking QR factorization, and the steps of the factorization are pipelined. The cores
are mapped on a one dimensional partitioning. The mapping tothe tasks is executed before
the actual numerical factorization based on a look-ahead ofvarying depth. The look-ahead
strategy greedily maps the cores that might run out of work tothe different block column
operations. This static approach is well adapted to schedule Algorithm 1 and achieves high
performance [4] thanks to an efficient cache reuse [17]. Thisstatic scheduling could be

Fig. 9. Work assignment in the static pipeline implementation of the tile QR factorization.

extended to the SP-CAQR algorithm since SP-CAQR performs a PLASMA-like factorization
on each domain. However, this would prompt load balancing issues difficult to address with

12



a hand-written code1. Another solution consists of using a dynamic scheduler where the
tasks are scheduled as soon as their dependencies are satisfied and that prevents cores from
stalling.

B. Dynamic scheduling

We decided to present experimental results obtained with a well established and ro-
bust dynamic scheduler, SMP Superscalar (SMPSs) [2]. SMPSsis a parallel programming
framework developed at the Barcelona Supercomputer Center(Centro Nacional de Super-
computación). SMPSs is a dynamic scheduler implementation that addresses the automatic
exploitation of the functional parallelism of a sequentialprogram in multicore and symmetric
multiprocessor environments.

SMPSs allows programmers to write sequential applications, and the framework is able to
exploit the existing concurrency and use the different processors by means of an automatic
parallelization at execution time. As in OpenMP, a programmer is responsible for identifying
parallel tasks, which have to be side-effect-free (atomic)functions. However, he is not
responsible for exposing the structure of the task graph. The task graph is built automatically,
based on the information of task parameters and their directionality.

Based on the annotations in the source code, a source to source compiler generates the
necessary code and a runtime library exploits the existing parallelism by building at runtime
a task dependency graph. The runtime takes care of scheduling the tasks and handling the
associated data.

Regarding its implementation, it follows the same approachas described in [17] in order
to get the best performance by drastically improving the scheduling. However, SMPSs is
not able to recognize accesses to triangular regions of a tile. For example, if only the lower
triangular region is accessed during a particular task, SMPSs will still create a dependency
on the whole tile and therefore prevent the scheduling of anysubsequent tasks that only
use the strict upper triangular region of the same tile. To bypass this bottleneck, we force
the scheduler to drop some dependencies by shifting the starting pointer address of the tile
back and forth.

C. Execution Traces

Figure 10 illustrates the entire execution flow of Algorithms 1, 3 and 4 on eight cores with
MT=16 and NT=2 when tasks are dynamically scheduled based ondependencies defined
by the corresponding DAG in Figure 7 (Section IV). Each line in the execution flow shows
which tasks are performed by one of the threads involved in the factorization. Figure 10
shows the parallel execution traces. Figure 10.a) outlinesthe poor parallelism of PLASMA-
like Tile QR factorization. Not only is the trace irregular with lots of idle time (white
spaces) but also two out of eight cores are actually completely inactive. On the contrary,
Figures 10.b) and 10.c), present less idle time and most of the cores are concurrently
performing operations. It is also important to mention thatthe presence of idle time is
mainly due to the relative small size of the matrix, i.e., MT=16 and NT=2. The cores run
out of work right from the beginning, while such a behavior ismore expected toward the
end of the factorization when the matrix is large enough. Indeed, Figure 11 shows that
all the idle times, which represent the major scalability limit of the fork-join approach, is

1One might think to map a constant number of cores per domain, but, after NT panels have been processed, the cores
of the first domain would then run out-of-work.

13



Fig. 10. Parallel execution traces with MT=16 and NT=2 on 8 cores depending on the number of domains. a) One domain:
SP-1 (or PLASMA-like Tile QR factorization), b) Eight domains: SP-8, c) Sixteen domains: SP-16 (or FP-CAQR).

removed thanks to the very low synchronization requirements of the graph driven execution.

Fig. 11. Parallel execution traces of SP-16 with MT=32 and NT=4 on 8 cores.

In the next section, experimental results of our SP-CAQR algorithm with SMPSs are
presented.

VI. Experimental Results

A. Experimental environment

The experiments were conducted on a quad-socket, quad-coremachine based on an Intel
Xeon EMT64 E7340 processor operating at2.39 GHz. The theoretical peak is equal to9.6

14



Gflop/s/ per core or153.2 Gflop/s for the whole node, composed of 16 cores. There are two
levels of cache. The level-1 cache, local to the core, is divided into 32 kB of instruction
cache and 32 kB of data cache. Each quad-core processor beingactually composed of two
dual-core Core2 architectures, the level-2 cache has2 × 4 MB per socket (each dual-core
shares 4 MB). The machine is running Linux 2.6.25 and provides Intel Compilers 11.0
together with the MKL 10.1 vendor library [1].

The test matrices were generated by calling DLARNV functionfrom LAPACK. Their
values thus follow a pseudo-random uniform distribution. However, since we use the same
routine with a consistent seed state, for a given size, all the applications use the same matrix
in entry.

The performance of the Tile QR factorization strongly depends on two tunable parameters:
the tile size (NB) and the inner blocking sizes (IB) [4]. The tile size trades off parallelization
granularity and scheduling flexibility with single core utilization, while the inner block size
trades off memory load with extra-flops due to updating factorization techniques [12]. The
optimal tile size (NB) and inner blocking size (IB) vary in function of the matrix dimensions
(m, n) as discussed in [4]. However, to have a more consistentset of results, we decided
to use constant values: NB = 200 and IB = 40. Those values were empirically chosen to
maximize the asymptotic performance, the impact of the (NB,IB) on SP-CAQR performance
being out-of-the scope of the paper.

We recall that SP-CAQR depends on the number P of domains used, and we note SP-P
an instance of SP-CAQR withP domains. IfP = 1, it corresponds to a PLASMA-like
factorization (but SP-1 relies on SMPSs whereas PLASMA implements a static scheduler).
On the other side of the spectrum, we recall thatP = MT (MT is the number of tiles per
row) corresponds to the FP-CAQR algorithm. As discussed in Section V, our SP-CAQR
algorithm is scheduled with SMPSs dynamic scheduler.

In this section, we essentially present experiments on TS matrices (where the higher im-
provements are expected), but we also consider general and square matrices. A comparison
against state of the art linear algebra packages (LAPACK, ScaLAPACK, PLASMA) and the
vendor library MKL 10.1 concludes the section. All the packages have been linked against
the BLAS from Intel MKL.

When we report the Gflop/s rate, we consistently use the number of floating point
operations that a standard algorithm would perform. All performance results reported in the
paper (SP-CAQR, PLASMA, ScaLAPACK, MKL, LAPACK) are indeedcomputed using the
same algorithmic complexity formula:2.m.n2−2.n2/3 flops. The actual number of floating
point operations depends on the algorithm. For instance, SP-CAQR and MKL perform a
different number of operations. Furthermore, that number depends on the tile size (NB), the
internal blocking size (IB), and the number of domains (P). Indeed, SP-CAQR trades flops
for communications.

B. Tall and Skinny matrices

Figure 12 shows the performance obtained on matrices of onlytwo tiles per row, using 16
cores. The plot is under-scaled (the actual theoretical peak performance is153.2 Gflop/s. The
number of tiles per columnMT has to be greater than or equal to the number of domains
P ; for instance, SP-16 can only be executed on matrices of at leastM = 16 ∗ 200 = 3200
rows, since a tile is itself of order200. The overall limited performance (at best12% of
the theoretical peak of the machine) shows the difficulty to achieve high performance on

15



TS matrices. This is mainly due to the Level-2 BLAS operations which dominate the panel
factorization kernels.

If the matrix is tall enough, SP-CAQR (if the number of domains is large too) is up to
more than3 times faster than the (PLASMA-like) Tile QR algorithm (SP-1). With such TS
matrices, the greater the number of domains, the higher the performance. In particular, For
instance SP-32 is optimum on a 6400 by 400 matrix.

0

2

4

6

8

10

12

14

16

18

200 400 800 1600 3200 6400

G
fl

o
p

/s

M (Number of rows)

SP-8

SP-1

SP-2

SP-4

SP-16

SP-32

Fig. 12. Performance of 16 core executions on TS
matrices with2 tiles per row (N = 400 is fixed).

0

10

20

30

40

50

60

70

80

90

100

200 400 800 1600 3200 6400

G
fl

o
p

/s

N (Number of columns)

SP-8

SP-1

SP-2

SP-4

SP-16

SP-32

Fig. 13. Performance of 16 core executions on TS matrices
with 32 tiles per column (M = 6400 is fixed).

Figure 13 shows the performance of matrices with32 tiles per column on execution using
16 cores. The improvement brought by SP-CAQR is again strongfor TS matrices (SP-16 is
twice as fast as SP-1 whenN = 800). However, when the shape of the matrix tends to be
square (right part of the graph), PLASMA-like algorithm (SP-1) becomes relatively more
and more efficient. It is the fastest execution in the case of the factorization of a square
matrix (6400 by 6400). The reason is that, for such large square matrices, the lack of
parallelism within the panels is mostly hidden by the other opportunities of parallelism (see
Section II-B) and is thus completely balanced by the very good cache usage of PLASMA-
like factorizations.

C. Square matrices

Figures 14 and 15 show the performance obtained on square matrices using 8 and 16
cores, respectively. They confirm that the lack of parallelism of PLASMA-like algorithm
(SP-1) on small matrices leads to a limited performance and are outperformed by SP-CAQR
(SP-P , P > 1). On the other hand, PLASMA-like factorization becomes themost efficient
approach for matrices of order greater than 3200. Note that the number of tiles per column
MT has to be greater than or equal to the number of domainsP ; for instance, SP-16 can
only be executed on matrices of order at least equal toM = 16 ∗ 200 = 3200 rows, since
a tile is itself of order200.

D. Comparison with state-of-the-art libraries

In Figure 16, we compare our new approach, SP-CAQR against PLASMA, ScaLAPACK,
LAPACK and MKL for a TS matrix of size51200 × 3200. SP-CAQR is27% faster than
PLASMA, if the matrix is split in 16 domains (SP-16). Furthermore, for this matrix shape,
SP-CAQR is slightly faster when scheduled dynamically (SP-1) than statically (PLASMA)

16



0

10

20

30

40

50

60

200 400 800 1600 3200 6400

G
fl

o
p

/s

N (Matrix order)

SP-8

SP-2 SP-4

SP-16

SP-32

SP-1

Fig. 14. Performance on square matrices using 8 cores.

0

10

20

30

40

50

60

70

80

90

100

200 400 800 1600 3200 6400

G
fl

o
p

/s

N (Matrix order)

SP-8

SP-1

SP-2

SP-4

SP-16

SP-32

Fig. 15. Performance on square matrices using 16 cores.

with a ratio of 79 Gflop/s against75 Gflop/s. The performance of SP-CAQR depends on
the number of domains. In this case, the most significant performance variation (21%) is
obtained between2 and4 domains.

G
fl

o
p

/s

Number of domains

DGEMM Peak

Theoretical Peak

G
fl

o
p

/s

Number of domains

DGEMM Peak

Theoretical Peak

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16

MKL

LAPACK

PLASMA

SP-CAQR

ScaLAPACK

Fig. 16. Performance Comparisons of SP-CAQR
depending on the number of domains.

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16

G
fl

o
p

/s

Number of Column Tiles (Width)

MKL

LAPACK

PLASMA

SP-CAQR

ScaLAPACK

DGEMM Peak

Theoretical Peak

Fig. 17. Scalability of SP-CAQR.

Figure 17 shows the performance on 16 cores of the QR factorization of a matrix where
the number of rows is fixed to 51200 and the number of columns varies. For TS matrix
of size51200 by 200, our approach for computing the QR factorization is almost10 times
faster than the Tile QR factorization of PLASMA and around9 times than MKL (exactly
9.54 and 8.77 as reported in Table III). This result is essentially due to the higher degree
of parallelism brought by the parallelization of the panel factorization. It is interesting to
notice that the ratio is of order of magnitude of the number ofcores,16, which is clearly an
upper bound. LAPACK is around30 times slower than our approach, while ScaLAPACK
is only 3 times slower. By increasing the number of tiles in a column ofthe matrix, the
ratio is less important, however, SP-CAQR is still faster byfar compared to state-of-the-art
linear algebra packages. PLASMA is performing better and tends to reach the performance
of SP-CAQR when the number of tiles in the column are increased. For instance, PLASMA
is only 1.27 times slower for matrix size of51200 by 3200. Regarding the other libraries,
the ratio compared to ScaLAPACK is still at3, while SP-CAQR is more than4 times and
11 times faster than MKL and LAPACK respectively.

17



TABLE III
IMPROVEMENT OFSP-CAQRAGAINST OTHER LIBRARIES(PERFORMANCE RATIO).

Matrix sizes PLASMA MKL ScaLAPACK LAPACK
51200 − 200 9.54 8.77 3.38 28.63
51200 − 3200 1.27 4.10 2.88 11.05

VII. Conclusions and Future Work

By combining two existing algorithms (Tile QR factorization from PLASMA and the
CAQR approach), we have proposed a new fully asynchronous and numerically stable
QR factorization scheme for shared-memory multicore architectures. We have shown a
significant performance improvement (up to almost10 times faster against previous estab-
lished linear algebra libraries). We have experimentally assessed the impact of the number
of domains on performance, however we have considered only fixed values for the two
other tunable parameters (a tile size NB of200 and inner blocking size IB of40). We
expect to achieve even better performance by tuning those parameters together with the
number of domains. In particular, we plan to develop autotuning techniques to achieve an
optimum performance. The experiments presented in this paper have been conducted with
a well established dynamic scheduler, SMPSs. However, we have also used SP-CAQR with
PLASMA’s experimental dynamic scheduler [15], making it possible to release SP-CAQR
as part of the PLASMA library. We plan to do so when the dynamicscheduler is in a more
advanced stage of development.

SP-CAQR also represents a natural building block for extending the PLASMA library to
distributed-memory environments. We will indeed benefit from the low amount of communi-
cation induced by communication-avoiding algorithms. Furthermore, we plan to investigate
the extension of this work to the LU factorization where numerical stability issues are more
complex [13].

References

[1] Intel Math Kernel Library (MKL). http://www.intel.com/software/products/mkl/.
[2] SMP Superscalar. http://www.bsc.es/→ Computer Sciences→ Programming Models→ SMP Superscalar.
[3] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J.Langou, and H. Ltaief. PLASMA Users Guide. Technical

report, ICL, UTK, 2009.
[4] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra. Comparative Study of One-Sided Factorizations with Multiple

Software Packages on Multi-Core hardware. LAPACK Working Note 217, ICL, UTK, April 2009.
[5] E. Anderson, Z. Bai, C. Bischof, L. Blackford, J. Demmel,J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen.LAPACK Users’ Guide. SIAM, 1992.
[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,

A. Petitet, K. Stanley, D. Walker, and R. Whaley.ScaLAPACK Users’ Guide. SIAM, 1997.
[7] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel tiled QR factorization for multicore architectures.

Concurrency and Computation: Practice and Experience, 20(13):1573–1590, 2008.
[8] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A Classof Parallel Tiled Linear Algebra Algorithms for Multicore

Architectures.Parallel Computing, 35(1):38–53, 2009.
[9] J. W. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou. Communication-optimal parallel and sequential QR and

LU factorizations. LAPACK Working Note 204, UTK, August 2008.
[10] R. W. Freund and M. Malhotra. A Block QMR Algorithm for Non-Hermitian Linear Systems With Multiple Right-

Hand Sides.Linear Algebra and its Applications, 254(1–3):119–157, 1997.
[11] W. M. Gentleman. Row elimination for solving sparse linear systems and least squares problems. Numer. Anal.,.

Proc. Dundee Conf. 1975, LEct Notes Math, 506:122–133, 1976.
[12] G. H. Golub and C. F. Van Loan.Matrix Computation. John Hopkins Studies in the Mathematical Sciences. Johns

Hopkins University Press, Baltimore, Maryland, third edition, 1996.

18



[13] L. Grigori, J. W. Demmel, and H. Xiang. Communication avoiding Gaussian elimination. InSC ’08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12, 2008.

[14] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. Tile QR Factorization with Parallel Panel Processing for Multicore
Architectures. UT CS Technical Report ut-cs-09-647, UTK, December, 2009, accepted in IPDPS 2010.

[15] J. Kurzak and J. Dongarra. Fully Dynamic Scheduler for Numerical Computing on Multicore Processors. LAPACK
Working Note 220, ICL, UTK, June 2009.

[16] J. Kurzak and J. Dongarra. QR factorization for the CellBroadband Engine.Sci. Program., 17(1-2):31–42, 2009.
[17] J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia. Scheduling Linear Algebra Operations on Multicore Processors.

LAPACK Working Note 213, ICL, UTK, February 2009.
[18] D. P. O’Leary. The Block Conjugate Gradient Algorithm and Related Methods.Linear Algebra and Its Applications,

29:293–322, 1980.
[19] A. Pothen and P. Raghavan. Distributed orthogonal factorization: Givens and Householder algorithms.SIAM Journal

on Scientific and Statistical Computing, 10:1113–1134, 1989.
[20] R. Schreiber and C. Van Loan. A Storage Efficient WY Representation for Products of Householder Transformations.

SIAM J. Sci. Statist. Comput., 10:53–57, 1989.

19


